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High-order exceptional points in supersymmetric arrays
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We employ the intertwining operator technique to synthesize a supersymmetric (SUSY) array of arbitrary
size N . The synthesized SUSY system is equivalent to a spin (N − 1)/2 under an effective magnetic field.
By considering an additional imaginary magnetic field, we obtain a generalized parity-time-symmetric non-
Hermitian Hamiltonian that describes a SUSY array of coupled resonators or waveguides under a gradient gain
and loss; all the N energy levels coalesce at an exceptional point (EP), forming an isotropic high-order EP with N
states coalescence (EPN). Near the EPN, the scaling exponent of phase rigidity for each eigenstate is (N − 1)/2;
the eigenfrequency response to the perturbation ε acting on the resonator or waveguide couplings is ε1/N . Our
findings reveal the importance of the intertwining operator technique for spectral engineering and exemplify the
practical application in non-Hermitian physics.
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I. INTRODUCTION

The exceptional point (EP) in a non-Hermitian system
occurs when eigenstates coalesce [1–3], and is usually as-
sociated with the non-Hermitian phase transition [4,5]. In a
parity-time (PT ) symmetric non-Hermitian coupled system,
the PT symmetry of eigenstates spontaneously breaks at
the EP [6–16], which determines the exact PT -symmetric
phase and the broken PT -symmetric phase in this system.
In the PT -symmetric phase, the eigenvalues are real and
the intensities oscillate as a result of the nonorthogonality
of eigenstates [17]; in the broken PT -symmetric phase, the
intensities exponentially increase because of the complex
eigenvalues [7]. Besides the coupled waveguide or resonator
lattice, PT -symmetric systems are simulated by photonic
quantum walks [18–20].

The EP has many applications in optics [14,21–26], not
limited to nonreciprocal energy transfer [23], unidirectional
lasing [27,28], and optical sensing [29,30]. Bidirectional
lasing becomes unidirectional lasing when approaching the
EP [31]; the direction of lasing is controllable by adjusting
the chiral mode of the microresonator. Unidirectional lasing
toward a single direction is possible with gain and synthetic
magnetic flux [32]. Moreover, the EP is a bifurcation point of
the energy levels. Near the EP, the eigenfrequency response to
the perturbation exhibits a square-root dependence [29] or a
cubic-root [30] dependence. In this regard, EPs are useful for
sensing in comparison with the diabolic points; this feature
has been verified in optics, cavity optomechanics, cavity
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spintronics, and circuit quantum electrodynamics [33–42].
The sensing susceptibility is greatly enhanced near the EPs
[43].

Different types of energy level coalescence exist in non-
Hermitian systems. The most common types of EPs are the
two-state coalescence (EP2) that exhibits a square-root de-
pendence on the system parameters [6–8,29] and the three-
state coalescence (EP3) that exhibits a cubic-root dependence
on the system parameters [30,44–47]. Even four-state coa-
lescence (EP4) is accessible in coupled resonators [48,49].
Recently, a high-order EP of arbitrary order was realized in
coupled resonators [50]. And the scaling laws for the eigen-
value and eigenstate confirm the sensitivity of the high-order
EP [51–56]; the dynamics near a high-order EP exhibits a
power-law dependence on the order of EPs for the maximal
amplification [57].

The intertwining operator technique is a useful method
for spectral engineering [58,59]. This technique is capable
of eliminating a target energy level in the spectrum to create
the isospectral SUSY partner [60–63], which has an identical
spectrum except for the eliminated target level. In parallel, the
intertwining operator technique can add a target energy level
or realize a Hamiltonian with spectrum fully constituted by
the desirable energy levels [59]. Exactly solvable models with
desirable energy levels can be synthesized by employing the
intertwining operator technique. Thus, the intertwining op-
erator technique is beneficial for proposing a non-Hermitian
Hamiltonian with multiple energy level coalescence. The con-
cept of supersymmetry, originating from quantum field theory
[64], has grown in importance in recent years in the research
fields of optics and photonics. It is possible to create designed
spectra and propose intriguing applications using synthesized
system. The SUSY array synthesized through the intertwining
operator technique can be utilized for optical sensing [29,30],
single mode lasing [60–62], and optical mode converting
[63]. An integrated lasing array usually has multiple mode
emission. To acquire single mode lasing, one can design
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an isospectral partner SUSY array using the intertwining
operator technique. The spectrum of the partner SUSY array
is engineered to be constituted by all the excited-state modes
except for the ground-state mode of the lasing array. Coupling
the partner SUSY array to the lasing array and intentionally
inducing loss in the partner SUSY array can enable ground-
state single mode lasing [60–62]. The SUSY array can remove
the ground-state mode of a multimode light field and manipu-
late the modal content of the light field through a hierarchical
sequence of partner SUSY arrays [63]. The synthetic SUSY
array is a hypercube useful for quantum information science
[65], and the proposed SUSY array has equally spaced energy
levels; thus the SUSY array is capable of realizing a perfect
state transfer in which the initial state is exactly mapped from
one side of the SUSY array to the other side of it [52].

