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Tailoring inhomogeneous PT -symmetric fiber-Bragg-grating spectra
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The unique spectral behavior exhibited by a class of nonuniform Bragg periodic structures, namely chirped
and apodized fiber-Bragg gratings (FBGs) influenced by parity and time reversal (PT ) symmetry, is presented.
The interplay between the PT symmetry and nonuniformities brings exceptional functionalities in the broken
PT -symmetric phase such as wavelength selective amplification and single-mode lasing for a wide range of
variations in gain-loss. We observe that the device is no more passive and it undergoes a series of transitions from
asymmetric reflection to unidirectional invisibility and multimode amplification as a consequence of variation
in the imaginary part of the strength of modulation in different apodization profiles, namely Gaussian and
raised cosine, at the given value of chirping. The chirping affords bandwidth control as well as control over
the magnitude of the reflected (transmitted) light. Likewise, apodization offers additional functionality in the
form of suppression of uncontrolled lasing behavior in the broken PT -symmetric regime besides moderating
the reflected signals outside the band edges of the spectra.
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I. INTRODUCTION

The possibility of inscribing newly engineered Bragg
structures in the core of an optical fiber never seems to get
exhausted despite a large number of scientific contributions
dealing with their fundamental aspects (see [1–4] and refer-
ences therein). From an application point of view, fiber-Bragg
gratings have emerged as an inevitable component in the
modern telecommunication arena as their spectral character-
istics can be tailor-made at ease to facilitate functionalities
like spectral filtering, wavelength routing [3], gain equalizers
[4], pulse compression [5], optical add-drop multiplexing [6],
optical delay lines [7], and so forth.

The existence of group delay ripples and significant re-
flectivity at the side lobes of the spectra are some of the
major concerns associated with uniform gratings which poten-
tially lead to other detrimental effects such as cross talk and
effective bandwidth reduction in dense wavelength division
multiplexing (DWDM) systems [1]. A uniform FBG features
abrupt change in the modulation index at the interfaces be-
tween the grating and the background material. Hence, the
boundaries of such FBGs behave similar to a Fabry-Pérot-like
cavity and thus resulting in the above detrimental effects
[1,5,8,9]. By employing an apodization technique, the index
modulation is allowed to vanish smoothly at each of the
interfaces rather than varying it in an abrupt way in contrast
to the uniform gratings [5]. As a result, reflections in the
side lobes are severely reduced [8] and hence the overall
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spectral response gets highly improved [2,10]. On the other
hand, chirping customizes the dispersive characteristics of the
propagating light by broadening the pulse profile. In a chirped
FBG, the Bragg wavelength of the system varies as a function
of the propagation distance (z) [11] as a consequence of the
variation in the grating period with respect to position z [1,4].
The incoming optical field experiences an enhancement or
reduction in the spatial frequency of the grating as in the case
of positively and negatively chirped FBGs, respectively [12].
Dispersion of a chirped grating without apodization becomes
detrimental on high-bit rate DWDM systems due to the pres-
ence of ripples along the spectra. A mix of a suitable apodiza-
tion profile and judiciously tailored chirping parameter into a
single FBG can blend these constructive characteristics and
thus deliver a bandwidth controlled smooth spectrum [9,13].
Hence chirped and apodized FBGs are widely used in fiber
lasers [14] and dispersion compensation applications [15,16].

The PT -symmetric notion brings about some remarkable
optical behaviors in a fiber-Bragg grating which include coex-
istence of perfect absorption and lasing [17], unidirectional
invisibility [18], nonreciprocal light propagation dynamics
[19], and so on. The inherent loss in an optical system can thus
be beneficial rather than being catastrophic with the inclusion
of PT -symmetric potentials [20–22]. It has also paved the
way for some fascinating works which essentially confirm
that supplying an appropriate amount of loss is necessary to
preserve the PT -symmetric condition n(z) = n∗(−z) [23,24].
In the literature, there are two distinct directions in which the
studies on PT -symmetric systems are carried out. Primarily,
the first one is focused on studying the dynamics of the system
under various physical conditions (see [25–35] and references
therein). Studies on applications of the PT -symmetric system
is the other direction of interest [36–41]. Invoking the notion
of PT symmetry in traditional structures is considered to be
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a trending subject matter in optics as they are more fruitful
than the conventional systems owing to the management of
intrinsic loss of the materials rather than neglecting it. As
Lupu et al. have pointed out, the notion of PT symmetry
opens up an alternative route to overcome some of the critical
problems prevailing in the current hybrid integration optical
technologies to build tunable and reconfigurable devices [42].
In the context of nonuniform PT -symmetric FBG, incor-
poration of the apodization techniques with the aid of duty
cycle methods was proposed recently [43]. It is well known
that apodization without chirping might lead to undesirable
truncation of the spectral response which in turn reduces
the effective length of the grating. Also, the nonuniform dc
index change offered by an apodized FBG without chirping
is highly undesirable since it can induce crosstalk between
adjacent channels of closely spaced DWDM systems. If the
grating period is allowed to vary along the propagation di-
rection (chirping) in the presence of apodization then it is
possible to obtain strong side-lobe suppression, flat-top am-
plitude response, and low delay distortion which are made
possible by employing a chirped and apodized FBG. As of
now, there seem to exist no scientific contributions which
analyze the effects of different apodization profiles on the
spectral features of PT -symmetric chirped FBGs. Having
stated the need to study the proposed system, we aim at
exploring the multifunctional capabilities of the system such
as a directional-dependent broadband dispersion compensator,
optical delay lines and optical demultiplexer in the unbroken
PT -symmetric regime, and tunable mode selective lasing in
the broken PT -symmetric regime. To set up such applica-
tions, we first examine typical grating characteristics such
as reflection, transmission, group delay, and dispersion in a
chirped PT -symmetric FBG in the presence of Gaussian and
raised-cosine apodization profiles.

