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Mechanism of formation of an inverse energy flow in a sharp focus
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A reverse energy flow is theoretically demonstrated to occur in the interference pattern generated by four
plane waves with linear polarization. In some regions of the interference pattern, the right-handed triplets of
plane-wave vectors k (kz > 0), E, and H (comprising a wave vector and E- and H-field vectors) sum up to form
an electromagnetic field described by a right-handed triplet of vectors k (kz < 0), E, and H. It is in these regions
that the negative propagation of light occurs. On the optical axis the orbital energy flow, proportional to the light
intensity, is shown to be positive, while the spin flow is negative and exceeds the orbital flow in magnitude. That
is why the on-axis summary energy flow is negative. The magnitude of the reverse flow on the optical axis is two
times lower than that of the intensity. A similar mechanism may apply to the case of sharply focusing a laser
beam with second-order polarization or phase singularity. Using two identical micro-objectives with a numerical
aperture of 0.95, it has been demonstrated experimentally that the intensity on the optical axis near the focus of
an optical vortex with a topological charge of 2 is zero for right circular polarization and nonzero for left circular
polarization. This confirms that in the latter case there is the reverse flow of light energy on the optical axis,
since in the center of the measured energy flow distribution there is a very weak local maximum (the Arago spot)
aroused due to diffraction of the forward flow by a circle with a diameter of 300 nm (the diameter of the tube with
the reverse flow). Comparing the numerical and experimental intensity distributions, it is possible to determine
the diameter of a “tube” with the reverse flow. For a numerical aperture of 0.95 and a wavelength of 532 nm, the
diameter of the tube of the reverse flow along the optical axis is 300 nm. It is also shown experimentally that
when an optical beam with second-order cylindrical polarization is focused with a numerical aperture of 0.95,
there is a circularly symmetric energy flow in the focus with a very weak flow in the center (the Arago spot),
whose distribution is determined by diffraction of the forward flux by an ∼300-nm-diameter circular area, where
the energy flow is reverse. This also confirms that in the latter case, there is a reverse energy flow on the optical
axis.

DOI: 10.1103/PhysRevA.101.033811

I. INTRODUCTION

Optical vortex beams, which have been around for quite a
long time [1], have a spiral phase that affects their propagation
properties [2]. Optical vortices have attracted the steady in-
terest of researchers due to their extremely wide applications
potential. By way of illustration, laser vortex beams have been
utilized in an optical vortex coronagraph when searching for
exoplanets [3], as optical tweezers for trapping and manip-
ulating microparticles [4,5], and as an optical spanner for
rotating and transferring orbital angular momentum to par-
ticles [6,7]. They show promise for optical communications
for improving data carrying capacity [8], quantum computing
[9,10], and high-resolution electron microscopy [11]. One
more potential application for the optical vortices is associated
with the existence of regions with negative propagation of
light [12–14]. We have recently shown [12] that a reverse
energy flow occurs in the sharp focus of an optical vortex
whose integer topological charge is larger than unity. We have
also demonstrated theoretically and numerically [13] that in
the sharp focus of a circularly polarized optical vortex with
topological charge m = 2, there exists a near-axis reverse
energy flow, which is comparable in magnitude with the
incident energy. The presence of an on-axis reverse energy

flow in the focus of a second-order polarization vortex has
also been demonstrated numerically [14]. It has been shown
that the negative propagation of light can be achieved using a
metalens [15].

