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In the context of Fock states, demonstrating multiphoton quantum interference, e.g., the generalized Hong-
Ou-Mandel (HOM) interference, is at the core of many applications of quantum technologies. However, it is
difficult to demonstrate high-visibility quantum interference for a large number of photons. Here, we introduce
an experimentally feasible proposal to achieve this goal using phase-randomized weak coherent states and
practical photon-number-resolving detectors. Our method can be used to obtain analytically tight bounds of
the generalized HOM dip in a beam splitter, and it is robust against practical errors. The simulation shows that
for an ideal detector that can resolve any number of photons without an upper bound, the proposed method
can bound the generalize HOM interference for a large number of photons, e.g., 100 photons; for a practical
detector that can resolve up to 29 photons, the proposed method can bound the generalized HOM interference
for 56 photons with visibility 99.4%. Our proposal is a general approach for multiphoton quantum interference
in optical networks with multiple inputs and outputs.
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I. INTRODUCTION

Multiphoton quantum interference (MQI), in the context
of Fock state interference, is a fundamental phenomenon
of quantum mechanics. It has fascinated many scientists, as
its essential role is showing the difference between quan-
tum physics and classical physics. Over the past decades,
MQI has been widely studied in theory and demonstrated
in experiments involving two or more photons. MQI is a
promising technology to generate NOON states [1] and W
states [2], implement N × N unitaries [3], and to reduce the
complexity of photonic quantum circuits [4]. Furthermore,
MQI has also many other potential applications, such as quan-
tum computing [5,6], quantum communications [7], boson
sampling [8–12], quantum metrology [13–16], and so forth.
The phase-randomized weak coherent states are key resources
for several applications, such as characterizing multimode
linear-optical networks [17] and realizing important quantum
communication protocols [18–20].

Among MQI, the seminal two-photon interference at a
50:50 beam splitter, known as Hong-Ou-Mandel (HOM) in-
terference [21], is the most attractive due to its crucial role
in some promising applications such as linear-optics quantum
computation [5,6] and quantum key distribution [18]. How-
ever, due to the lack of high-quality on-demand multiphoton
sources [22], it is difficult to implement the HOM interference
for more than two photons at a beam splitter, i.e., generalized
HOM interference [23–26], and to demonstrate high-visibility
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quantum interference for a large number of photons. So far,
six-photon generalized HOM interference is the largest num-
ber of photons reported in previous experiments [12,25–27],
and the visibility is only as large as 0.92 [27].

Recently, based on the proposal in Ref. [28], Aragoneses
et al. [29] demonstrated that the outcome of two-photon
HOM interference could be bounded with high visibility using
phase-randomized weak coherent states (WCSs). The single-
photon state tomography can also be probed using phase-
randomized WCSs [30]. Combining the decoy-state method
[31,32] with the detector-decoy method [33], Navarrete et al.
[34] proposed a scheme of characterizing MQI in general
optical networks (ONs) with high visibility. However, the
accuracy of the estimation dramatically decreases for the
generalized HOM interference for a large number of photons.
The highest number of photons estimated in [34] was limited
to 6. The decrease in accuracy is due to the requirement of
the optimization of both decoy-state settings and detector-
decoy settings. That is, the estimation complexity increases
exponentially with the number of photons at each input port.

In this paper, we propose a more efficient method to tightly
bound generalized HOM quantum interference. The main goal
of the proposed method is to provide a feasible scheme to
realize high-visibility quantum interference for a large number
of photons, e.g., using phase-randomized WCPs to estimate
the statistics provided by ideal n-photon sources. Different
from the method used in Ref. [34], we use photon-number-
resolving (PNR) detectors to monitor the photon distribution
of the output of beam splitters. Thanks to the information
provided by the PNR detectors, our method can place a
nearly tight analytical bound on the conditional probability
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FIG. 1. The schematic diagram of our method for generalized
HOM quantum interference. The set of phase-randomized WCSs
with different mean photon numbers, μ and ν, is used to estimate the
statistics provided by ideal n-photon sources, and nj (x j) represents
the photon number at the jth input (output) port of the beam splitter.
The PNR detectors with single-photon detection efficiency η are
placed at the output of the beam splitter to measure the photon
number of the output signals. k1 and k2 denote the photon numbers
observed by the two detectors, respectively.

distribution P(x1, x2|n1, n2) of the generalized HOM interfer-
ence. Here, |n1, n2〉 and |x1, x2〉, respectively, denote the input
and output of Fock states at the beam splitter. Our numerical
simulation shows that our method can demonstrate a large
number of photons interference, and is robust against practical
errors introduced by imperfections of experiments. Impor-
tantly, considering a transition edge sensor (TES) detector that
can resolve up to 16 photons [35], we predict that our method
can bound 30-photons interference with high visibility and
high error tolerances. For the best known TES detector, which
has a resolution of 29 photons [36], the proposed method can
demonstrate generalized HOM for 56 photons with visibility
99.4%. In practice, our method is useful for several informa-
tion tasks. For instance, in computation tasks, such as boson
sampling [8–12], we can simulate the circuit by inputting
WCSs. In measurement device independent quantum key
distribution (QKD) [18], since our method can tightly estimate
the yield of two single-photon pulses, it can be applied to
increase the key rate.

II. METHOD

In this section, we present a general method to tightly
bound generalized HOM quantum interference for a large
number of photons. Figure 1 shows the schematic diagram
of the proposed method. We use phase-randomized WCSs,
together with the decoy-state method, as the input, and we
employ PNR detectors at the outputs. The fundamental idea of
our method is twofold: (i) The decoy-state method can give us
precise information on the statistics of the input photon num-
bers [31,32]; and (ii) the PNR detector has photon-number-
resolving capability, thus it can precisely measure the output
photon numbers [35,37,38]. Here, we assume that the beam
splitter is lossless.