The paper is structured as follows. Section II illustrates
the mathematical model of the system. Sections III and IV
present the light propagation characteristics and applications
in the unbroken PT -symmetric regime, respectively. Sec-
tion V demonstrates the lasing behavior in the broken PT -
symmetric regime. Section VI brings out the exceptional point
dynamics of the system. The article is concluded in Sec. VII.

II. MATHEMATICAL MODEL

The refractive index profile of a chirped and apodized PT -
symmetric fiber-Bragg grating (CAPT-FBG) of length L and
grating period � (see Fig. 1) is written as [43,44]

n(z) = n0 + n1R cos

(
2π

�
z + φ(z)

)
f (z)

+ in1I sin

(
2π

�
z + φ(z)

)
f (z). (1)

In Eq. (1) the first term on the right-hand side represents
the refractive index of the background material, and n1R and
n1I stand for the real and imaginary parts of modulation
strength of Bragg grating, respectively. Also, φ(z) represents
the slowly varying grating phase [9,11] and it should be an
even function of z for the system to be PT symmetric and f (z)
denotes the apodization profile [43]. Though the chirping is

FIG. 1. (a) Schematic of a chirped PT -symmetric FBG. (b) Seg-
mentation of the nonuniform PT -symmetric FBG into j number of
uniform and periodic sections. The length, period, coupling, gain-
loss, and detuning parameter are given by l j , λ j , k j , gj , δ j . The input,
transmitted, and reflected signal at a section j are represented by
uj−1, uj , and v j−1. (c) Representation of one unit cell of the PT -FBG
[37], where the solid and dotted lines represent the modulation of
real (n1r) and imaginary (n1i) parts of the refractive index profile,
respectively.

responsible for making the FBG nonuniform in addition to the
apodization by breaking the periodicity, it should be noted that
each unit cell will certainly obey the PT -symmetric condition
[n(z) = n∗(−z)] locally for a given grating period (�n) as
shown in Fig. 1(c). The mathematical form of the Gaussian
apodization profile is given by [1,8]

f (z) = exp[−G(z/L)2], (2)

where G stands for the Gauss width parameter [1,8,13,45].
For a raised-cosine profile one has the representation

[1,43],

f (z) = 1 + cos (πz/L)

2
. (3)
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For an unapodized grating f (z) = 1. The coupled mode
equations which describe the dynamics of the optical fields
evolving from the proposed system is found to be [19,43]

+i
du

dz
+ δ(z)u + (k(z) + g(z))v = 0, (4)

−i
dv

dz
+ δ(z)v + (k(z) − g(z))u = 0, (5)

where u and v are the forward and backward propagating
optical fields inside the grating. The coupled mode equations
are solved by conventional transfer matrix method (piece-
wise uniform routine) having n number of uniform sections
(see Fig. 1). The coupling, gain and loss and the detuning
parameters accordingly are defined by [1,44]

k(z) = πn1R(z)/λ, g(z) = πn1I (z)/λ,

δ(z) = δ0 − 1

2

dφ

dz
= δ0 + 4πn0z

λ2
b

dλb

dz
, (6)

where δ0 = 2πn0( 1
λ

− 1
λb

). The derivative term dλb/dz repre-
sents the variation in the Bragg wavelength [λb = 2n0�(z)]
proportional to the grating position or simply chirp (C),
whereas λ symbolizes the operating wavelength.