In this paper, we introduce the intertwining operator
technique to propose a non-Hermitian SUSY array of arbi-
trary size. The energy levels of the proposed SUSY array
are equally spaced square-root branches. The non-Hermitian
phase transition in the proposed SUSY array is associated
with an isotropic high-order EP. In contrast to the anisotropic
high-order EP [54], the isotropic high-order EP has identical
parameter dependence for independent system parameters in
the parameter space. The Hamiltonian of the SUSY array can
be understood either as many uncorrelated spin-1/2 particles
in a magnetic field or as a noninteracting bosonic many-
particle system in a two-site model. For an arbitrarily high-
order EP, topological properties and the frequency response
to perturbation on the resonator couplings are investigated.
The isotropic EP in a SUSY array of N sites (EPN) has
the phase rigidity scaling exponent (N − 1)/2. The eigen-
frequency sharply responds to the coupling perturbation ε

with the form ε1/N near the EPN. The results are in accord
with topological features of the EPN. The SUSY array is
appropriate for perfect state transfer in quantum information
science.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the intertwining operator technique to
synthesize a PT -symmetric SUSY array. In Sec. III, we
investigate the topological properties of the arbitrarily high-
order EP through the phase rigidity. In Sec. IV, we focus on
the eigenfrequency response to the coupling perturbation to
reflect features of the arbitrarily high-order EP. In Sec. V, we
summarize the results.

II. PT -SYMMETRIC SUSY ARRAY

In this section, we introduce the intertwining operator tech-
nique to propose a synthetic SUSY array with all the energy
levels equally spaced. The synthetic SUSY is a hypercube,
and a hypercube of arbitrary dimension can be synthesized.
The schematic of a synthetic six-site SUSY array of cou-
pled resonators (upper panel) or coupled waveguides (lower
panel) is shown in Fig. 1(a). The frequency of each resonator
(waveguide) is ω0. The resonators (waveguides) are coupled
through evanescent tunneling between neighboring ones. The
coupling amplitudes of the SUSY array are determined from
the intertwining operator technique. In Fig. 1(b), schematics
of energy levels of non-Hermitian SUSY arrays with different
site numbers are shown; all the levels are equally spaced and

FIG. 1. (a) The SUSY array has a linear gradient on the gain and
loss distribution. The resonant frequency is ω0 for each resonator or
waveguide. (b) Proposal for engineering the SUSY array.

the energy difference between each pair of neighboring energy
levels is 2J . To constitute the SUSY array, the couplings are
required to be engineered at the proper amplitudes.

In the framework of quantum mechanics, the procedure is
as follows. The Hamiltonian hN has N energy levels and we
aim to remove an energy level εN from hN to construct a target
superpartner h′

N . The Hamiltonian hN is factorized into

hN = QN−1RN−1 − εN IN , (1)

where QN−1 is an N × (N − 1) matrix, RN−1 is an (N − 1) ×
N matrix, and IN is the N × N identity matrix. The target
superpartner Hamiltonian is obtained as

h′
N = RN−1QN−1 − εN IN−1. (2)

h′
N is an (N − 1) × (N − 1) matrix with (N − 1) levels iden-

tical to hN except for the energy level εN .
To synthesize the SUSY array, we consider an inverse

process and gradually increase the size of the target Hamil-
tonian by adding target energy levels one by one. Details of
synthesizing the SUSY array are displayed as follows. We
start with a single-level system h1, shift its energy level by
2J , and add a zero energy (ε2 = 0) to obtain energy spectrum
{0, 2J} of the target Hamiltonian h2. We factorize the Hamil-
tonian h1 + 2J = R1Q1 with R1 = √

J (1, 1) and take Q1 as
the transpose of R1, that is Q1 = RT

1 . The factorization is in
the form of

h1 + 2J = R1Q1 =
√

J (1 1)
√

J

(
1
1

)
= 2J. (3)

Then, following the intertwining operator technique, we in-
terchange R1 and Q1 in the matrix product to obtain the target
Hamiltonian

h2 = Q1R1 =
√

J

(
1
1

)√
J (1 1) = J

(
1 1
1 1

)
. (4)

The target Hamiltonian is a 2 × 2 matrix h2 = Q1R1 = Jσx +
JI2, where σx is the Pauli matrix. Next, we offset the energy
by −J to get h2 − JI2 = Jσx and gather the Hermitian SUSY
array of N = 2. The matrix form of h2 after subtracting out
the term JI2 is equivalent to the single-particle Hamiltonian
for the two-site model. Jσx also describes a spin-1/2 particle
in an effective magnetic field J along the x direction, that is
(Bx, By, Bz ) = (J, 0, 0).