More precisely, we use phase-randomized WCSs with
mean photon number μ (ν) at the first (second) input port.
Therefore, we can assume the input state |n1, n2〉 is ob-
tained with the probability pμ

n1
pν

n2
, where pμ

n = e−uun/n! is
the photon-number distribution of phase-randomized WCSs
given the intensity μ, and the output state can be written as
|x1, x2〉 in the Fock state basis, where x j represents the photon

number at the jth output port. Then the generalized HOM
quantum interference can be characterized by the conditional
probability distribution P(x1, x2|n1, n2). Note that here, the
lossless assumption of the beam splitter is satisfied by n1 +
n2 = x1 + x2. That is, the total number of output photons
should be equal to the total number of input photons to the
beam splitter.

To estimate the unknown probabilities P(x1, x2|n1, n2), we
can measure the photon number of the output signals by
two PNR detectors. However, for a practical PNR detector,
such as transition edge sensor (TES) detectors [35,37,38],
it has limited quantum efficiency η (typically η < 1) and
finite number resolution of photons. We first consider the
semiperfect case where the PNR detectors have the capability
to distinguish an infinite number of photons with a detec-
tion efficiency η < 1 [39]. In this situation, the conditional
probability of observing k j photons among x j photons is

P(k j |x j ) = C
kj
x j × ηk j (1 − η)x j−k j . Therefore, for a particular

detection outcome (k1, k2), the probability Pμ,ν

k1,k2
given the

input intensities μ, ν is

Pμ,ν

k1,k2
=

∑
n1,n2�0

n1+n2=x1+x2
x1�k1,x2�k2

P(k2|x2)P(k1|x1)P(x1, x2|n1, n2)pμ
n1

pν
n2

.

(1)

This is the only information that one can directly obtain from
the experiment. It relates the observed probabilities, Pμ,ν

k1,k2
,

to the unknown conditional probabilities P(x1, x2|n1, n2) via
the statistics pμ

n1
pν

n2
and P(k2|x2)P(k1|x1), which are both

known a priori given the experimental parameters μ, ν, k1,
k2, and η. Then by setting up different values of intensity
(μi, νi ), each intensity setting provides a new linear equation
that has the same unknowns P(x1, x2|n1, n2) but different
coefficients pμ

n1
pν

n2
and P(k2|x2)P(k1|x1). Solving these sets

of linear equations given by Pμ,ν

k1,k2
, one can estimate any

conditional probability P(x1, x2|n1, n2). However, as we can
see from Pμ,ν

k1,k2
, there is a probability that the input states of

the beam splitter are vacuum states, which means that there
is no photon interference between the two input modes of
the beam splitter. To avoid this situation, one can set up two
extra vacuum states (μi, 0) and (0, νi ) for each setting (μi, νi ),
and calculate B̄μi,νi

k1,k2
= e−(μi+νi )Pμi,νi

k1,k2
− e−νi P0,νi

k1,k2
− e−μi Pμi,0

k1,k2
,

which is

B̄μi,νi

k1,k2
=

∑
n1,n2�1

n1+n2=x1+x2
x1�k1,x2�k2

μ
n1
i ν

n2
i

n1!n2!
P(k2|x2)P(k1|x1)P(x1, x2|n1, n2).

(2)

Noticing that, B̄μi,νi

k1,k2
still has many unwanted terms that

dramatically decrease the accuracy of the estimation of
P(x1, x2|n1, n2). Here, we take an example of 30-photon
interference, P(15, 15|n1, n2). In that case, the biggest con-
tribution to B̄μi,νi

15,15 are the terms of 31-photon interference.
More than 31-photon interference will also contribute to
B̄μi,νi

15,15, but this contribution is minor because the probabil-
ity of having more than 31 input photons is much smaller
than the probability of having 30 input photons. To obtain
a tight estimation of P(15, 15|n1, n2) for a small number of
intensity settings, we need to cancel out the contribution of
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31-photon interference. This can be easily carried out by
calculating B̄μi,νi

15,15 − C1B̄μi,νi

16,15 − C2B̄μi,νi

15,16, where C1 = 16(1 −
η)/η and C2 = 16(1 − η)/η, and we denote this calculation
as B̃μi,νi

15,15. Therefore, B̃μi,νi

15,15 only contains the terms of 30-
photon interference, and the terms of more than 31-photon
interference which make a minor contribution to our final
results can be tightly bound to increase the accuracy of the
estimation.

Based on the above analysis, the tight estimation of the
conditional probability can be solved from the set of linear
equations given by B̃μi,νi

k1,k2
. More precisely, from the detection

outcome (k1, k2), the conditional probability of K-photon
interference, P(k1, k2| j, K − j), where K = k1 + k2 and 1 �
j � K − 1, could be calculated with K − 1 intensity settings
(see Appendix A for further details),

Ptest =
K−1∑
i=1

[A−1] ji × j!(K − j)!

ai(νiη)K × B̃aiνi,νi
k1,k2

. (3)

Here, we have ai = μi/νi and Ui = μi + νi for the ith
decoy-state setting. The term [A−1] ji is an element of the
inverse of the Vandermonde matrix [see Eq. (A5)] and
B̃aiνi,νi

k1,k2
= B̄aiνi,νi

k1,k2
− C1B̄aiνi,νi

k1+1,k2
− C2B̄aiνi,νi

k1,k2+1, where C1 = (k1 +
1)(1 − η)/η and C2 = (k2 + 1)(1 − η)/η. The lower and up-
per bounds of the estimation are set by

�±=�2 ± �1

2
. (4)

The terms �1 and �2, which are given in Appendix B, denote
the contributions of more than (K + 1)-photon interference.
Hence, the conditional probability, P(k1, k2| j, K − j), can be
expressed by

Ptest + �− < P(k1, k2| j, K − j) < Ptest + �+. (5)

To get the best estimation, one needs to optimize {ai} and
{Ui}. Since there exist 2(K − 1) parameters to be optimized,
the performance of the numerical optimization is very low.
Here, we provide a special optimization method. In our model,
when phase-randomized WCSs are used to simulate Poisson
distributions of Fock states, the probability of getting the
state |n1, n2〉 is pμ

n1
pμ

n2
. After letting μ = aν, U = μ + ν, and

a = n1/n2, this probability then reaches its maximum value.
Therefore, in the calculation of the conditional probabilities
P(k1, k2|n, K − n), an = n/(K − n). For n = (1, . . . , K − 1),
there exists K − 1 different values of an. For each an, we could
let Un be a constant U which is less than 1, which is a valid
setting that could still provide high accuracy.