Earlier, the effect of the negative propagation of light was
studied by a number of researchers. In particular, according to
a simple expression derived in Ref. [16] to describe the on-
axis component of the Poynting vector in an aplanatic system
when focusing a plane linearly polarized wave, a reverse
energy flow occurs on some circumferences around dark rings
(intensity minima). Although the energy backflow was also
discovered in superposition of four plane waves [17], the
author discarded the result as being physically meaningless.
Focusing a paraxial Gaussian beam with a limited-aperture
spherical lens has been numerically shown to produce, in
and near the focal plane, dark Airy rings featuring phase
singularity [18]. Later on, Berry utilized asymptotics tech-
niques to show that such singularities also occurred in the
focus of a nonparaxial Gaussian beam focused by an open-
aperture lens [19]. A circulating energy flow was shown to
occur around phase singularity, which contained a reverse
flow [19]. Volyar has numerically shown [20] that linearly
polarized nonparaxial vector Gaussian beams (or lower-order
spherical modes) form an elliptic focal spot surrounded by
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“singularity isles” (instead of Airy rings), near which a reverse
energy flow was observed. Analogous singularity isles and
reverse energy flows were discovered [21] in the focal plane
of circularly polarized nonparaxial vector Gaussian beams.
Considering a simple example of the interference of two
coaxial Gaussian beams, a toroidal energy flow, including the
reverse one, has been shown [22] to occur around a ring-
shaped intensity null. Note that the reverse flows reported in
Refs. [16–22] were low in magnitude and observed in small
peripheral off-axis regions. Meanwhile, in Ref. [23] it was
demonstrated that superposition of two coaxial vector Bessel
TE and TM waves could produce an on-axis reverse flow of
energy. An optical tractor concept, when the force exerted
upon a particle is opposite to the incident beam, has also
been proposed [24,25]. The presence of the reverse energy
flow has been shown to not always result in a negative force,
and vice versa, the force pushing a particle backward may
appear in the absence of a reverse flow. The negative prop-
agation of energy in a vector fractional-order Bessel beam has
been numerically demonstrated [26]. Such an optical beam
is actually a linear combination of a countable number of
conventional Bessel modes. Energy flow characteristics for
vector X waves and necessary conditions for the negative
propagation of light have been theoretically deduced [27]. The
presence of the reverse flow of energy has been numerically
shown to occur for nonparaxial two-dimensional (2D) Airy
beams and nonparaxial parabolic vector Weber beams [28,29].
Theoretical conditions to be imposed on a light field, making it
possible to create local regions of “optical retropropagation”
(i.e., the reverse energy flow), have also been derived [30].
From the review above, vortex laser beams are seen to be
most popular for obtaining the negative propagation of light
energy, with circular polarization of light being the necessary
condition.

Our conjecture is that the negative propagation of light (or
reverse energy flow) can also take place in light fields with
phase and polarization singularities, which produce vortex
knots in space [31–33].

This work is an attempt to offer a mechanism behind the
generation of regions of the negative propagation of light
predicted in Refs. [12–15]. Using a simple example of the
interference of four plane waves [17] with specially tailored
linear polarization states, we show in detail in which way
the reverse energy flow is generated. Formulas to define the
magnitude of the reverse flow versus the angle between the
interfering plane waves are derived. Coordinates and areas are
derived of all regions in which the negative propagation of
light is observed. We also show the four-plane-wave model
proposed here to account well for the on-axis reverse energy
flow in the sharp focus of the optical vortex with second-order
polarization reported in Ref. [14].

Using two identical micro-objectives with a numerical
aperture of 0.95, we measure the energy flow distribution
in the sharp focus of a circularly polarized optical vortex
with a topological charge of 2 as well as in the focus of
a Gaussian beam with second-order cylindrical polarization.
In both cases, a similar distribution of the energy flow is
obtained, with a weak local maximum (a saddle point, to be
exact) formed in the center due to diffraction of the direct flow
by a circle (about 300 nm in diameter), which bounds a tube
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FIG. 1. Schematic of superposition of four linearly polarized
plane waves.

of the reverse flow along the optical axis. This is proof of the
existence and reality of the reverse energy flow.

In conclusion, we show that a spherical conductive
nanoparticle placed on the optical axis in the reverse flow
region moves oppositely to the incident beam. Thus, the
reverse energy flow in the sharp focus of an optical vortex in
Ref. [14] is shown to be high enough to produce a dissipative
force pushing the microparticle backward.

II. INTERFERENCE OF FOUR LINEARLY
POLARIZED PLANE WAVES

Let us analyze an interference pattern of four coherent
monochromatic plane waves with specially tailored linear
polarization states in Fig. 1. The E-vectors of the four plane
waves are given by

E1 = (ex cos α + ez sin α) exp (−ikx sin α + ikz cos α),
E2 = −ex exp (−iky sin α + ikz cos α),
E3 = (ex cos α − ez sin α) exp (ikx sin α + ikz cos α),
E4 = −ex exp (iky sin α + ikz cos α),

(1)

where (x, y, z) are the Cartesian coordinates, (ex, ey, ez ) is
the right-handed triplet of unit coordinate vectors, k is the
wave number of light, and α is the angle of the incident
waves with the optical axis z. From Maxwell’s equation for
a monochromatic field,

rotE = ikH, (2)

the magnetic field vectors Hn , n = 1, 2, 3, 4 for the four
waves can be written as

H1 = ey exp (−ikx sin α + ikz cos α),
H2 = −(ey cos α + ez sin α)

× exp(−iky sin α + ikz cos α),
H3 = ey exp(ikx sin α + ikz cos α),
H4 = −(ey cos α − ez sin α)

× exp(iky sin α + ikz cos α).