Furthermore, in order to construct the non-Hermitian
Hamiltonian with the EPs, we consider an additional effective
imaginary magnetic field iγ applied along the z direction;
the PT -symmetric non-Hermitian dimer is obtained with the
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expression Jσx + iγ σz, and the corresponding matrix form is
given by

H2 =
(

ω0 + iγ J
J ω0 − iγ

)
, (5)

where ω0 is the on-resonator frequency of each resonator or
waveguide. H2 has a pair of EP2s at γ = ±J , where two
eigenstates coalesce to one, (±i, 1)T /

√
2.

We repeat the above procedure to construct the non-
Hermitian SUSY array with high-order EPs. The spectrum
of h2 is shifted by 2J to {2J, 4J}, and then ε3 = 0 is added
to obtain the spectrum {0, 2J, 4J} of the target Hamiltonian
h3 [Fig. 1(b)]. We factorize h2 + 2J = R2Q2 with R2 = QT

2 ,
Q2( j, k) = √

J ( j − 1)δ j−1,k + √
J (3 − j)δ j, j , where δ means

the Kronecker delta function. The factorization gives

h2 + 2JI2 = R2Q2 = J

(
3 1
1 3

)
. (6)

Following the intertwining operator technique, we obtain a
3 × 3 Hamiltonian after interchanging R2 and Q2 in the matrix
product, that is

h3 = Q2R2 = J

⎛
⎜⎝

2
√

2 0√
2 2

√
2

0
√

2 2

⎞
⎟⎠. (7)

The target Hamiltonian h3 can be expressed in the form of
h3 = Q2R2 = JSx + 2JI3, where Sx(z) is the angular momen-
tum operator for spin 1 in the x (z) direction. We remove
the overall energy background 2JI3 from h3 to obtain the
Hermitian SUSY array of N = 3. h3 − 2JI3 = 2JSx describes
a spin-1 particle in an effective real magnetic field (J, 0, 0).

By considering an effective imaginary field iγ applied
in the z direction, (0, 0, iγ ), we obtain the PT -symmetric
non-Hermitian trimer JSx + iγ Sz. The corresponding non-
Hermitian SUSY array is

H3 =

⎛
⎜⎝

ω0 + 2iγ
√

2J 0√
2J ω0

√
2J

0
√

2J ω0 − 2iγ

⎞
⎟⎠. (8)

The generalized SUSY array here is the two-particle Hamil-
tonian for the two-site model in non-Hermitian cases, with
the matrix form corresponding to the Hamiltonian described
by Eq. (8). The quantum theory of spin (angular momen-
tum) tells us that the energy spectrum of the Hamiltonian
JSx + iγ Sz is restricted to n

√
J2 − γ 2 with n = −2, 0, 2.

Each EP of H3 belongs to EP3 with the eigenfrequency ω0

and coalescence eigenstate (−1,±i
√

2, 1)T /2 at the critical
condition γ = ±J .

To synthesize the 4 × 4 SUSY array, we shift all the energy
levels of h3 by 2J to obtain {2J, 4J, 6J} and add a zero
level to compose the spectrum {0, 2J, 4J, 6J} of the target
Hamiltonian h4. We factorize h3 in the form of

h3 + 2JI3 = R3Q3 = J

⎛
⎜⎝

4
√

2 0√
2 4

√
2

0
√

2 4

⎞
⎟⎠. (9)

Following the intertwining operator technique, we obtain the
4 × 4 target Hamiltonian

h4 = Q3R3 = J

⎛
⎜⎜⎝

3
√

3 0 0√
3 3 2 0

0 2 3
√

3
0 0

√
3 3

⎞
⎟⎟⎠. (10)

We offset energy 3J from h4 to obtain the Hermitian SUSY
array of N = 4, which describes a spin-3/2 particle in an
effective real magnetic field (J, 0, 0). The non-Hermitian
generalization gives JSx + iγ Sz, where Sx(z) is the angular
momentum operator for spin 3/2 in the x (z) direction. The
matrix form of the SUSY array is

H4 =

⎛
⎜⎜⎜⎝

ω0 + 3iγ
√

3J 0 0√
3J ω0 + iγ 2J 0

0 2J ω0 − iγ
√

3J

0 0
√

3J ω0 − 3iγ

⎞
⎟⎟⎟⎠. (11)

The J related terms are the couplings between neighbor
resonators induced by the evanescent fields, and depend on
the distance between them. The distribution of gain and loss
in the SUSY array has a gradient. The PT -symmetric non-
Hermitian 4 × 4 SUSY array is the three-particle Hamiltonian
for the two-site model, the spectrum of which is restricted
to n

√
J2 − γ 2 with n = −3,−1, 1, 3, with the appearance of

EP4 at γ = ±J .
We can synthesize the SUSY array of arbitrary size

via repeating the same procedure. The PT -symmetric non-
Hermitian 5 × 5 SUSY array has the form