The proposed method can also be used to characterize any
ONs with N input ports and L output ports. However, the
estimation complexity may increase exponentially with the
number of input/output ports of the ON (see Appendixes A
and C for further details).

III. SIMULATION

To illustrate the practicality of our method, We first calcu-
late two simple examples P(15, 15|2, 28) and P(28, 28|2, 54).
Then we use an example of 100-photon interference to show
that our method could evaluate a large number of photon
interference if the working-accuracy of the computer is high
enough. To run the simulations, we take a toy model from
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FIG. 2. Generalized Hong-Ou-Mandel dip for different con-
ditional probabilities. dT /�T is the the relative delay. In
these simulations, η = 0.9 and U = 0.1. (a) P(28, 28|2, 54)test

and P(15, 15|2, 28)test at a beam splitter of transmittance t =
0.432 580 and 0.407 152, respectively. For P(15, 15|2, 28), the upper
and lower bound of the estimation, �± = (2.96 × 10−5, −3.86 ×
10−6) and for P(28, 28|2, 54), �± = (2.74 × 10−5, −1.93 × 10−6).
(b) P(47, 53|47, 53) at a beam splitter of transmittance t =
0.606 364.

Ref. [34], where the spectrum of phase-randomized weak
coherent pulses follows a Gaussian distribution. For the the-
oretical values in our simulation, they are calculated by the
corresponding Ptest with η = 1 (see Appendix D for details).

Figure 2(a) shows simulated probabilities P(15, 15|2, 28)
and P(28, 28|2, 54) at a beam splitter as a function of the
relative delay dT /�T , respectively, where we have made an
assumption that two PNR detectors can distinguish infinite
photons. Here, dT is the absolute delay between the arrival
times of the input pulses at each input port of the beam splitter,
while �T is the full width at half-maximum (FWHM) of
the pulses, which we assume is the same for all inputs for
simplicity. For these two cases, we let the transmittance of the
beam splitter be t = 0.407 152 and 0.432 580, respectively.
Then, when the relative delay is zero, quantum mechanics
predicts that both these two conditional probabilities are zero.
We can see that the simulated results fit the theoretical values
very well.
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For characterizing generalized HOM quantum interference
for a large number of photons, because the probability of hav-
ing large input photons from the coherent states drop quickly
to zero, we need to perform simulations involving decimals
at a high level of accuracy, i.e., high-accuracy computation.
That is, consider a coherent state with a mean photon number
of 1, the probability to measure 54 photons in this state is
of the order 10−72. To run the simulations, it is necessary to
ensure that the experimental parameters should have the same
accuracy, i.e., 10−72, which can be implemented by adding 0
after the decimal part of the parameters. Figure 2(b) shows
the estimation of 100-photon interference, P(47, 53|47, 53),
as an example, where the theoretical value is illustrated with
black line. Because the upper and lower bounds illustrated in
Fig. 2(b), �± are both O(10−4), the calculated conditional
probabilities are extremely close to the theoretical results.
This numerical simulation suggest that with high-accuracy
computation, our method can efficiently characterize a large
number of photons interference.

These three numerical simulations suggest that with high-
accuracy computation, our method can efficiently character-
ize infinite-photon interference. Also, we emphasize that the
upper and lower bounds illustrated in Fig. 2 do not depend
on the absolute value of dT /�T (see Appendix B for further
details).

IV. PRACTICAL ERRORS

In experiment, the beam splitter transitivity t , single-
photon detection efficiency η, and total mean photon number
U may have errors that are different from the assumed value,
i.e., η may be 0.88 instead of 0.90 as assumed in theory.
This is because it is impossible to perfectly characterize a
parameter in experiment. Since the analytical expression of
the conditional probability is a function of (η, t,U ), it is
necessary to estimate the influence of the variation on these
parameters.

By defining the deviation (�η,�t,�U ), one can have the
contour map of

Ptest(η0, t0,U0) − Ptest(η0 + �η, t0 + �t,U0 + �U ). (6)

This value can be seen as a source of the practical errors. Here,
(η0, t0,U0) is the working point and (�η,�t,�U ) defined by
(η − η0, t − t0,U − U0) is the absolute error.

Figure 3 shows the practical errors of P(15, 15|2, 28)test,
P(28, 28|2, 54)test, and P(47, 53|47, 53)test. It is easy to find
that when |�t | = 0.1, the practical error is about O(10−2),
which is much larger than the errors caused by �U and �η.
Thus the practical error mainly depends on the beam ratio t ,
while U and η do not appear to be a major problem. This
is because, in quantum optics, a small deviation of t will
significantly influence the interference. Especially, for a large
number of photons interference, there are many choices of t
to make the conditional probability be 0. For example, when
we calculate the situation P(47, 53|47, 53) = 0, t could be set
to 0.545 185, 0.606 364, 0.636 947, and so on. Since these
values are so close to each other, the practical error about t
is concussive [see Fig. 3(c)]. Furthermore, we also investigate
how the choice of U and η affects �±. See Appendix E for
details.

(a)

(b)

(c)

FIG. 3. Practical errors for the conditional probabilities. The
solid red, dashed black, and dot-dashed blue lines repre-
sent the simulation of P(15, 15|2, 28)test, P(47, 53|47, 53)test,
and P(28, 28|2, 54)test, respectively, whose working points are
(0.9,0.407152,0.1), (0.9,0.606364,0.1), and (0.9,0.432580,0.1), re-
spectively. Parts (a), (b), and (c) are practical errors about U , η, and
t , respectively.