(3)

From (1) and (3), the intensity distribution of the E field is
given by

Iα = |Ex|2 + |Ez|2 = 4{[cos α cos(kx sin α) − cos(ky sin α)]2

+ sin2αsin2(kx sin α)}. (4)
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When the four plane waves of interest are superimposed
at a large angle (α → π/2), Eq. (4) can be approximately
replaced by

Iπ/2 ≈ 4(cos2ky + sin2kx). (5)

From (5), the intensity maxima of the interference pattern
of the four plane waves are seen to be staggered and located
near points with the coordinates

(xp, yq ) = [λ(2p + 1)/4, λq/2],
p, q = 0, ±1, ±2 · · · .

(6)

From (1) and (3), we can also derive components of the
Poynting vector (energy flow vector) defined as

S = 1
2 Re[E × H∗], (7)

where Re is the real part of the number and * denotes
the complex conjugation. Substituting Eqs. (1) and (3) into
Eq. (7), we derive the longitudinal component of the Poynting
vector Sz in the following form:

Sz,α = 2 cos α[cos2(kx sin α) + cos2(ky sin α)]

− 2(1 + cos2α) cos(kx sin α) cos(ky sin α). (8)

From Eq. (8), the reverse energy flow is seen to be absent
when the plane waves are converging at a small angle (α →
0), because

Sz,α→0 ≈ 2[cos(kxα) − cos(kyα)]2 � 0. (9)

Meanwhile, Eq. (8) suggests that when waves converge
at large angles (α → π/2), regions of the reverse energy
flow will be found in the interference pattern, and they are
staggered:

Sz,α→π/2 = −2 cos(kx) cos(ky). (10)

From Eq. (10), the energy backflow in the cross section of
the interference pattern is seen to have its maxima near points
given by

(xp, yq ) = (λp, λq), p, q = 0,±1,±2 · · · ,

(xp, yq ) = [λ(p + 1/2), λ(q + 1/2)]. (11)

It is worth noting that whatever the convergence angle α,
a nonzero intensity and reverse energy flow will be found on
the optical axis at the center of the interference pattern:

Iα (x = y = 0) = 4(1 − cos α)2,

Sz,α (x = y = 0) = −2(1 − cos α)2.
(12)

The maximal energy flow in the interference pattern is

Sz,α

[
x = λ(2p + 1)

2 sin α
, x = λ(2q)

2 sin α

]
= 2(1 + cos α)2. (13)

Note that Eq. (13) also holds for points with the coordi-
nates:

x = λp

sin α
, y = λ(q + 1/2)

sin α
.

As α tends to π/2, the maximum value of the incident
energy flow becomes equal to that of the reverse flow, ap-
proaching 2 (from above and below).

Figure 2 depicts patterns of (a) the energy density and (b)
the Poynting vector magnitude across the interference pattern

0

1.62

3- 2- 1- 0 1 2 3
3-

2-

1-

0

1

2

3

Y
)

(
m

X ( )m

(a)

-2.48

2.48

3- 2- 1- 0 1 2 3
3-

2-

1-

0

1

2

3

Y
)

(
m

X ( )m

(b)

FIG. 2. Patterns of (a) the energy density and (b) the axial
projection of the Poynting vector Sz for the four 633-nm plane waves
of Eqs. (1) and (3) with the convergence angle α = 80◦. The regions
of the reverse energy flow are shown in red (b).

of the four plane waves given by Eqs. (1) and (3) at distance
z = 0 and at α = 80◦. The patterns in Fig. 2 were obtained
via the Finite-Difference Time Domain method (FDTD)-aided
rigorous solution of Maxwell’s equations.

From Eq. (7), the transverse components of the Poynting
vector are seen to equal zero, meaning that the intensity
pattern and energy flow distribution in Fig. 2 are the same at
any z.

From Eqs. (1), (3), and (7), the vectors S, E, and H are seen
to form a left-handed (rather than right-handed) triplet on the
optical axis (x = y = 0), meaning that the energy flow and the
wave vector k are directed oppositely to the z axis. Actually,
on the optical axis in Fig. 1 we have

E(x = y = 0) = E1 + E2 + E3 + E4

= −2ex(1 − cos α) exp(ikz cos α),
H(x = y = 0) = H1 + H2 + H3 + H4

= 2ey(1 − cos α) exp(ikz cos α),
S(x = y = 0) = −2ez(1 − cos α)2.