H5 = ω0I5 +

⎛
⎜⎜⎜⎜⎜⎝

4iγ 2J 0 0 0

2J 2iγ
√

6J 0 0

0
√

6J 0
√

6J 0

0 0
√

6J −2iγ 2J
0 0 0 2J −4iγ

⎞
⎟⎟⎟⎟⎟⎠

. (12)

The PT -symmetric non-Hermitian 6 × 6 SUSY array illus-
trated in Fig. 1(a) has the form

H6 = ω0I6 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5iγ
√

5J 0 0 0 0√
5J 3iγ

√
8J 0 0 0

0
√

8J iγ 3J 0 0

0 0 3J −iγ
√

8J 0

0 0 0
√

8J −3iγ
√

5J

0 0 0 0
√

5J −5iγ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)
The SUSY arrays H5 and H6 are the four-particle and five-
particle Hamiltonians for the two-site model [56], respec-
tively. In both cases, the EP occurs at γ = ±J , but is EP5
in H5 and EP6 in H6. Recently, experimental investigation of
high-order EPs has sprung up rapidly. For example, a fifth-
order EP can be designed via tuning parameters in nitrogen-
vacancy centers [66]; a PT -symmetric electronic circuit has
been proposed to study sensing at a sixth-order EP [67].

In general, we shift all the energy levels of hN−1

by 2J to obtain a spectrum {2J, 4J, . . . , 2(N − 1)J} and
add εN = 0 by the intertwining operator technique to
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obtain hN with the spectrum {0, 2J, . . . , 2(N − 1)J}. We
obtain hN = QN−1RN−1 = JSx + (N − 1)JIN with RN−1 =
QT

N−1, QN−1( j, k) = √
J ( j − 1)δ j−1,k + √

J (N − j)δ j, j , and
Sx(z) is the angular momentum operator for spin (N − 1)/2
in the x (z) direction. Removing the offset energy (N − 1)J
and introducing an imaginary magnetic field in the z direction,
we obtain the PT -symmetric non-Hermitian N × N model
JSx + iγ Sz [52]. HN describes an N-site PT -symmetric non-
Hermitian SUSY array [61–63]. The imaginary magnetic field
corresponds to tilted on-site imaginary potentials in the form
of gain and loss, which linearly depend on the site number.
The concise form of HN is given by

HN =
N−1∑
m=1

J
√

m(N − m)(|m〉〈m + 1| + H.c.)

+
N∑

m=1

[ω0 + iγ (N + 1 − 2m)]|m〉〈m|. (14)

The non-Hermitian generalized SUSY array is synthesized
by a recursive bosonic quantization technique in coupled
resonators or waveguides [53].

The first line in HN is the Hermitian SUSY array [65]. The
energy of JSx relates to the (quantized) possible value of spin
angular momentum in the x direction, which is nJ for the
integer n = −(N − 1),−(N − 3), . . . , (N − 3), (N − 1). HN

describes a spin-(N − 1)/2 particle in an effective magnetic
field (Bx, By, Bz ) = (J, 0, iγ ). This indicates that the SUSY
array HN has the frequency

ωN,n = ω0 + n
√

J2 − γ 2. (15)

Notably, the EPs of HN are exactly EPNs at γ = ±J , where
all the levels are square-root branches and coalesce to the
resonant frequency ω0.

Furthermore, introducing the angular momentum operators
Sx = a†

1a2 + a†
2a1, Sy = ia†

2a1 − ia†
1a2, and Sz = a†

1a1 − a†
2a2,

the Hamiltonian JSx + iγ Sz = J (a†
1a2 + a†

2a1) + iγ (a†
1a1 −

a†
2a2) ≡ Htwo−site can be alternatively understood as the non-

interacting bosonic many-particle system in a PT -symmetric
non-Hermitian two-site model [56], where a†

1(2) and a1(2) are
the creation and annihilation operators of the first (second)
site, respectively. [Sa, Sb] = 2iεabcSc, where εabc is the Levi-
Civita symbol and a, b, c are x, y, z. The commutation relation
is equivalent to that of Pauli matrices with spin 1/2.

The basis set for the single-particle system is cho-
sen as |1〉1 = a†

1|vac〉, |2〉1 = a†
2|vac〉. H2 in Eq. (5) is

Htwo-site in the single-particle basis. If we consider the
two-particle problem, the basis set is |1〉2 = (a†

1)2/
√

2|vac〉,
|2〉2 = a†

1a†
2|vac〉, |3〉2 = (a†

2)2/
√

2|vac〉. The factor 1/
√

2
in the basis is not only the normalization factor to en-
sure 2〈m|n〉2 = δmn (m, n = 1, 2, 3), but also the normal-
ization factor in the Fock representation for the occupa-
tion number of 2. H3 in Eq. (8) is Htwo-site in the two-
particle basis. Moreover, the basis set for three parti-
cles is |1〉3 = (a†

1)3/
√

6|vac〉, |2〉3 = (a†
1)2a†

2/
√

2|vac〉, |3〉3 =
a†

1(a†
2)2/

√
2|vac〉, |4〉3 = (a†

2)3/
√

6|vac〉. H4 in Eq. (11) is
Htwo-site in the three-particle basis. H2 [29], H3 [30], and
H4 [51] are experimentally realized in different physical
setups. In general, the basis for an (N − 1)-particle system

is |l〉N−1 = (a†
1)N−1−l (a†

2)l/
√

(N − 1 − l )!l!|vac〉, where l =
0, 1, . . . , N − 1 and the subscript in the basis stands for the
number of particles. Htwo-site in the basis {|l〉N−1} gives HN in
Eq. (14).