V. METHOD FOR PRACTICAL DETECTORS

In experiment, the practical PNR detectors, such as TES
detectors, can only resolve a finite number of photons. To
our knowledge, the resolved number of photons is up to 29
[36]. In this section, we focus on how to tightly bound the
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FIG. 4. (a) Generalized HOM dip for P(15, 15|2, 28) () with two
practical TES detectors that cannot distinguish more than 16 photons,
where �± = (0.000 754, −0.011 156), t = 0.407 152, U = 0.1, and
η = 0.8. (b) HOM dip for P(28, 28|2, 54) with two practical TES
detectors that cannot distinguish more than 29 photons, where �± =
(0.000 384, −0.010 655), t = 0.432 580, U = 0.1, and η = 0.8.

generalized HOM quantum interference when the detector has
finite resolution of the number of photons.

As mentioned in Sec. II, the information provided by the
TES detector is used to bound the conditional probabilities.
If the detectors can only resolve up to S photons, the de-
tector could not distinguish more than S photons. In this
situation, the conditional probability of observing S photons
among x j (> S) photons should be modified as P(S|x j ) =∑x j

y=S Cy
x j × ηy(1 − η)x j−y. Then the terms such as Bμν

S,k and
Bμν

k,S will be changed into the form of
∑∞

l=S B̄μν

l,k and
∑∞

l=S B̄μν

k,l ,
respectively, where k < S. If we use these two terms to reduce
the contribution of unwanted terms, the accuracy of the esti-
mation will decrease (see Appendix B). Therefore, the terms
B̄μν

S,k and (B̄μν

k,S ) could be ignored and P(S − 1, k| j, K − j)test

can be modified as

K−1∑
i=1

[A−1] ji
j!(K − j)!

ai(νiη)K × (
B̄aiνi,νi

S−1,k − C2B̄aiνi,νi
S−1,k+1

)
, (7)

where S, k, K satisfies the condition S − 1 + k = K , and j =
1, . . . , K − 1. The difference between Eq. (7) and Eq. (3)
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(c)

FIG. 5. Practical errors for the conditional probability. The
solid red and dashed blue lines represent the simulation of
P(15, 15|2, 28)test and P(28, 28|2, 54)test, respectively. Parts (a), (b),
and (c) are practical errors about U , η, and t , respectively. For
P(15, 15|2, 28)test and P(28, 28|2, 54)test, the working points are
(0.8, 0.407 152, 0.1) and (0.8, 0.432 580, 0.1).

is that we just let C1 = 0. So, for different detection results
(k1, k2), one can modify C1 and C2 as

C1 =
{

(k1 + 1) 1−η

η
, k1 � S − 2,

0, k1 � S − 1,

C2 =
{

(k2 + 1) 1−η

η
, k2 � S − 2,

0, k2 � S − 1.
(8)
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After this modification, one could take the same approach
for P(k, S − 1| j, K − j) and P(S − 1, S − 1| j, K − j). Using
this approach, any probability P(k1, k2|n1, n2) that satisfies
k1 � S − 1 and k2 � S − 1 could be easily calculated.

In our simulation, we consider two cases in which the TES
can resolve different numbers of photons. In the first case,
we consider a TES that resolves up to 16 photons [35]. Our
method predicts that one can evaluate a maximum 30-photon
interference, the conditional probabilities of which are in the
form P(15, 15|n, 30 − n), where n = 1, . . . , 15. In the second
case, we consider the best reported TES in Ref. [36], which
can resolve up to 29 photons. Figures 4(a) and 4(b) show
the HOM dip of P(15, 15|2, 28) and P(28, 28|2, 54). The
difference between the predictions of quantum and classical
mechanics can be quantified by means of the visibility [34],
which could be as large as 0.992+0.008

−0 . Because these two
TES detectors cannot provide information on 31 photons, we
cannot decrease their contribution. The contribution of more
than 30-photon interference leads to a huge deviation between
the lower bound (green squares) and its theoretical value (solid
black line) compared to Fig. 2(a). However, according to
Fig. 5, the practical errors are still primarily dependent on the
beam ratio t , while U and η have little influence on it. The
56-photon interference, as shown in Fig. 4(b), has the same
performance as 30-photon interference, and the visibility is
around 0.994+0.006

−0 .

VI. CONCLUSION

In summary, we propose an experimentally implementable
proposal for demonstrating the generalized HOM interference
for a large number of photons with high visibility. In our
proposal, we use phase-randomized weak coherent states and
practical PNR detectors, both of which can be implemented
with current technology. Furthermore, our method could be
used to obtain a tight bound in the input-output photon number
statistics of a beam splitter, and no numerical optimization is
required.

To illustrate the practicality of the method, we examine
three examples: 30-photon interference, 56-photon interfer-
ence, and 100-photon interference. In these three cases, we
obtain high-accuracy estimations of theoretical values. Con-
sidering the flaws in the actual experiment, we analyze the
practical errors and find that they are mainly dependent on
the beam splitter transmissivity t , while the total mean photon
number U and detector efficiency η have little influence on
it. To further extend our method, we also provide a modi-
fied model for the detector with finite-number resolution of
photons. For detectors that cannot distinguish more than S
photons, it is possible to demonstrate 2(S − 1)-photon inter-
ference at most.
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APPENDIX A: CALCULATION OF Ptest

Before we calculate Ptest, we denote as K = k1 + k2 the
total number of photons observed by the two PNR detectors.
To cancel out the contribution of (K + 1)-photon interference
and reduce the contribution of more than (K + 2)-photon
interference, we calculate a new term B̃μν

k1k2
, which is given

by

B̃μν

k1,k2
= B̄μν

k1,k2
− C1B̄μν

k1+1,k2
− C2B̄μν

k1,k2+1

=
K−1∑
n1=1

μn1νK−n1

n1!(K − n1)!
ηK P(k1, k2|n1, K − n1) − �

μν

k1k2
,

(A1)

where the coefficients C1 and C2 satisfy

C1 = (k1 + 1) × 1 − η

η
,

C2 = (k2 + 1) × 1 − η

η
, (A2)

and

�
μν

k1k2
= −

∑
M�K+2

M−1∑
n1=1

μn1νM−n1

n1!(M − n1)!