(14)

Shown in Fig. 3 for visual purposes are the right-handed
triplet of the Cartesian unit vectors (ex, ey, ez ) and the right-
handed triplet of the on-axis vectors S (Sz < 0), E, and H.
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FIG. 3. Right-handed triplet of Cartesian unit vectors and the
right-handed triplet of the on-axis vectors k, E, and H of a light field.

It is known [34] that the energy flow S consists of the
orbital energy flow Sor and spin flow Ssp:

S = 1

2
Re[E × H∗] = 1

2k
Im[E∗(∇)E]

+ 1

4k
{∇ × Im[E∗ × E]} = Sor + Ssp.

(15)

For four plane waves from Eq. (1), axial components of the
orbital energy flow and of the spin flow are given by

Ssp,z = 2sin2α[− cos(kx sin α) cos(ky sin α)
+2 cos α cos(2kx sin α)],

Sor,z = 2 cos α[(cos α cos(kx sin α) − cos(ky sin α))2

+2sin2αsin2(kx sin α)] = cos α

2
Iα � 0.

(16)

It can be shown that the sum Ssp,z + Sor,z from Eq. (16)
equals the energy flow from Eq. (8). According to Eq. (16),
the orbital energy flow is proportional to the intensity (4) and
can be only positive. On the optical axis, the orbital energy
flow is positive, while the spin flow is negative and exceeds
the orbital flow by magnitude:

Ssp,z(x = y = 0) = −2sin2α(1 − cos α) < 0,

Sor,z(x = y = 0) = 2 cos α(1 − cos α)2 � 0.
(17)

Therefore, the total energy flow (12) on the optical axis
is negative. With increasing angle α from Eq. (17), the orbital
flow decreases to zero, while the spin flow reaches its maximal
value.

The axial spin flow Ssp for four linearly polarized plane
waves occurs due to a π/2 phase shift between the X and
Z components of the electric field (1) (in the XZ plane,
polarization is elliptic, “photonic wheels”). Therefore, the
spin density vector [34]

sE = 1
4 Im[E∗ × E] (18)

has only the Y component:

sE ,y = 2 sin α sin (kx sin α)
×[cos α cos (kx sin α) − cos (ky sin α)]. (19)

III. GENERATION OF A REVERSE ON-AXIS ENERGY
FLOW IN THE FOCUS OF A LIGHT BEAM WITH

POLARIZATION SINGULARITY

Hereafter, the light field with arbitrary-order polarization
singularity is referred to as a polarization vortex. In this
section, we show that similar to explaining the existence of
the reverse flow by interference of four plane waves, the

same mechanism applies to the generation of a reverse energy
flow in the focus of a polarization vortex. Sharply focusing a
polarization vortex has been reported earlier [35]. In such a
polarization vortex, the initial Jones vector (Fig. 4) is given
by

E =
(− sin 2ϕ

cos 2ϕ

)
, H =

(− cos 2ϕ

− sin 2ϕ

)
, (20)

where ϕ is the azimuthal angle of a cylindrical coordinate
system (r, ϕ, z).

Shown in Fig. 4(a) is a pattern of polarization vectors
across the original second-order polarization vortex λ =
532 nm, which was focused with an aplanatic system with
numerical aperture NA = 0.95. Shown in Fig. 4(b) is a near-
focus intensity pattern in the plane (y, z), with arrows denoting
the direction of the energy flow S. According to Fig. 4(e), two
intensity nulls coincide with the points of zero reverse flow.
Therefore, a tube of the reverse flow along the optical axis has
a diameter of about 300 nm [Fig. 4(e)].

Using Richards-Wolf formulas it has been shown [35]
that in the focal plane of the field (20) generated by an
aplanatic optical system (in the form of an ideal spherical
lens), components of the electric and magnetic field vectors
are given by

Ex = −i sin 2ϕI0,2,

Ey = −i(− cos 2ϕI0,2 + I2,0),
Ez = 2 sin ϕI1,1,

Hx = −i(cos 2ϕI0,2 + I2,0),
Hy = −i sin 2ϕI0,2,

Hz = 2 cos ϕI1,1.

(21)

Designations in (21) stand for

I0,2 = π f

λ

∫ α

0
sin θcos1/2θ (1 + cos θ )A(θ )eikz cos θJ2(x)dθ,

I2,0 = π f

λ

∫ α

0
sin θcos1/2θ (1 − cos θ )A(θ )eikz cos θJ0(x)dθ,

I1,1 = π f

λ

∫ α

0
sin2θcos1/2θA(θ )eikz cos θJ1(x)dθ. (22)

In (22), x = kr sin θ , Jm(x) is an mth order Bessel function,
Am(θ ) is a real function of the amplitude distribution in the
input pupil of the aplanatic system, and NA = sin α and f are
the numerical aperture and the focal length of the aplanatic
system.