Let j = 1, 2, 3..., n represent the jth section of the grating
with length and period of each section taken to be l j and λ j ,
respectively, such that

∑n
j=1 l j = L. Hence, the transmitted

and reflected amplitudes of the traversing field at any section
j (after propagating j − 1 sections) are taken to be uj and v j ,
respectively [1]. Assuming u0 = 1 and v0 = 0 and taking Mj

to be the transfer matrix that relates the propagation through
an individual section j with the previous section j − 1, it can
be mathematically expressed as[

u j

v j

]
= Mj

[
u j−1

v j−1

]
. (7)

For a PT -symmetric FBG, Mj is given by Eq. (7) with
[
Mj

] =
[

m11 m12

m21 m22

]
, (8)

where the matrix elements of Mj are given by

m11 = m∗
22 = cosh(σ̂ j l j ) + i

(
δ j

σ̂ j

)
sinh(σ̂ j l j ),

m12 = i

(
k j + g j

σ̂ j

)
sinh(σ̂ j l j ),

m21 = −i

(
k j − g j

σ̂ j

)
sinh(σ̂ j l j ),

where σ̂ j =
√

(k2
j − g2

j − δ2
j ) represents the eigenvalues of the

matrix Mj and the local values of coupling, gain and loss, and
detuning parameters in the jth section are given by k j , g j , δ j .
The transfer matrix M which describes the output fields of the
grating of length L is the multiplication of matrices of the n
individual sections each having a length l j . The output field in
terms of the incident field is written as[

un

vn

]
= M

[
u0

v0

]
, (9)

where M = [M11 M12
M21 M22

] = Mn ∗ Mn−1 ∗ .....Mj ∗ ....M1.

The reflection amplitudes of the grating for the left, right
incidence, and transmission amplitudes are specified as [18]

rL = −M21/M22, rR = M12/M22,

tL = tR = t = 1/M22. (10)

The corresponding reflection and transmission coefficients
read as

RL = |rL|2, RR = |rR|2, T = |t |2. (11)

It is important to note that the PT -symmetric structures
possess real eigenvalues below a phase-transition point and
so they can be regarded as closed systems [46]. Nevertheless,
they function like open systems at the broken PT -symmetric
phase as a consequence of the complex nature of the eigenval-
ues of the non-Hermitian Hamiltonians [25,47]. Hence they
do not obey the conservation relation of the form T + R = 1
[48]. But the generalized conservation relation for the PT -
symmetric structures is given by |T − 1| = √

RLRR [49].
Further, we like to emphasize the group delay and dis-

persion characteristics of the system. The phase (θ ) of the
reflected and transmitted fields which dictates the group delay
(τ ) and dispersion characteristics (D) of the PT -symmetric
FBG is given by

θRL = arctan(−M21/M22), θRR = arctan(M12/M22),

θT = arctan(1/M22). (12)

The time delay offered by the group velocity (vg) of the
propagating optical fields can be found if the phase given in
Eq. (12) is further expanded around a local value of frequency,
say ω0. The gradient of dθ/dω is the group delay which is
proportional to the operating frequency (ω) and it reads as [1]

τL,R,T = dθ/dω = − λ2

2πc

dθRL,RR,T

dλ
, (13)

where c represents the speed of light in free space. The disper-
sion offered by the system is proportional to the derivative of
delay (τ ) with respect to the operating wavelength (λ) and it
can also be expressed in terms of the second derivative of the
phase with respect to the frequency (d2θ/dω2) as

DL,R,T = −2πc

λ2

d2θ

dω2
= dτL,R,T

dλ
. (14)

Note that the delay and dispersion are measured in terms
of picoseconds and picoseconds per nanometer, respectively.
We may also mention that works dealing with the time de-
lay characteristics in a PT -symmetric system are not many
[18,19]. Even these contributions are limited to the uniform
grating structures. The present work pertains to the inves-
tigation of delay and dispersion features of a nonuniform
PT -symmetric FBG. In our studies, we will first investigate
the dynamics of the nonuniform PT -symmetric FBG in the
unbroken regime followed by the dynamics in the broken PT -
symmetric regime and finally the dynamics at the exceptional
point.
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FIG. 2. Reflection and transmission spectra of chirped (C =
0.125 nm/cm) PT -symmetric FBG. Plots in the left and right panels
are simulated in the absence (n1I = 0) and presence (n1I = 0.0001)
of PT symmetry, respectively. The upper, middle, and lower panels
portray the spectra of a chirped FBG, chirped FBG with a Gaussian
apodization (G = 4), and chirped FBG with raised-cosine apodiza-
tion, respectively.

III. EFFECT OF NONUNIFORMITIES ON THE SPECTRA
OF AN UNBROKEN PT -SYMMETRIC FBG

It is to be remembered that the device works in the
unbroken PT -symmetric regime if it satisfies the condition
n1R > n1I . Throughout the analysis, we use the following
system parameters of a standard FBG [1] as L = 10 mm, n0 =
1.45, n1R = 10−3, and λb = 1550 nm. Before we proceed to
study the grating characteristics of the proposed system in
detail, it is important to investigate the effect of chirping,
apodization, and PT symmetry individually. In the absence of
PT symmetry (n1I = 0) the reflection coefficient (R) is found
to be the same for both left (RL) and right light incidence
(RR) and the relation between R and transmission (T) is given
by T + R = 1 as shown in Figs. 2(a), 2(c), and 2(e). The
effect of PT symmetry on the linear spectra is well known
and it gives rise to enhanced and reduced reflection for right
and left light incidence, respectively, as seen in Figs. 2(b),
2(d), and 2(f). These conclusions are true irrespective of the
nature of apodization profile and the chirping. From Figs. 2(a)
and 2(b), one can visualize that in the absence of apodization,
chirping produces unwanted ripples in the stop band of the
grating. Also, it induces a stronger reflection in the side
lobes. In the presence of Gaussian apodization, the reflection
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FIG. 3. Reflection and transmission characteristics of a chirped
and apodized PT -symmetric FBG (CAPT-FBG) in the unbroken
regime with a Gaussian apodization (G = 4). Top panels depict the
role of PT symmetry at C = 0.25 nm/cm with (a) n1I = 0.0002 and
(b) n1I = 0.0006. The middle panels depict the role of chirping at
n1I = 0.0004 with (c) C = 0.125 nm/cm and (d) C = 0.5 nm/cm.
Continuous variation of maximum reflection (Rmax) against variation
in the gain-loss coefficient is plotted in (e) and it is independent of
the value of C. The FWHM is plotted against continuously varying
n1I for different values of C in (f).