× (
Y k1k2

n1|M−n1
− c1Y

k1+1k2
n1|M−n1

− c2Y
k1k2+1

n1|M−n1

)
, (A3)

and Y k1k2
n1|M−n1

is equal to

Y k1k2
n1|M−n1

=
x1+x2=M∑

x1�k1
x2�k2

Ck1
x1

Ck2
x2

ηk1 (1 − η)x1−k1

× ηk2 (1 − η)x2−k2 P(x1, x2|n1, n2)

=
M−k2∑
x1=k1

Ck1
x1

Ck2
M−x1

× ηK (1 − η)M−K

× P(x1, M − x1|n1, M − n1).

Each intensity setting provides a new linear equation that
has the same unknowns P(k1, k2|n1, K − n1) but with dif-
ferent coefficients. By setting up K − 1 different values of
intensity (μi, νi ) and solving the set of linear equations, one
can estimate any conditional probability P(k1, k2|n1, K − n1).
The result can be expressed as

P(k1, k2| j, K − j) =
K−1∑
i=1

[A−1] ji
j!(K − j)!

ai(νiη)K B̃aiνi,νi
k1,k2

+
K−1∑
i=1

[A−1] ji
j!(K − j)!

ai(νiη)K �
aiνi,νi
k1k2

,

(A4)
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where [A−1] ji is

[A−1] ji = (−1) j+1

∑p1,p2,...,pK−1− j �=i
1�p1�p2�···�pK−1− j

ap1 ap2 · · · aK−1− j∏l �=i
1�l�K−1 (al − ai )

,

(A5)

which is an element of the inverse of the Vandermonde matrix.
In our simulations, we use the symmetric functions [40] to
calculate Eq. (A5). Here, we have set μi = aiνi (ai > 0) and
Ui = μi + vi, where Ui is the mean of the total photon number
of the input state. Because B̃μν

k1k2
could be obtained directly

from the experiment, P(k1, k2| j, K − j) can be estimated by
the first term of Eq. (A4),

Ptest =
K−1∑
i=1

[A−1] ji × j!(K − j)!

ai(νiη)K × B̃aiνi,νi
k1,k2

. (A6)

The lower and upper bounds of P(k1, k2| j, K − j) de-
noted by (�−,�+) can be deduced from the second term of
Eq. (A4), which can be denoted by

� =
K−1∑
i=1

[A−1] ji × j!(K − j)!

ai(νiη)K ×�
aiνi,νi
k1k2

. (A7)

We will show more details on how to estimate this bound with
strict mathematical proof in Appendix B.

APPENDIX B: UPPER AND LOWER BOUNDS

Before we derive the upper and lower bounds, we first
prove �

μν

k1k2
� 0. From Appendix A, for 2-2 ONs, �

μν

k1k2
has

the form

�
μν

k1k2
= −

∑
M�K+2

M−1∑
n1=1

μn1νM−n1

n1!(M − n1)!

× (
Y k1k2

n1|M−n1
− c1Y

k1+1k2
n1|M−n1

− c2Y
k1k2+1

n1|M−n1

)
.

If we define ε1, ε2, and ε3 as

ε1 ={
(k2 + 1)Ck2+1

M−k1
− Ck2

M−k1

}
× P(k1, M − k1|n1, M − n1),

ε2 ={
(k1 + 1)Ck1+1

M−k2
− Ck1

M−k2

}
× P(M − k2, k2|n1, M − n1),

ε3 =
M−k2−1∑
x1=k1+1

{
(k1 + 1)Ck1+1

x1
Ck2

M−x1
+ (k2 + 1)Ck1

x1

× Ck2+1
M−x1

− Ck1
x1

Ck2
M−x1

}
P(x1, M − x1|n1, M − n1),

by using these terms, �
μν

k1k2
can be written as

�
μν

k1k2
=

∑
M�K+2

M−1∑
n1=1

μn1 × νM−n1

n1!(M − n1)!
ηK (1 − η)M−K (B1)

× (ε1 + ε2 + ε3).

It is easy to find out that, when using the function (k +
1)Ck+1

x = (x − k)Ck
x to simplify ε1, ε2, and ε3, we will have

ε1 = (M − K − 1)Ck2
M−k1

P(k1, M − k1|n1, M − n1),

ε2 = (M − K − 1)Ck1
M−k2

P(M − k2, k2|n1, M − n1),

ε3 =
M−k2−1∑
x1=k1+1

(M − K − 1)Ck1
x1

Ck2
M−x1

× P(x1, M − x1|n1, M − n1).

Therefore, for any M � K + 2, the term ε1 + ε2 + ε3 � 0,
then �

μν

k1k2
� 0, and the maximum value of the term ε1 + ε2 +

ε3, εM , is

εM := max
1�n1�M−1

(ε1 + ε2 + ε3)

= (M − K − 1)Ck1
x1

Ck2
M−x1

|x1=� k1
k1+k2

×M�, (B2)

with P(x1, M − x1|n1, M − n1) satisfying

P(x1, M − x1|n1, M − n1)

=
{

1, x1 = ⌊ k1
k1+k2

× M
⌉
,

0, x1 �= ⌊ k1
k1+k2

× M
⌉
,

(B3)

which is not determined by the structure ONs.
To obtain the lower bound �− and upper bound �+ of �,

we define �1 and �2 from Eqs. (A7), (B1), and (B2), that is,

�1 =
∞∑

M�K+1

M−1∑
n1=1

j!(K − j)!

n1!(M − n1)!
[(1 − η)U ]M−K

×
∣∣∣∣∣
K−1∑
i=1

[A−1] ji
an−1

i

(ai + 1)M−K

∣∣∣∣∣ × εM ,

�2 =
∞∑

M�K+1

M−1∑
n1=1

j!(K − j)!

n1!(M − n1)!
[(1 − η)U ]M−K

×
(

K−1∑
i=1

[A−1] ji
an−1

i

(ai + 1)M−K

)
× εM . (B4)