The notion of SUSY plays an important role for plenty of
intriguing optical properties and functionalities as well as for
a number of practical applications of optical metamaterials
[60–63]. The non-Hermitian SUSY array also provides a
promising platform for the study of the topology of arbitrary
high-order EPs. The geometric topological properties reflect
the order of EPs; they are the essential features of different
EPs. The topological features of different EPs are also cap-
tured by the phase rigidity scaling exponents [49].

III. PHASE RIGIDITY

The phase rigidity is defined as

r = 〈ψ∗|ψ〉/〈ψ |ψ〉, (16)

and r reflects the mixing of different states ψ∗ and ψ [68,69].
We consider the phase rigidities associated with the eigen-
states of the SUSY array. At the EPs γEP = ±J , the coales-
cence state is |u1〉 = |u2〉 = (±i, 1)T /

√
2 = |uEP〉 for the non-

Hermitian Hamiltonian H2. The eigenfrequencies are ω0 +
ε1 and ω0 + ε2, where ε1 =

√
J2 − γ 2, ε2 = −

√
J2 − γ 2.

The eigenstates satisfy H2|u j〉 = (ω0 + ε j )|u j〉 ( j = 1, 2)
with |u1〉 = (eiθ , 1)T /

√
2 and |u2〉 = (−e−iθ , 1)T /

√
2, where

cos θ =
√

J2 − γ 2/J and sin θ = γ /J . HN at the EPN has
only one coalescence state for arbitrary N . Moreover, the
eigenstates of HN can be expressed as the direct product of
|u1〉 and |u2〉. Straightforward calculation indicates rEP = 0
for HN because of 〈u∗

EP|uEP〉 = 0. The phase rigidity has a
scaling behavior near the EPs, |r| = |γ − γEP|ν , where ν is
the scaling exponent and describes the topological feature
of EPs.

The basis and eigenstates of the (N − 1)-particle Hamilto-
nian are chosen under the Fock representation. Considering
the direct product representation that employs the single-
particle eigenstates as the basis, the expression of eigen-
states of the (N − 1)-particle system is the direct product
of the N − 1 numbers of single-particle eigenstates |u1〉 and
|u2〉. The general expression of the normalized eigenstate
of a spin-(N − 1)/2 system in the direct product repre-
sentation is (|u1〉)l ⊗ (|u2〉)N−1−l with the eigenvalue lε1 +
(N − 1 − l )ε2, where the integer l ∈ [0, N − 1]. Although
the expressions of Hamiltonians and eigenstates are formally
different under the two representations, the topological prop-
erties of EPs remain unchanged. When approaching the EPN,
the ratio of phase rigidities of the eigenstates under the Fock
representation to that under the direct product representa-
tion is a constant, which does not affect the scaling law
near the EPN. The phase rigidity r near the EPN under
direct product representation is r = rl

1rN−1−l
2 ; the scaling ex-

ponent ν for EPN is ν = log10 |rl
1rN−1−l

2 |/ log10 |γ − γEP| =
(N − 1)/2 (see Appendix A). The analysis of the scaling ex-
ponents of higher-order EPs is numerically verified in Fig. 2,
where the phase rigidities and scaling exponents of EP3, EP4,
EP5, and EP6 under the Fock representation Hamiltonian
[Eq. (14)] are shown for N = 3, 4, 5, 6. The scaling exponents
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FIG. 2. Phase rigidities and scaling exponents of the high-order
EP. (a), (c), (e), (g) and (b), (d), (f), (h) are the numerical results of
absolute values of the phase rigidities |r| = |〈ψ∗|ψ〉|/〈ψ |ψ〉 and the
logarithmic relationship between |r| and |γ − γEP| of energy levels
at EP3, EP4, EP5 and EP6, respectively. The phase rigidities are
depicted in the left panel; the scaling exponents in the right panel
are 1, 3/2, 2, and 5/2 associated with EP3, EP4, EP5, and EP6. The
black lines are the linear fits. The system parameter is J = 1 and all
the EPs are at γEP = 1.

are 1.0, 1.5, 2.0 and 2.5 for the EP3, EP4, EP5, and EP6,
respectively. Notably, there exists a zero-energy flat band for
odd N , which participates in the coalescence of eigenstates
(see Appendix B). Thus it exhibits a scaling behavior identical
to that of other levels. We emphasis that the high-order EPs
in the SUSY array are isotropic. Replacing iγ by � + iγ ,
we observe the scaling exponent ν = (N − 1)/2 for tuning
the detuning � to approach the EPNs |r| = |� − �EP|ν .
The scaling exponent of the phase rigidity is robust to the
perturbation [54,70]. For an anisotropic EPN in the system
with asymmetric couplings, the scaling exponents of the phase
rigidity are (N − 1)/2 and N − 1 when approaching EPN
from two independent parameters, respectively [54].