From Eq. (21), the transverse intensity distribution and the
longitudinal component of the Poynting vector read as

I⊥ = I2
0,2 + I2

2,0 − 2 cos 2ϕ(I0,2I2,0), Sz = 1
2

(
I2
0,2 − I2

2,0

)
.

(23)

According to Eq. (23), the backflow of energy on the
optical axis (r = 0) is two times lower than the intensity
[similar to Eq. (12)]: Sz(r = 0) = −I⊥(r = 0)/2 = −I2

2,0/2.
From (21), we infer that in the focal plane (z = 0) the

on-axis (r = 0) electromagnetic field is described by a left-
handed triplet of vectors:

E = −ieyI2,0, H = −iexI2,0, S = −ezI
2
2,0/2. (24)
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FIG. 4. (a) Pattern of polarization vectors in the original second-order polarization vortex, Eq. (20). (b) Near-focus intensity pattern in the
plane (y, z). Arrows in (b) denote the energy flow direction S. (c) Distributions of the longitudinal component of the Poynting vector Sz. (d)
Intensity in the focal plane and its cross sections along the axes x (e) and y (f). The intensity and the longitudinal component of the Poynting
vector are plotted by the solid blue and dashed green curves, respectively.

Disregarding the imaginary unit, which defines the field
phase jump by π/2 in the focus, the vector triplet in (24) is
seen to be analogous to the vector triplet in (14), indicating
that there is a reverse on-axis energy flow on the z axis
[Fig. 4(b)].

Figure 5 depicts results of the FDTD-aided simulation
for (a) the energy flux density, or the on-axis component
Sz of the Poynting vector in the plane XZ , near the focus
of second-order polarization vortex and (b) on-axis profiles
of the electric and magnetic vectors. Analysis of Fig. 5(b)
suggests that although the light field propagates in the positive
direction of the z axis [from left to right in Fig. 5(b)], the
vectors E, H, and k form a left-handed triplet of vectors near
the optical axis, signifying the negative propagation of light
in Fig. 5(b). By way of verifying that the reverse energy flow
has a physical meaning, in the last section we calculate forces

exerted upon a conductive nanoparticle found on the optical
axis near the focus [Figs. 4(b) and 5(a)].

IV. GENERATION OF A REVERSE ON-AXIS ENERGY
FLOW IN THE FOCUS OF A LIGHT BEAM

WITH PHASE SINGULARITY

A circularly polarized optical vortex with the topological
charge m = 2 is given by [36]

E = A(θ )ei2ϕ

√
2

(
1
iσ

)
, H = A(θ )ei2ϕ

√
2

(−iσ
1

)
, (25)

where σ = 1 for right-hand circular polarization and σ = −1
for left-hand circular polarization. When such a vortex is
sharply focused, the electric and magnetic strength vectors
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have the following components near the focus [36]:

Ex = i(ei2ϕI0,2 + γ+ei4ϕI2,4 + γ−I2,0),

Ey = −1(σei2ϕI0,2 − γ+ei4ϕI2,4 + γ−I2,0),

Ez = 2(γ+ei3ϕI1,3 − γ−eiϕI1,1), (26)

Hx = σei2ϕI0,2 + γ+ei4ϕI2,4 − γ−I2,0,

Hy = i(σei2ϕI0,2 − γ+ei4ϕI2,4 − γ−I2,0),

H1z = −2i(γ+ei3ϕI1,3 + γ−eiϕI1,1),

where γ± = (1 ± σ )/2 (γ+ = γ− = 1/
√

2 at σ = 0) and the
following designations are introduced:

I1,3 =
(

π f

λ

) ∫ α

0
sin2θcos1/2θA(θ )eikz cos θJ3(x)dθ,

I2,4 =
(

π f

λ

)∫ α

0
sin θcos1/2θ (1 − cos θ )A(θ )eikz cos θJ4(x)dθ.

(27)

Based on Eq. (26), expressions can be derived for the
intensity distribution of a right-hand (γ+ = 1, γ− = 0) and
left-hand (γ+ = 0, γ− = 1) circularly polarized optical vor-
tex in the focal plane:

I+2 = I2
0,2 + I2

2,4 + 2I2
1,3,

I−2 = I2
0,2 + I2

2,0 + 2I2
1,1.

(28)

Similarly, an expression can be obtained for the longitudi-
nal component of the Poynting vector in the focal plane when
focusing a right-hand or left-hand circularly polarized optical
vortex with a topological charge m = 2:

S2z+ = 1
2

(
2I2

0,2 − I2
2,4

)
,

S2z− = 1
2

(
2I2

0,2 − I2
2,0

)
.