Therefore, (�2 ± �1)/2 are related to the positive part and
negative part of �, respectively. Thus � will satisfy

(�2 − �1)/2 � � � (�1 + �2)/2, (B5)

and the upper and lower bounds will be �± = (�2 ± �1)/2.
It should be noted that, since the restrictive condition (B3)

has been used, �+ and �− are mainly dependent on the
method of detection model rather than the structure of the ON.
We also emphasize that it is sufficient to use just the two terms
B̄μν

k1+1k2
and B̄μν

k1k2+1 with coefficients C1 and C2 to cancel out
the unwanted terms. If we take more terms into the estimation,
it is easy to find that the maximum value of ε1 + ε2 + ε3

will be increased, which will lead to a decrease in accuracy.
Therefore, in the method for the practical TES detectors, we
just ignore B̄μν

S,k and B̄μν

k,S .
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APPENDIX C: THE GENERAL INPUT-OUTPUT MODEL
FOR N-L OPTICAL NETWORKS

As mentioned in Sec. II, our method can be extended to
characterize any optical networks (ON) with N inputs and L
outputs. The difficulty behind this extension is that one should
find a suitable set of decoy states to solve the linear equations.
Here, we just provide the general input-output model for N-L
optical networks. This model could be strictly derived by
using the positive-operator-valued measure (POVM). We start
with the N input state of the ON, which is given by

ρ
μ
in=

N⊗
i=1

ρ
ui
i =

∑
n

Pμ
n |n〉〈n|. (C1)

Then the output state of the ON is ρ
μ
out=Ûρ

μ
inÛ

+, where
U denotes the evolution unitary operator given by the ON.
Because the practical PNR detector can be modeled as a
perfect PNR detector in combination with a virtual beam
splitter whose transmittance is η, we can define the POVM
elements �̂

k j
x j as

�̂
k j
x j =

∞∑
x j�k j

P(k j |x j )|x j〉〈x j |O ⊗ |k j〉〈k j |D (C2)

at each port of the detectors. Here, |x j〉O is the output state of
the ON and |k j〉D can be seen as the output state of the virtual
beam splitter. P(k j |x j ) is the probability that characterizes the

behavior of the PNR detector. The operator �̂
k j
x j is associated

with an observation of k j photons among x j photons at the jth
detector. Then the general input-output model is given by

Pu
k = Tr

[
�̂k

xρ
μ
O

]
=

∑
n

∑
x�k

Pμ
n P(k|x)O〈x|U |n〉I〈n|U †|x〉O

=
∑

n

∑
x�k

P(k|x)P(x|n)Pμ
n , (C3)

where P(x|n) = |〈n|U †U |x〉O|2 is the conditional probabili-
ties characterizing the behavior of ON. Pu

k is the probability
of observing k = (k1, . . . , kK ) photons at the port of the ON
given the input intensity μ = (μ1, . . . , μN ).

APPENDIX D: TOY MODEL FOR SIMULATIONS

Our toy model comes from Ref. [34], but we replace
the single photon detectors by PNR detectors with detection
efficiency η. In the case of WCPs, the input state to the beam
splitter can be written as |ψin〉 = |ψμ,1〉 ⊗ |ψν,2〉, where

|ψμ,1〉 = exp

(∫
[μ(ω)â+

1 (ω) − μ∗(ω)â1(ω)]dω

)
|0〉,

|ψν,2〉 = exp

(∫
[ν(ω)â+

2 (ω) − ν∗(ω)â2(ω)]dω

)
|0〉

(D1)

are the coherent state at the first and second input ports. Here,
the parameters μ(ω) and ν(ω) are defined as

μ(ω) =
√

μ

(2πσ 2)1/4 exp

(
− ω2

4σ 2

)
eiφ1−ωt1 , (D2)

ν(ω) =
√

ν

(2πσ 2)1/4 exp

(
− ω2

4σ 2

)
eiφ2−ωt2 ,

where we have assumed that |μ(ω)|2 and |ν(ω)|2 follow a
Gaussian distribution of mean zero and standard deviation
σ which are multiplied by the intensities μ and ν to guar-
antee the conditions

∫ |μ(ω)|2dω = μ and
∫ |ν(ω)|2dω = ν.

The temporal parameters t1 and t2 represent the arrival time of
the optical pulse that enters the beam splitter.

After the interference, the output states to the beam splitter
can be written as |ψout〉 = |ψμ′,1〉 ⊗ |ψν ′,2〉, where

|ψμ′ 〉 = exp

(∫
[μ′(ω)â+

1 (ω) − μ′∗(ω)â1(ω)]dω

)
|0〉,

|ψν ′ 〉 = exp

(∫
[ν ′(ω)â+

2 (ω) − ν ′∗(ω)â2(ω)]dω

)
|0〉, (D3)

and the mean photon numbers at the output ports are given by
n1 = ∫ |μ′(ω)|2dω and n2 = ∫ |ν ′(ω)|2dω. It is then straight-
forward to show that

n1 = tμ + (1 − t )ν − 2e− ln(2)τ 2
cos(φ1 − φ2),

n2 = (1 − t )μ + tν + 2e− ln(2)τ 2
cos(φ1 − φ2), (D4)

where τ = (t1 − t2)/�T represents the relative delay between
the arrival times of the pulses that enter the beam splitter, and
�T is the FWHM. When observing k1 and k2 photons at each
output port, the POVMs of the PNR detectors at the output
ports are given by �̂1 and �̂2, where �̂i is

�̂i =
∑
x�k

Ck
x ηk (1 − η)k|x〉〈x|i. (D5)

P�3,3�3,3�

P�5,1�5,1�

�2 �1 0 1 2
0.0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
ie

s

FIG. 6. Theoretical value of Hong-Ou-Mandel dip for the condi-
tional probabilities P(3, 3|3, 3) and P(5, 1|5, 1) at a beam splitter of
transmittance t = 1/2 and 5/6, respectively.
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FIG. 7. The influence of U and η on the lower bound and
upper bound. We plot the contour map of �+[15, 15|2, 28] (a) and
�−[15, 15|2, 28] (b) when the transmittance of the beam splitter is
t = 0.407 152.