(transmission) in the side lobes is reduced but not suppressed
completely as seen in Figs. 2(c) and 2(d). However, the ripples
in the stop band are strongly reduced. To obtain a smooth,
ripple-less, and side lobe suppressed spectra one can adapt the
raised-cosine apodization as illustrated in Figs. 2(e) and 2(f).

A. Gaussian apodization profile

The different amplitudes of reflection (transmission) coef-
ficients in the side lobes arise essentially due to the interplay
among PT symmetry, chirping, and Gaussian apodization
as seen in Figs. 3(a)–3(d). With an increase in the value
of n1I , the side lobes show growth in the reflectivity. For
instance, in RR it is measured to be 0.2311 in Fig. 3(a),
whereas in Fig. 3(b) it is found to be 0.4958. From these
figures, we can also infer that any increase in the value of n1I

intensifies the light reflected from the rear side (RR) compared
to Fig. 2(d). However, there is a fall in the amount of light
reflected from the front end (RL). Thus we can conclude that
the asymmetric light propagation behavior depends on the
PT symmetry and it is portrayed in Fig. 3(e). The growth
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FIG. 4. Plots illustrating the same dynamics as in Fig. 3 except it
is plotted for the case of raised-cosine apodization. The wavelength
range is selected between 1549 nm and 1551 nm in (a)–(d).

in the reflection coefficient for right incidence (RR) occurs as
a result of the constructive interplay between the modes of the
optical fields propagating along with the gain segments of the
PT -symmetric grating [19]. When the input signal is incident
on the other side of the grating the reflection (RL) decreases, as
any increase in loss (−g) decreases the coupling (k) between
the two propagating waves. Finally, we look at the role of
chirping on the light propagation characteristics of the device.
In the absence of apodization, it may produce an adverse
effect like the introduction of ripples in the spectra. However,
it plays a positive role in controlling the bandwidth of the
spectra in the presence of apodization. With a decrease in the
value of chirping, the full width at half maximum (FWHM)
of the spectrum reduces. This is illustrated in Figs. 3(c) and
3(f). On the other hand, if the value of chirping is high
(C = 0.5 nm/cm), the FWHM is increased as observed in
Figs. 3(d) and 3(f). Hence, one can enlarge or taper the nature
of bandwidth by merely manipulating the chirping parameter
along with the judiciously chosen apodization profile.

B. Raised-cosine apodization profile

In Fig. 4, we observe that some weak reflections persist
on the wings of the spectra. This issue can be addressed
by employing a raised-cosine apodization profile which can
eliminate the side lobes entirely on both sides of the central
lobe as seen in Fig. 4(a). Having stated the above, we also note

that the reflectivity (transmittivity) can be tuned by varying the
parameter n1I . Similar to the last subsection, the amplitude
of reflection from the rear (front) end of the device gets
amplified (reduced) when n1I is increased (decreased) as seen
in Figs. 4(b) and 4(c). From Figs. 3(e) and 4(e), we conclude
that the maximum reflectivity depends only on the value of
PT symmetry and is independent of the nature of apodization.
The bandwidth control is facilitated by varying the chirp
(C) offered by the PT -symmetric grating. In Fig. 4(c), the
value of chirping is set to 0.125 nm/cm and thus we get
a narrow spectrum and without ripples. Nevertheless, any
further increase in the chirping contributes to the widening
of the spectrum which gives an additional degree of freedom
to enlarge the spectrum remarkably as identified in Figs. 4(d)
and 4(f).

IV. GROUP DELAY AND DISPERSION
CHARACTERISTICS OF A CAPT-FBG

A chirped FBG can induce dispersion as the light propa-
gates inside it. It is desirable to have a linear delay without
any ripples [15] and hence apodization plays a central role
in fine-tuning the delay characteristics of the device [9]. The
delay may increase or decrease linearly according to the sign
of chirp (C) and hence the sign of dispersion (D) also varies
with the sign of C. As mentioned earlier, studying these prop-
erties aids in the construction of applications such as delay
lines [7], dispersion compensator [5], and so on. Kulishov
et al. investigated the delay characteristics of a FBG in the
absence of nonuniformities [19]. The question that arises here
is whether the addition of nonuniformities impacts the delay
and dispersion properties of a PT -symmetric FBG. With this
aim, we now look into the group delay offered by the system
under study.