(29)

The expression for S2z− in Eq. (29) has a form similar
to that of Eq. (23) for the flux in the focus of a light field
with a second-order polarization singularity. A comparison of
Eqs. (28) and (29) reveals that the intensity on the optical
axis in the focus of a left-hand circularly polarized light is
nonzero, whereas the longitudinal component of the energy
flow is negative and two times lower than the intensity in
magnitude:

I−2(r = 0) = I2
2,0, S−2z(r = 0) = − I2

2,0

2
. (30)

Equation (30) is quite identical to Eq. (12) for four plane
waves.

According to Eq. (26), the right-handed triplet of
electromagnetic-wave vectors on the optical axis is given by

E = iI2,0

(
1
i

)
, H = −I2,0

(
1
i

)
, S = −ez

I2
2,0

2
. (31)

Thus, it can be concluded that when focusing a left-hand
circularly polarized optical vortex with the topological charge
m = 2, the intensity on the optical axis near the focus is
nonzero and the flow of light energy is negative. Similar to the
interference of four plane waves (Fig. 1), an electromagnetic
wave appears on the optical axis, whose electric and magnetic
field strength vectors together with the Poynting vector S
form a triplet of vectors (31), which describes a right-hand
circularly polarized plane wave propagating along the axis z
in the backward direction.

For a vortex field with left-hand circular polarization (26),
the longitudinal component of the orbital energy flow (15) on
the optical axis in the focal plane (z = 0) reads as

Sor,z(x = y = 0) = 1
2 I2,0 Ĩ2,0 > 0, (32)

Ĩ2,0 = π f

λ

∫ α

0
sin θcos3/2θ (1 − cos θ )A(θ )eikz cos θJ0(x)dθ,

(33)

while the longitudinal component of the spin flow vector on
the optical axis is given by

Ssp,z(x = y = 0) = − 1
2 I2,0 Ĩ1,0 < 0, (34)

Ĩ1,0 = π f

λ

∫ α

0
sin3θcos1/2θA(θ )eikz cos θJ0(x)dθ. (35)

The total on-axis energy flow in the focus of a field (26) is
equal to

Sz(x = y = 0) = Ssp,z + Sor,z = − 1
2 I2,0(Ĩ1,0 − Ĩ2,0)

= − 1
2 I2

2,0 < 0, (36)

and coincides with Eq. (30).
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FIG. 6. Transverse intensity distributions calculated by the
FDTD method in the focal plane of an optical vortex with a topolog-
ical charge m = 2 with right (a) and left (b) circular polarization, as
well as radial cross sections of intensity (c): right-hand polarization
(dashed curve) and left-hand polarization (solid curve).

Figure 6 shows transverse intensity distributions |Ex|2 +
|Ey|2 calculated by the FDTD method in the focal plane of
an optical vortex (25) with right [Fig. 6(a)] and left [Fig. 6(b)]
circular polarization. The focusing was done by a binary Fres-
nel zone plate with the numerical aperture NA = 0.95, radius
R = 4 μm, and focal length f = 1.31 μm. The wavelength is
λ = 532 nm and the distance between the grid points is λ/30.

According to Fig. 6(c), the intensity of the right-hand
circularly polarized optical vortex on the optical axis (x = 0)

-17.7
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Y
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Sz (a) Right circular
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FIG. 7. Distributions of the longitudinal component of the Poynt-
ing vector calculated by the FDTD method in the focal plane of
an optical vortex with the topological charge m = 2 with right (a)
and left (b) circular polarization, as well as radial cross sections of
the longitudinal component of the Poynting vector (c): right-hand
polarization (solid curve) and left-hand polarization (dashed curve).

is zero near the focus, whereas the intensity of the left-hand
circularly polarized optical vortex is nonzero.

Figure 7 shows distributions of the longitudinal component
of the Poynting vector Sz obtained by the FDTD method in
the focal plane of the optical vortex (26) with right-hand
[Fig. 7(a)] and left-hand [Fig. 7(b)] circular polarization.
Calculation parameters are the same as in Fig. 6.