Therefore, for a particular detection outcome (k1, k2), the
probability Pμ,ν

k1,k2
given the input intensities μ, ν is

Pμ,ν

k1,k2
= 1

4π2

∫ 2π

0

∫ 2π

0
Pμ,ν

k1,k2
(φ1, φ2)dφ1dφ2, (D6)

where

Pμ,ν

k1,k2
(φ1, φ2) = Tr[(�̂1 ⊗ �̂2)|ψμ′ 〉〈ψμ′ | ⊗ |ψν ′ 〉〈ψν ′ |].

(D7)

Following the method we proposed, if one has perfect
PNR detectors showing that the detection efficiency is η =
1, one can have the theoretical conditional probabilities
P(k1, k2| j, K − j). For example, considering a Hong-Ou-
Mandel dip for the conditional probabilities P(3, 3|3, 3) and
P(5, 1|5, 1) at a beam splitter of transmittance t = 1/2 and

FIG. 8. The influence of U and η on the lower bound and upper
bound with S = 16. Parts (a) and (b) are the contour maps of
�−(15, 15|2, 28) and �+(15, 15|2, 28), respectively. In this simu-
lation, we let t = 0.407 152.

5/6, respectively, which has been studied in Ref. [34], the
probabilities P(3, 3|3, 3) and P(5, 1|5, 1) as Fig. 6 shows can
be written as

P(3, 3|3, 3) = 0.3125 − 0.3125 × 4−3τ 2 + 0.5625 × 4−2τ 2

− 0.5625 × 4−τ 2
,

P(5, 1|5, 1) = 0.4019 − 0.4019 × 4−τ 2
. (D8)

It is obvious that these two theoretical curves are the same as
those shown in Ref. [34].
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APPENDIX E: THE ROBUSTNESS OF THE UPPER AND
LOWER BOUNDS

To investigate how the choice of U and η affects
the bounds, we plot the contour of �+[15, 15|2, 28] and
�−[15, 15|2, 28] for example. As shown in Fig. 7, when U
approaches 0 or η approaches 1, �+[15, 15|2, 28] approaches
0. For a fixed value of U , the change of η has little influence
on �+[15, 15|2, 28]. If we fix U = 0.1 for 0.80 � η � 0.92,
�+[15, 15|2, 28] could be maintained around O(10−5). This
suggests that our method is quite robust to imperfections

of the detectors and the sources, given that they are well-
characterized. It is worth mentioning that the robustness is im-
portant for experiments since both U and η have fluctuations
that could potentially reduce the visibility.

In the case in which the TES resolves up to 16 photons,
Fig. 8 shows the contour map of �(15, 15|2, 28) as a function
of U and η. It is obvious that due to the lack of B̄μν

16,15 and
B̄μν

15,16 to cancel out terms of 31-photon interference, both the
upper bound and the lower bound (�+,�−) are increased
compared to Fig. 7.
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Zeilinger, and M. Żukowski, Rev. Mod. Phys. 84, 777
(2012).

[23] Z. Y. Ou, J.-K. Rhee, and L. J. Wang, Phys. Rev. Lett. 83, 959
(1999).

[24] B. H. Liu, F. W. Sun, Y. X. Gong, Y. F. Huang, G. C. Guo, and
Z. Y. Ou, Opt. Lett. 32, 1320 (2007).

[25] X.-L. Niu, Y.-X. Gong, B.-H. Liu, Y.-F. Huang, G.-C. Guo, and
Z. Y. Ou, Opt. Lett. 34, 1297 (2009).

[26] J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien,
Phys. Rev. Lett. 107, 163602 (2011).

[27] G. Y. Xiang, Y. F. Huang, F. W. Sun, P. Zhang, Z. Y. Ou, and
G. C. Guo, Phys. Rev. Lett. 97, 023604 (2006).

[28] X. Yuan, Z. Zhang, N. Lütkenhaus, and X. Ma, Phys. Rev. A
94, 062305 (2016).

[29] A. Aragoneses, N. T. Islam, M. Eggleston, A. Lezama, J. Kim,
and D. J. Gauthier, Opt. Lett. 43, 3806 (2018).

[30] P. Valente and A. Lezama, J. Opt. Soc. Am. B 34, 924 (2017).
[31] H. K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504

(2005).
[32] X. B. Wang, Phys. Rev. Lett. 94, 230503 (2005).
[33] T. Moroder, M. Curty, and N. Lütkenhaus, New J. Phys. 11,

045008 (2009).
[34] Á. Navarrete, W. Wang, F. Xu, and M. Curty, New J. Phys. 20,

043018 (2018).
[35] D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H.

Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama,
Opt. Express 19, 870 (2011).

[36] L. Lolli, E. Taralli, and M. Rajteri, J. Low Temp. Phys 167, 803
(2012).

[37] Z. H. Levine, T. Gerrits, A. L. Migdall, D. V. Samarov, B.
Calkins, A. E. Lita, and S. W. Nam, J. Opt. Soc. Am. B 29,
2066 (2012).

[38] A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032
(2008).

[39] J. Sperling, W. R. Clements, A. Eckstein, M. Moore, J. J.
Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits,
W. Vogel, G. S. Agarwal, and I. A. Walmsley, Phys. Rev. Lett.
118, 163602 (2017).

[40] H. Oruç and H. K. Akmaz, J. Comput. Appl. Math. 172, 49
(2004).