IV. EIGENFREQUENCY RESPONSE TO PERTURBATION

The non-Hermitian SUSY array at the high-order EP
enhances the susceptibility in optical sensing, and the fre-
quency response near the high-order EP is greatly increased

[29,30,43,70]. Near the high-order EP in the non-Hermitian
SUSY array, a remarkable point is the enhanced frequency
response to the detuning as well as the coupling when the
array is subjected to the perturbation ε. The SUSY array is
a hypercube with high symmetry, the response to ε acting
on the coupling appears to have a response similar to that
acting on the detuning when approaching an EPN. And the
eigenfrequency response is ∼ε1/2 for EP2 [29,38] and ∼ε1/3

for EP3 [30], which are distinct from the linear response
to the perturbation strength ∼ε near the degeneracy point
in Hermitian systems. The sharp response is a typical fea-
ture of the EP that paves the way for the application of
sensors. Moreover, the SUSY array we constructed holds
an arbitrary EPN (N � 2) at γ = ±J , which has striking
features.

According to the Newton-Puiseux series expansion
[71,72], the frequency splitting ωl is a function of the pertur-
bation c1ε

1/N + c2ε
2/N + · · · [70], where the corresponding

coefficients c1, c2, . . . are complex numbers. In the pertur-
bation theory, the unperturbed Hamiltonian is HN , and the
perturbation Hamiltonian is H ′ (H ′ � HN ). The SUSY array
under perturbations reads HN×N = HN + H ′. The eigenfre-
quency of HN×N and the expansion coefficients c1 and c2 are
determined by the equation det [HN×N − ωl IN ] = 0 through
substituting the first two terms c1ε

1/N + c2ε
2/N of ωl . Because

ε � J , the higher order terms of ε can be neglected. Notably,
in general cases, ωl ≈ c1ε

1/N for comparable c1 ∼ c2. We
also show that the eigenfrequency response to the coupling
perturbation characterized by the order of magnitude ∼ε1/N

near an EPN in the SUSY array is similar to that of the
detuning perturbation.

The coupling is determined by the distance between res-
onators or waveguides. In practice, the resonator frequency
can be accurately fabricated, and the coupling J may have
imperfections. Thus, it is reasonable to consider the resonator
coupling perturbations for the EPN of the SUSY array HN .
We take the example in Fig. 3 that all the coupling terms have
perturbations, that is, the J related terms are J

√
m(N − m) +

ε (m = 1, 2, . . . N − 1).
Figure 3 depicts the energy levels, frequency splitting, as

well as the logarithmic plots of the frequency splitting as a
function of coupling perturbation ε. The coupling perturba-
tion ε presents in each coupling J

√
m(N − m). The whole

spectrum is symmetric about zero energy due to the equal
amount of ε chosen without breaking the chiral symmetry of
HN . The frequency splitting response proportional to ε1/N is
shown in Fig. 3; this differs from the response to the coupling
perturbation J + ε instead of J in Eq. (15), which leads to
the square-root dependence ∼ε1/2. The frequency splitting
dependence on the coupling perturbation between the first
two cavities exhibits slopes of 1/3 and 1/4 for H3 and H4 in
the logarithmic plots; this reveals the cubic-root and quartic-
root dependences near the EP3 and EP4 (see Appendix C).
In general cases, the coupling perturbation ε in an arbitrary
resonator of the SUSY array leads to the similar response
ωl ≈ c1ε

1/N ; besides, we can observe the response is in the
order of ωl ≈ c2ε

2/N . The frequency splitting response as a
function of coupling perturbation is identical to the detuning
perturbation [55,56], which reflects the high symmetry feature
of the hypercube (SUSY array).
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FIG. 3. Energy levels and frequency splittings near the EP6.
(a) Real and (b) imaginary parts of eigenvalues ωl , l =
0, 1, 2, 3, 4, 5. (c) and (e) are the frequency splittings between two
bands ω0, ω5 and ω0, ω2. (d) and (f) are the logarithmic scales
of (c) and (e), respectively. In (c), (e) and (d), (f) dashed orange
(solid cyan) lines and orange circles (cyan crosses) correspond to the
imaginary (real) parts. The slopes are 1/6 in (d) and (f). The system
parameters are γ = J = 1.