As seen in Fig. 7(c), Sz = 0 on the optical axis (x = 0) in
the focus of the right-hand circularly polarized optical vortex,
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FIG. 8. Experimental setup. Laser: solid-state laser generating
a linearly polarized Gaussian beam; PH: pinhole (with a 40-μm
diameter); L1, L2, L3: spherical lenses ( f1 = 250 mm, f2 = 150 mm,
f3 = 150 mm); SLM: spatial light modulator (Holoeye LC 2012);
D: diaphragm to block the zero diffraction order; P: polarizer;
Q: quarter-wave plate; MO1, MO2: micro-objectives (Nikon 100 ×
/0.95 OFN25 WD0.3 CF Plan100×, NA = 0.95); CMOS: camera,
ToupCam UCMOS08000KPB.

whereas for the left-hand circularly polarized optical vortex
the flow is negative; Sz < 0. We note that the width of the
light ring in focus in Figs. 6(c) and 7(c) is the same.

V. EXPERIMENTAL MEASUREMENT OF THE
TRANSVERSE INTENSITY DISTRIBUTION

IN THE SHARP FOCUS

Figure 8 shows a schematic of the experimental setup. A
linearly polarized light from a solid-state laser (λ = 532 nm)
is spatially filtered and collimated by a 40-μm-diameter pin-
hole PH and a spherical lens L1 ( f1 = 250 mm). Then, the
collimated laser beam passes through a 1024 × 768 transmis-
sive spatial light modulator (Holoeye LC 2012, pixel size
is 36 μm) with the phase profile of a blazed fork-shaped
hologram that generates in the +1st diffraction order a vortex
beam with the topological charge +2 or −2. Lenses L2 ( f2 =
150 mm), L3 ( f3 = 150 mm), and the diaphragm D constitute
a 4- f system that makes the planes of the entrance pupil of
the micro-objective MO1 (100×, NA = 0.95) and of the light
modulator conjugate. The polarizer P and the quarter-wave
plate Q are used to convert the generated linearly polarized
beam into a beam with left circular polarization. Using the
second micro-objective MO2 (100×, NA = 0.95), the inten-
sity distribution of the focused vortex beam near the focus
of the first micro-objective is imaged onto the matrix of the
3264 × 2448 CMOS camera ToupCam UCMOS08000KPB
(pixel size is 1.67 μm). The optical resolution of a 0.95
numerical aperture lens is about 280 nm (0.5 λ/NA).

Figure 9 depicts transverse intensity distributions measured
in the setup from Fig. 8 in the focal plane of a right-hand
[Fig. 9(a)] and left-hand [Fig. 9(b)] circularly polarized op-
tical vortex with the topological charge m = 2. Cross sections
of these intensities are shown in Figs. 9(c) and 9(d). As seen
in Fig. 9, the intensity on the optical axis (x = 0) is zero for
right circular polarization [Fig. 9(c)], whereas for left circular
polarization [Fig. 9(d)] it is nonzero. Distributions in Fig. 9
are overexposed to make the nonzero intensity near the optical
axis clearly seen in Fig. 9(d).

The reverse flow cannot be measured in this experiment,
since only that part of the intensity or power flow can be
measured that goes into the MO2 micro-objective in Fig. 8.
It can only be stated that the intensity distributions in Figs. 6
and 9 are consistent. The difference between the simulation
and the experiment (increased side lobes and reduced on-axis
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FIG. 9. Transverse intensity distributions measured in the focus
of the right-hand (a) and left-hand (b) circularly polarized optical
vortex with the topological charge m = 2, and corresponding in-
tensity cross sections along the Cartesian axes (curve 1—along the
axis x, curve 2—along the axis y) for right (c) and left (d) circular
polarization. The size of 2D distributions (a,b) is 3.5 × 3.5 μm.

033811-8



MECHANISM OF FORMATION OF AN INVERSE ENERGY … PHYSICAL REVIEW A 101, 033811 (2020)

2- 1- 0 1 2

0

10

20

22
x yE E

Sz

stinu .bra

X ( m)

FIG. 10. Calculated distributions of intensity |Ex|2 + |Ey|2 and of
the longitudinal component of the Poynting vector Sz in the focal
plane of the left-hand circularly polarized optical vortex with the
topological charge n = 2. All parameters are the same as in Figs. 6
and 7.

intensity) can be because the simulation was carried out for
a diffractive lens (Figs. 6 and 7), whereas the experiment
was made using refractive objectives (Fig. 8). Figure 9(d)
demonstrates that the intensity near the optical axis is not
axially symmetric. This is because the optical vortex with the
topological charge of 2 is unstable and splits into two optical
vortices with the topological charge of 1 [in Fig. 9(b); two
isolated intensity nulls are on the vertical axis near the center
of the pattern).