A. Gaussian apodization profile

In Fig. 5(a), the group delay for the transmitted light (τT )
is approximately constant around 50 ps. The group delay
for the light reflected from the front end (τL) increases non-
monotonically (with a lot of ripples even at the stop band)
with an increase in the wavelengths, while the group delay
from the rear end (τR) decreases in the same way with an
increase in wavelength. Physically, these ripples in the delay
characteristics arise as a consequence of the interference
between the reflected signals from the grating edges and the
nature of reflection within the stop band of the grating. On
either side of the Bragg wavelength (within the stop band),
there are fluctuations in the dispersion observed in the same
way as illustrated in Fig. 5(a). Outside the stop band, the
dispersion is comparatively larger for the reflected lights (DL

and DR) unlike the dispersion of the transmitted light (DT ).
In both delay and dispersion plots [see Figs. 5(a) and 5(b)],
one can observe that there are a lot of ripples within the
stop band which implies that one should opt for a better
apodization profile like the raised cosine one shown in Fig. 6
while implementing applications like optical delay lines and
dispersion compensation. Alternatively, such ripples can be
reduced by using a Gaussian profile with a large Gauss
width parameter [8,13]. From Fig. 5(c), we infer that the
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FIG. 5. (a) Group delay and (b) dispersion characteristics of a
chirped (C = 0.25 nm/cm) and Gaussian apodized (G = 4) PT -
symmetric FBG when the system is operated in the unbroken PT -
symmetric regime (n1I = 0.0008). (c) and (d) The same dynamics
with the same parameters as in (a) and (b), respectively, except that
it is plotted for three different values of G = 5, 9, 15. Also, the x axis
is scaled between 1549.7 nm and 1550.3 nm in the bottom panel.

oscillations in the nonmonotonically increasing (decreasing)
delay characteristics get reduced when the Gauss width pa-
rameter is raised from G = 5–9, and for G = 15 direction-
dependent delay characteristics with no ripples is obtained.
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FIG. 6. Delay and dispersion characteristics of a CAPT-FBG
(raised cosine). (a) The role of PT symmetry on direction-dependent
delay (τ ) plotted at n1I = 0 and 0.0008 with a chirp of C = 1 nm/cm.
(b) Depiction of the role of chirping (C) on delay (τ ) at n1I = 0.0008.
The dispersion characteristics in the absence of gain-loss (n1I = 0)
is illustrated in (c). Influence of PT symmetry on dispersion (D)
simulated at C = 1 and 2 nm/cm with a gain-loss parameter value of
0.0008 is shown in (d).

Similarly, in Fig. 5(d) we conclude that it is possible to con-
struct an efficient dispersion compensator, which is free from
any oscillations in the stop band provided that the value of G is
sufficiently large. It is reported that the Gaussian apodization
profiles with large G are found to offer an excellent sensitivity
at higher values of chirping (3–4 nm/cm) in the infrared
wavelengths [8,45].

B. Raised-cosine apodization profile

For the chirped and apodized FBG which is supposed to
function as an efficient dispersion compensator the following
criteria must be met: First, the delay characteristics of the
device is expected to show monotonic increase or decrease
with respect to increase in wavelength and must be free from
any ripples. Second, these types of linear variations should
be observed for a wide range of wavelengths so as to obtain
flat dispersion characteristics over a wide spectral range with
high reflectivity [50,51]. In this perspective, chirped FBG
with a raised-cosine apodization is the optimum choice to
compensate dispersion accumulated in the input pulse as it
travels through an optical fiber.The physical explanation for
the absence of ripples in the delay is due to the fact that
there are no reflections from the ends of the grating for the
interference phenomenon discussed in the previous section.
As shown in Fig. 6(a), the delay is shifted to higher values
with the inclusion of PT symmetry (n1I = 0.0008) compared
to the delay offered by a conventional FBG (n1I = 0). It is
very clear that the time delay for the transmitted light is
τT ∼ 50 ps. The small number of fluctuations in the group
delay plots which were visible in the presence of Gaussian
apodization (see Fig. 5) is suppressed by employing a raised-
cosine apodization profile as seen in Fig. 6(a). We also observe
that the curves featuring τL and τR resemble ideal increasing
and decreasing functions, respectively. Physically, this means
that the optical signal launched from the front end of a CAPT-
FBG (raised cosine) is reflected such that only a small fraction
of the short-wavelength light propagates and reaches the other
end of the grating, while most of the signals in the longer
wavelength light arrive at the other end and vice versa. As
portrayed in Fig. 6(b), any increase (decrease) in chirping
increases (decreases) the delay on the shorter wavelength side
and decreases (increases) the delay in the longer wavelength
sides (light solid, dashed, and dash-dotted lines). For the light
launched from the right side the exact opposite phenomenon
(dark solid, dashed, dash-dotted lines) occurs. Ideally, the
dispersion curve should be flat over the entire stop band but
this requirement is not fully satisfied by the FBG system
shown in Fig. 6(c) which is plotted in the absence of PT
symmetry (n1I = 0). But the curve resembling an ideal flat
dispersion is obtained by the inclusion of PT symmetry
(n1I = 0.0008). The mean dispersion value for left incidence
[red (dark) solid lines] is measured to be D = −0.045 ps/nm,
whereas for the right light incidence [green (light) dotted
lines] the same magnitude of dispersion with the opposite sign
(D = 0.045 ps/nm) is obtained. Thus, it is possible to com-
pensate both normal and anomalous dispersions emanating
from the propagation of the signal inside the transport fiber
by the use of appropriate CAPT-FBG (raised cosine) with
flat dispersion characteristics thanks to the notion of PT
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FIG. 7. Schematic of a dispersion compensator build using a
CAPT-FBG.