V. CONCLUSION

The intertwining operator technique is an important ap-
proach for spectral engineering. We employ the intertwining
operator technique to propose a non-Hermitian SUSY array
with arbitrarily high-order exceptional points. The Hamilto-
nian of the proposed array is a non-Hermitian generalized
SUSY lattice chain for perfect state transfer in quantum
information science, which is equivalent to a noninteract-
ing many-particle Hamiltonian of the two-site non-Hermitian
PT -symmetric dimer. At the EPN of the SUSY array with N
coupled resonators or waveguides, all the energy levels are
equally spaced, being square-root branches and coalescing
at the EPN. The phase rigidity of each eigenstate reaches
zero and the scaling exponent is (N − 1)/2 for the EPN; the
eigenfrequency response to perturbation ε is ε1/N for coupling
amplitude perturbation in certain resonators or waveguides
of the SUSY array. The intertwining operator technique pro-
vides a promising method for synthesizing artificial optical
metamaterials.
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APPENDIX A: PHASE RIGIDITY

The eigenvalues of H2 are frequencies ω0 + ε1 and ω0 +
ε2, where ε1 =

√
J2 − γ 2, ε2 = −

√
J2 − γ 2. The eigen-

states satisfy H2|u j〉 = (ω0 + ε j )|u j〉 with the expressions
|u1〉 = (eiθ , 1)T /

√
2, |u2〉 = (−e−iθ , 1)T /

√
2, where cos θ =√

J2 − γ 2/J and sin θ = γ /J . We start with the eigenstate
|u1〉 of the 2 × 2 Hamiltonian H2, where J and γ are positive
real numbers without loss of generality. At the EP2 γEP = J ,
|u1〉 = (i, 1)T /

√
2, the phase rigidity vanishes with rEP = 0.

For J � γ , the phase rigidity r1 is

r1 = |〈u∗
1|u1〉/〈u1|u1〉| =

√
1 − γ 2/J2. (A1)

The corresponding scaling exponent ν can be expressed as

ν = log10 |r|
log10 |γ − γEP| = 1

2
lim
γ→J

log10

( J−γ

J
J+γ

J

)
log10(J − γ )

= 1

2
. (A2)

For γ � J , the phase rigidity r1 is

r1 = |〈u∗
1|u1〉/〈u1|u1〉| =

√
1 − J2/γ 2. (A3)

The corresponding scaling exponent ν can be expressed as

ν = log10 |r|
log10 |γ − γEP| = 1

2
lim
γ→J

log10

(
γ−J
γ

γ+J
γ

)
log10(γ − J )

= 1

2
. (A4)

For the other eigenstate |u2〉, we have the same conclusion that
r2 =

√
1 − γ 2/J2 for J � γ and r2 =

√
1 − J2/γ 2 for γ �

J . Therefore, the scaling exponents are both 1/2 for the two
eigenstates.

In general, the eigenstate for the N × N Hamiltonian HN

with eigenvalue lε1 + (N − 1 − l )ε2 is given by (|u1〉)l ⊗
(|u2〉)N−1−l , where l = 0, 1, . . . , N − 1. Therefore, the phase
rigidity vanishes with rEP = 0 at EPN γEP = J and the corre-
sponding phase rigidity r is

r =
∣∣∣∣∣
〈
(u∗

1 )l (u∗
2 )N−1−l

∣∣ul
1uN−1−l

2

〉
〈
ul

1uN−1−l
2

∣∣ul
1uN−1−l

2

〉
∣∣∣∣∣

=
∣∣∣∣∣
〈
(u∗

1 )l
∣∣ul

1

〉〈
(u∗

2 )N−1−l
∣∣uN−1−l

2

〉
〈
ul

1

∣∣ul
1

〉〈
uN−1−l

2

∣∣uN−1−l
2

〉
∣∣∣∣∣

= rl
1rN−1−l

2 . (A5)

The scaling exponent ν for EPN is

ν = log10

∣∣rl
1rN−1−l

2

∣∣
log10 |γ − γEP|

= log10 |r1|l
log10 |γ − γEP| + log10 |r2|N−1−l

log10 |γ − γ EP|

= N − 1

2
. (A6)

APPENDIX B: ENERGY BANDS FOR ODD N

A zero-energy flat band exists in HN when N is odd
because HN has chiral symmetry; therefore, the spectrum of
HN is symmetric about the zero energy, and there is a zero-
energy flat band if the system has an odd number of energy
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FIG. 4. Energy levels [Eq. (15)] of the SUSY array including a
zero-energy level. (a) Real and (b) imaginary parts of H3. (c) Real
and (d) imaginary parts of H5. The system parameter is J = 1.

levels. At the EP γ = ±J , all energy levels coalesce, HN is
nondiagonalizable and reduces to a Jordan block,

DN = (dmn) =

⎧⎪⎨
⎪⎩

ω0, m = n,

1, m = n − 1,

0, otherwise.