033823-10

https://doi.org/10.1103/PhysRevA.68.052315
https://doi.org/10.1103/PhysRevA.68.052315
https://doi.org/10.1103/PhysRevA.68.052315
https://doi.org/10.1103/PhysRevA.68.052315
https://doi.org/10.1103/PhysRevA.70.052308
https://doi.org/10.1103/PhysRevA.70.052308
https://doi.org/10.1103/PhysRevA.70.052308
https://doi.org/10.1103/PhysRevA.70.052308
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1038/ncomms1228
https://doi.org/10.1038/ncomms1228
https://doi.org/10.1038/ncomms1228
https://doi.org/10.1038/ncomms1228
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/nature05346
https://doi.org/10.1038/nature05346
https://doi.org/10.1038/nature05346
https://doi.org/10.1038/nature05346
http://arxiv.org/abs/arXiv:1903.09051
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2017.63
https://doi.org/10.1038/nphoton.2017.63
https://doi.org/10.1038/nphoton.2017.63
https://doi.org/10.1038/nphoton.2017.63
https://doi.org/10.1080/00107510802091298
https://doi.org/10.1080/00107510802091298
https://doi.org/10.1080/00107510802091298
https://doi.org/10.1080/00107510802091298
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1126/science.1138007
https://doi.org/10.1126/science.1138007
https://doi.org/10.1126/science.1138007
https://doi.org/10.1126/science.1138007
https://doi.org/10.1126/science.1188172
https://doi.org/10.1126/science.1188172
https://doi.org/10.1126/science.1188172
https://doi.org/10.1126/science.1188172
https://doi.org/10.1364/OE.21.013450
https://doi.org/10.1364/OE.21.013450
https://doi.org/10.1364/OE.21.013450
https://doi.org/10.1364/OE.21.013450
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.122.160501
https://doi.org/10.1103/PhysRevLett.122.160501
https://doi.org/10.1103/PhysRevLett.122.160501
https://doi.org/10.1103/PhysRevLett.122.160501
https://doi.org/10.1038/s41586-018-0066-6
https://doi.org/10.1038/s41586-018-0066-6
https://doi.org/10.1038/s41586-018-0066-6
https://doi.org/10.1038/s41586-018-0066-6
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/RevModPhys.84.777
https://doi.org/10.1103/RevModPhys.84.777
https://doi.org/10.1103/RevModPhys.84.777
https://doi.org/10.1103/RevModPhys.84.777
https://doi.org/10.1103/PhysRevLett.83.959
https://doi.org/10.1103/PhysRevLett.83.959
https://doi.org/10.1103/PhysRevLett.83.959
https://doi.org/10.1103/PhysRevLett.83.959
https://doi.org/10.1364/OL.32.001320
https://doi.org/10.1364/OL.32.001320
https://doi.org/10.1364/OL.32.001320
https://doi.org/10.1364/OL.32.001320
https://doi.org/10.1364/OL.34.001297
https://doi.org/10.1364/OL.34.001297
https://doi.org/10.1364/OL.34.001297
https://doi.org/10.1364/OL.34.001297
https://doi.org/10.1103/PhysRevLett.107.163602
https://doi.org/10.1103/PhysRevLett.107.163602
https://doi.org/10.1103/PhysRevLett.107.163602
https://doi.org/10.1103/PhysRevLett.107.163602
https://doi.org/10.1103/PhysRevLett.97.023604
https://doi.org/10.1103/PhysRevLett.97.023604
https://doi.org/10.1103/PhysRevLett.97.023604
https://doi.org/10.1103/PhysRevLett.97.023604
https://doi.org/10.1103/PhysRevA.94.062305
https://doi.org/10.1103/PhysRevA.94.062305
https://doi.org/10.1103/PhysRevA.94.062305
https://doi.org/10.1103/PhysRevA.94.062305
https://doi.org/10.1364/OL.43.003806
https://doi.org/10.1364/OL.43.003806
https://doi.org/10.1364/OL.43.003806
https://doi.org/10.1364/OL.43.003806
https://doi.org/10.1364/JOSAB.34.000924
https://doi.org/10.1364/JOSAB.34.000924
https://doi.org/10.1364/JOSAB.34.000924
https://doi.org/10.1364/JOSAB.34.000924
https://doi.org/10.1103/PhysRevLett.94.230504
https://doi.org/10.1103/PhysRevLett.94.230504
https://doi.org/10.1103/PhysRevLett.94.230504
https://doi.org/10.1103/PhysRevLett.94.230504
https://doi.org/10.1103/PhysRevLett.94.230503
https://doi.org/10.1103/PhysRevLett.94.230503
https://doi.org/10.1103/PhysRevLett.94.230503
https://doi.org/10.1103/PhysRevLett.94.230503
https://doi.org/10.1088/1367-2630/11/4/045008
https://doi.org/10.1088/1367-2630/11/4/045008
https://doi.org/10.1088/1367-2630/11/4/045008
https://doi.org/10.1088/1367-2630/11/4/045008
https://doi.org/10.1088/1367-2630/aab746
https://doi.org/10.1088/1367-2630/aab746
https://doi.org/10.1088/1367-2630/aab746
https://doi.org/10.1088/1367-2630/aab746
https://doi.org/10.1364/OE.19.000870
https://doi.org/10.1364/OE.19.000870
https://doi.org/10.1364/OE.19.000870
https://doi.org/10.1364/OE.19.000870
https://doi.org/10.1007/s10909-012-0473-2
https://doi.org/10.1007/s10909-012-0473-2
https://doi.org/10.1007/s10909-012-0473-2
https://doi.org/10.1007/s10909-012-0473-2
https://doi.org/10.1364/JOSAB.29.002066
https://doi.org/10.1364/JOSAB.29.002066
https://doi.org/10.1364/JOSAB.29.002066
https://doi.org/10.1364/JOSAB.29.002066
https://doi.org/10.1364/OE.16.003032
https://doi.org/10.1364/OE.16.003032
https://doi.org/10.1364/OE.16.003032
https://doi.org/10.1364/OE.16.003032
https://doi.org/10.1103/PhysRevLett.118.163602
https://doi.org/10.1103/PhysRevLett.118.163602
https://doi.org/10.1103/PhysRevLett.118.163602
https://doi.org/10.1103/PhysRevLett.118.163602
https://doi.org/10.1016/j.cam.2004.01.032
https://doi.org/10.1016/j.cam.2004.01.032
https://doi.org/10.1016/j.cam.2004.01.032
https://doi.org/10.1016/j.cam.2004.01.032