symmetry (See Fig. 7). Other important applications of CAPT-
FBG (raised cosine) in the unbroken PT symmetry include
add and drop multiplexer-demultiplexer and delay lines.

V. EFFECT OF NONUNIFORMITIES ON THE SPECTRA
OF A BROKEN PT -SYMMETRIC FBG

We recall that the FBG is said to be operating in the bro-
ken PT -symmetric regime under the mathematical condition
n1I > n1R.

A. Gaussian apodization profile

It is worthwhile to mention that in a broken CAPT-FBG
(Gaussian), selective amplification of certain wavelengths of
the spectra can be achieved by varying the value of n1I and
chirping (C). Under such circumstances, the system may
behave like a Fabry-Pérot cavity [1]. Thus it allows the am-
plification of certain wavelengths and the suppression of the
remaining wavelengths of the reflected (transmitted) spectra
as shown in Figs. 8 and 9. The undesirable amplification from
the side lobes of the spectra can be eliminated with ease by
passing the output through a bandpass FBG filter and thus
we scale down the plots in Fig. 8 between 1549.6 nm and
1550.4 nm. In contrast to the previous sections (unbroken
PT symmetry), in the present case of broken PT symmetry
the reflectivity (R) [transmittivity (T)] can be controlled by
changing the value of the chirp or gain and loss. Due to the
nature of apodization, the amplification at the Bragg wave-
length of the spectra is suppressed (but not to zero), but the
wavelengths lying on the shorter and longer sides of the Bragg
wavelengths of the spectra experience a symmetric (resonant)
amplification behavior pertaining to blue and red shifts of the
resonant frequency (wavelength) of the spectrum within the
stop band as shown in Figs. 8(a)–8(c). Recently, such ampli-
fication behavior was reported in a metamaterial waveguide
with gain and loss [52,53]. This once again proves that the
PT -symmetric FBG is closely associated with antidirectional
coupler structures with gain and loss. From Figs. 8(a), 8(b),
and 8(d), we conclude that with increase in n1I there is a
significant growth in reflectivity (R) and transmittivity (T ) at a
given value of chirping parameter (C). As shown in Figs. 8(c)
and 8(d), when the chirping is decreased (increased) the
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FIG. 8. Transmission and reflection characteristics of CAPT-
FBG (Gaussian) in the broken PT -symmetric regime. (a) and
(b) The role of gain-loss on the spectra simulated at C = 0.25 nm/cm
with n1I = 2.22 × 10−3 and 2.24 × 10−3, respectively. (c) The de-
crease in reflectivity and transmittivity R and T of the spectra when
the chirping is lowered to C = 0.2 nm/cm at n1I = 2.285 × 10−3.
Influence of n1I at fixed values of chirping (C = 0.25 nm/cm and
0.2 nm/cm) on (d) the maximum reflectivity and transmittivity (Rmax

and Tmax), (e) wavelengths corresponding to maximum reflectivity
and transmittivity (λmax1 and λmax2 ), and (f) spectral separation
(λd ) between the two wavelengths at which maximum reflectivity
(transmittivity) occurs when n1I is varied. The inset in (f) shows full
width at half maximum of the spectra with variation in the gain-loss
at constant chirping.

maximum reflectivity and transmittivity of the spectra (Rmax

and Tmax) gets reduced (raised). Both n1I and C influence the
wavelength (λmax1 and λmax2 ) at which maximum reflectivity
and transmittivity occur in the spectra as shown in Fig. 8(e).
Also, the FWHM of the spectra grow with an increase in n1I