(B1)

Figure 4 shows the spectra of H3 [Eq. (8)] and H5 [Eq. (12)]
as a function of the non-Hermiticity γ . Both H3 and H5 hold a
zero-energy band, which participates in the coalescence at the
EP J = γ .

FIG. 5. Energy levels and frequency splittings near the EP3.
(a) Real and (b) imaginary parts of three eigenenergies with different
colors and line styles. (c) Frequency splitting between ω0 and ω1.
(d) Results from (c) on a logarithmic scale. Cyan (orange) color
corresponds to the numerical results of the real (imaginary) parts
in (c) and (d). The slope is 1/3 in (d). The system parameters are
γ = J = 1.

FIG. 6. Energy levels and frequency splittings near the EP4.
(a) Real and (b) imaginary parts of four eigenenergies with different
colors and line styles. (c) Frequency splitting between ω0 and ω3.
(d) Results from (c) on a logarithmic scale. Cyan (orange) color
corresponds to numerical results of the real (imaginary) parts of the
SUSY array with N = 4 in (c) and (d). The slope is 1/4 in (d). The
system parameters are γ = J = 1.

APPENDIX C: EIGENFREQUENCY RESPONSE TO
PERTURBATION NEAR THE EP3, EP4, AND EP5

Imposing perturbation ε on the couplings of the first two
resonators, we can get the matrix form for Hamiltonians H3×3,
H4×4 and H5×5:

H3×3 =

⎛
⎜⎝

ω0 + 2iγ
√

2J + ε 0√
2J + ε ω0

√
2J

0
√

2J ω0 − 2iγ

⎞
⎟⎠, (C1)

FIG. 7. Energy levels and frequency splittings near the EP5.
(a) Real and (b) imaginary parts of five eigenenergies with different
colors and line styles. (c) Frequency splitting between ω0 and ω4.
(d) Results from (c) on a logarithmic scale. Cyan (orange) color
corresponds to numerical results of the real (imaginary) parts in
(c) and (d). The slope is 1/5 in (d). The system parameters are
γ = J = 1.
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H4×4 =

⎛
⎜⎜⎜⎝

ω0 + 3iγ
√

3J + ε 0 0√
3J + ε ω0 + iγ 2J 0

0 2J ω0 − iγ
√

3J

0 0
√

3J ω0 − 3iγ

⎞
⎟⎟⎟⎠,

(C2)

H5×5

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ω0 + 4iγ 2J + ε 0 0 0

2J + ε ω0 + 2iγ
√

6J 0 0

0
√

6J ω0

√
6J 0

0 0
√

6J ω0 − 2iγ 2J

0 0 0 2J ω0 − 4iγ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(C3)

Figure 5(c) represents the frequency splittings of bands
with cyan solid and yellow dashed lines for H3×3, the real and

imaginary parts of the energy levels are depicted in Figs. 5(a)
and 5(b). The logarithmic relationship between the frequency
splitting and disturbance is shown in Fig. 5(d), where the slope
1/3 indicates the order of EP3.

Two energy bands with the maximum and minimum real
parts in Fig. 6(a) have identical positive imaginary parts in
Fig. 6(b); the middle two bands in Fig. 6(a) correspond to
the same negative imaginary parts in Fig. 6(b). Figure 6(c)
represents the frequency splittings of energy bands with cyan
solid and orange dash-dot lines for H4×4, the real and imagi-
nary parts of the energy levels are depicted in Figs. 6(a) and
6(b). The corresponding logarithmic relationship with ε is
shown in Fig. 6(d), where the slope 1/4 indicates the order
of EP4.

Figure 7(c) represents the frequency splittings of energy
bands with cyan solid and green dashed lines for H5×5, the
real and imaginary parts of the energy levels are depicted
in Figs. 7(a) and 7(b). The logarithmic relationship between
the frequency splitting and perturbation is shown in Fig. 7(d),
where the slope 1/5 indicates the order of EP5.

[1] C. M. Bender, Making sense of non-Hermitian Hamiltonians,
Rep. Prog. Phys. 70, 947 (2007).

[2] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge
University Press, Cambridge, UK, 2011).

[3] A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and
A. Alú, Anomalies in light scattering, Adv. Opt. Photonics 11,
892 (2019).

[4] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B.
Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, Experi-
mental demonstration of a unidirectional reflectionless parity-
time metamaterial at optical frequencies, Nat. Mater. 12, 108
(2012).

[5] S. K. Gupta, Y. Zou, X.-Y. Zhu, M.-H. Lu, L.-J. Zhang, X.-P.
Liu, and Y.-F. Chen, Parity-time symmetry in non-Hermitian
complex optical media, Adv. Mater., 1903639 (2019).

[6] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Observation of PT -Symmetry Breaking in Complex Optical
Potentials, Phys. Rev. Lett. 103, 093902 (2009).

[7] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Observation of
parity-time symmetry in optics, Nat. Phys. 6, 192 (2010).
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