as shown in the inset of Fig. 8(f). The wavelengths (λmax1 and
λmax2 ) at which maximum reflectivity (Rmax) or transmittivity
(Tmax) occurs in the spectra are shifted towards the Bragg
wavelength. To illustrate the spectral response further, we
introduce another useful parameter λd which indicates the dif-
ference in wavelengths between λmax1 and λmax2 . It is inferred
from Fig. 8(f) that λd gets shrunk with an increase in the value
of n1I . Physically, this means that with an increase in the value
of n1I the wavelengths which were experiencing a larger gain
at lower values of n1I now experience comparably less gain
and wavelengths closer to the Bragg wavelength will acquire
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FIG. 9. Single-mode lasing behavior in a broken CAPT-FBG
(Gaussian). (a) The spectra at C = 0.25 nm/cm and n1I = 2.2625 ×
10−3. (b) Illustration of the decrease in reflectivity and transmittivity
when n1I is increased to 2.265 × 10−3 and C is the same as (a).
(c) and (d) Depiction of the continuous variation of maximum
reflectivity and transmittivity (Rmax, Tmax) against n1I at C = 0.25
nm/cm and 0.2 nm/cm, respectively. The insets in (c) and (d) show
the corresponding variation in the full width at half maximum of the
broken CAPT-FBG spectra. (e) and (f) Shown are dual-mode ampli-
fication and single-mode lasing behavior in the broken CAPT-FBG
spectra at n1I = 0.00242 and 0.00247, respectively, for a chirping of
C = 0.25 nm/cm.

larger gain. Any further increase in the value of n1I leads to a
narrow band single-mode lasing behavior of the spectra cen-
tered at the Bragg wavelength as depicted in Fig. 9. Interest-
ingly, any increase in the value of n1I decreases the maximum
reflectivity (Rmax) and transmittivity (Tmax) of the spectra in
the single-mode lasing regime as shown in Figs. 9(a)–9(c)
which is in contrast to the dual-mode amplification regime.
At the same time, the FWHM of the spectra increases with an
increase in n1I as shown in the inset of Fig. 9(c). The decrease
(increase) in the chirping tends to push the magnitude of n1I

to higher (lower) values where Rmax and Tmax occurs as shown
in Figs. 9(c) and 9(d). For instance, at a chirp of C = 0.2
nm/cm and n1I = 0.00226 the system exhibits amplification
at two different wavelengths, whereas the same system at C =
0.25 will exhibit single-mode lasing behavior [see Figs. 8(d)
and 9(d)]. The FWHM of the spectra keeps on increasing until
a particular value of n1I and beyond that any increase will n1I

will break the single-mode lasing behavior in the spectra and it
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FIG. 10. Single-mode lasing behavior of a broken PT -
symmetric chirped FBG with raised-cosine apodization. (a) and
(b) Illustrations of the spectral features at C = 0.25 nm/cm and for
C = 0.2 nm/cm, respectively, at different values of n1I . The con-
tinuous variation of maximum reflectivity and transmittivity (Rmax

and Tmax) is plotted against (c) varying n1I and constant chirping
(C = 0.25 nm/cm and 0.2 nm/cm) and (d) varying chirping at a
constant n1I = 2.2 × 10−3. The corresponding variations in FWHM
of the spectra against n1I and C are shown in (e) and (f), respectively.

degenerates to produce amplification at the resonances outside
the Bragg wavelength. The occurrence of alternate regimes of
single-mode lasing behavior and mode selective amplification
in the broken CAPT-FBG spectra is observed for a wide range
of n1I for a given value of chirping as depicted in Figs. 9(e)
and 9(f).

B. Raised-cosine apodization profile

In Fig. 10(a), we observe that the amplification at other
wavelengths of the spectra is totally inhibited except that
the amplification is now experienced only by a single wave-
length (1550 nm) thanks to the presence of a raised-cosine
apodization profile. Physically, this means that the resonance
can occur only at the Bragg wavelength and this wavelength
experiences a larger gain compared to other wavelengths and
shifting of resonances with variations in gain is prohibited
by the nature of apodization. This phenomenon is observed
for a wide range of n1I and chirping. In the previous section,
we discussed two distinct regimes (dual and single mode) of
the broken CAPT-FBG spectra depending on the range of n1I
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FIG. 11. Single-mode lasing behavior of a broken PT -
symmetric chirped FBG with raised-cosine apodization. (a) and
(b) Illustration of the spectral features at C = 0.25 nm/cm and 0.2
nm/cm, respectively, for different values of n1I . The continuous
variation of the maximum reflectivity and transmittivity (Rmax, Tmax)
is plotted in (c) by varying n1I for constant chirping (C = 0.2 nm/cm
and 0.1 nm/cm) and (d) varying chirping at a constant n1I = 2.25 ×
10−3. The corresponding variations in FWHM of the spectra against
n1I and C are shown in (e) and (f), respectively.

in which the system is operated. In the presence of raised-
cosine apodization, there is no such dual-mode amplification
behavior. Instead, we have two distinct regimes of single-
mode lasing behavior. One of the regimes (see Fig. 10) is
characterized by increase in reflectivity and transmittivity and
narrowing of the full width at half maximum of the spectra
with any increment in the device parameters (C and n1I )
and the other regime (see Fig. 10) features decrement in the
reflectivity and transmittivity and broadening of FWHM of
the spectra with an increase in the value of the system pa-
rameters. Similar to the conclusions drawn in the last section,
the appearance of two distinct single-mode lasing regimes is
cyclic in nature with variations in n1I . When n1I increases,
we observe that the reflectivity and transmittivity grows at
the given value of chirping as shown in Figs. 10(a)–10(c).
Nevertheless, in the other regime shown in Figs. 11(a)–11(c),
any increment in n1I decreases the magnitude of the maximum
reflectivity and transmittivity (Rmax and Tmax). Decrement in
the value of chirping reduces (increases) the reflectivity and
transmittivity in Fig. 10(d) [Fig. 11(d)]. Thus, controlling Rmax
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FIG. 12. Exceptional point dynamics exhibited by a chirped
and apodized PT -symmetric FBG (n1R = n1I = 0.001). The
phenomenon of unidirectional invisibility is illustrated in (a). The
reflected spectra (in dB) for the right incidence for different apodiza-
tion profiles with C = 0.25 nm/cm is depicted in (b). (c) and (d)
Depiction of the same under variations in C in the presence of Gaus-
sian apodization and raised-cosine apodization profiles, respectively.
(e) Depiction of the variation in delay for the two apodization profiles
when C = 0.25 nm/cm.

and Tmax in the single-mode lasing behavior of a CAPT-FBG
(raised cosine) is feasible in two different ways: first, by
varying the chirp parameter and second, by varying the gain
and loss. Also, it is possible to control the full width at half
maximum of the spectra in two distinctive directions just like
the amplitude control as shown in Figs. 10(e), 10(f), 11(e),
and 11(f). Thus the system offers unique ways to control the
spectral characteristics in the broken PT -symmetric regime
compared to the unbroken PT -symmetric regime.

VI. UNIDIRECTIONAL REFLECTIONLESS WAVE
TRANSPORT WITH GRATING NONUNIFORMITIES

When n1R = n1I , the system is said to be operating at the
exact PT -symmetric phase. As a consequence of operating
at the exceptional point, the FBG reveals a peculiar phe-
nomenon of unidirectional reflectionless transmission which
was termed unidirectional invisibility [18,54] that results in
an ideal light transmission on one side (T = 1) and (R = 0)
which is unrealistic in the context of conventional systems.
This concept is well established in the framework of PT -
symmetric linear as well as nonlinear gratings [18,43]. From
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our investigations, we confirm that unidirectional invisibility
can persevere even in the presence of chirping and apodization
as depicted in Fig. 12(a). On the contrary, the reflection
spectrum for the right incidence is perturbed by the presence
of chirping and apodization. This is evident from Figs. 12(b)
to 12(d). The effect of the nonuniformities of the grating
is similar to the unbroken PT -symmetric case discussed
earlier except for an additional growth in the amplitude of
the reflected light as a result of an increase in the value of
n1R. When Gaussian apodization is used, ripples are seen all
over the spectra due to the presence of chirping as shown in
Fig. 12(c). The convenient way is to make use of a raised-
cosine apodization window which can completely reduce
the side lobes and ripples in the spectra when chirping is
sufficient. We would like to stress that a chirp of 0.375 nm/cm
or greater can produce a large band spectrum without any side
lobes which is one of the notable outcomes of our study as
illustrated in Fig. 12(d). In Fig. 12(e), we can see that the
delay in the transmitted signal is constant around 48 ps and
this is due to the presence of chirping and by increasing or
decreasing the value of chirping the delay can be tuned in the
transmission and thus can be used as delay lines. Similar to
unbroken PT symmetry, τR features a lot of oscillations in the
presence of Gaussian apodization whereas a monotonically
decreasing delay can be obtained by employing a raised-
cosine apodization profile.

VII. CONCLUSIONS

In this article, we have presented a detailed study on the
spectra exhibited by a PT -symmetric FBG in the presence of
nonuniformities of the grating such as chirping and apodiza-
tion. The system offers some unique features in the presence
of PT symmetry. We found that the spectral bandwidth varies
as the chirping term is varied, and reflectivity and transmit-
tivity get altered as the gain-loss term is tuned, while the

apodization suppresses the side lobes partially or completely
in the unbroken PT -symmetric regime. We also found that
the role of chirping on delay characteristics depends on the
direction of incidence and it is possible to obtain a flatter
dispersion curve with the addition of PT symmetry compared
to the conventional system. The spectral response of the
broken PT -symmetric FBG features dual-mode amplification
and single-mode lasing behavior as a consequence of the
interplay between the other system parameters in the presence
of Gaussian apodization. Also, the system exhibits single-
mode lasing behavior in its spectral characteristics for a wide
range of system parameters in the presence of raised-cosine
apodization. From the simulations, we have confirmed that
the phenomenon of unidirectional invisibility is independent
of the nonuniformities of the grating and the reflected light
corresponding to the right light incidence is influenced by the
variations in the nonuniformities of the grating. To sum up,
the proposed system can offer multifunctionalities against the
variations in nonuniformities of the grating together with PT
symmetry and can yield applications like direction-dependent
dispersion compensation, optical delay lines, and demulti-
plexers in light-wave communication systems.
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