The intensity pattern near the optical axis in Fig. 9(d)
is similar to that of the polarization vortex [Figs. 4(d) and
4(e)]. It is, though, interesting that because of the circular
symmetry of the flow, the coordinates of the intensity nulls
in Fig. 9(d) determine the diameter (distance between the
zeros) of the reverse flow; that is, on the circle of this diameter
(approximately 300 nm) the flow is zero. Similarly, in Fig. 4,
the reverse flow for the second-order polarization vortex
[Fig. 4(a)] has a diameter equal to the distance between the
first two intensity nulls in Fig. 4(d) (approximately 300 nm).
This follows directly from Eq. (23). It should not be surprising
that the intensity is nonzero in the points with the zero reverse
flow. The same effect is well known for the standing wave,
whose flux is zero, but the intensity is nonzero.

Figure 10 shows calculated transverse distributions of the
intensity |Ex|2 + |Ey|2 and of the longitudinal component of
the Poynting vector Sz in the focal plane of the left-hand
circularly polarized optical vortex with the topological charge
n = 2. As seen in Fig. 10, the diameter of the circle with
zero flux (Sz = 0) approximately coincides with the distance
between the first two local intensity minima. In Fig. 10, this
diameter is approximately 300 nm. The distance between the
intensity nulls in the experimental picture [Fig. 9(d)] is also
about 300 nm.

Near the focus and near the optical axis, energy flows
propagate in the backward direction, whereas at some distance
from the optical axis they propagate in the forward direction.
In places where the forward and reverse flows converge (this
occurs at the radii with the zero longitudinal component of the
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FIG. 11. Intensity distribution and directions of the Poynting
vector (white arrows) in the longitudinal plane ZY when focusing
an optical vortex with the topological charge n = 3 and with linear
polarization.

Poynting vector, i.e.,
√

2I0,2(r) = I2,0(r)), “optical whirls” or
toroidal energy flows arise (Fig. 11).

According to Fig. 11, there is a toroidal vortex generated in
the focal plane z = 0 (shown in the left upper inset in Fig. 10).
The torus radius is approximately 0.3 μm. In planes dis-
tant from the focus (at distances z = ±0.9 μm · · · ± 1.4 μm),
complex structured vortices are generated shown in the right
upper inset in Fig. 11.

Figure 12 shows the result of another experiment per-
formed in the setup from Fig. 8 with the spatial light mod-
ulator (SLM) replaced by a polarization plate, which converts
linear polarization into second-order cylindrical polarization.
Figures 12(a)–12(c) show the intensity distribution in the
focus with a different degree of overexposure in order to
visualize the low intensity near the center of the picture.
Figure 12(d) shows cross sections of the overexposed in-
tensity from Fig. 12(c) along the Cartesian axes. It is seen
in Fig. 12(d) that in agreement with the theory predictions
[Figs. 4(d) and 4(e)], there are two local minima (two isolated
intensity nulls) near the optical axis in the focal plane of
the beam with second-order cylindrical polarization. These
intensity nulls [similar to those in Fig. 9(d)] make a boundary
for the reverse energy flow and the distance between them
equals the diameter of a tube with the reverse flow, about 300
nm in size.

In this experiment, an interesting feature is worth noting.
It is important to clearly understand what specifically is reg-
istered in the experimental picture in Fig. 9. All the pictures
in Figs. 6, 7, and 9 are of approximately the same size and
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FIG. 12. Energy flow distribution (a,b), measured in the setup
from Fig. 8 with the SLM replaced by the q-plate which converts
linearly polarized light into polarization vortex. (a,b) have a different
degree of overexposure in order to detect the nonzero flow in the
center of the picture. The size of all pictures is 3.5 × 3.5 μm. (c)
shows the intensity cross sections along the axes x and y.

circularly symmetric. In this case, it is impossible to determine
exactly whether the transverse intensity distribution or energy
flow was measured. This uncertainty is removed in the second
experiment. The experimental picture in Fig. 12 is circularly
symmetric in the focus, similar to the picture of energy flow
[Fig. 4(c)], and differs from the transverse intensity distribu-
tion [Fig. 4(d)]. Therefore, the second experiment (Fig. 12)
demonstrates unambiguously that the measured quantity is the
energy flow distribution (its longitudinal component).

If there is reverse energy flow in the focus near the optical
axis, then there should be zero values in the center of the
measured energy distribution, since the reverse flow in the

focus does not go into the second micro-objective and thus
cannot be measured. However, in the center of Fig. 12(c) there
is a very small amount of energy (approximately 1

8 of the
side lobe). This part of the energy cannot be considered as
intensity, since, as seen in Fig. 4(e), the intensity in the center
should be about two times higher than the intensity of the
side lobe. This energy cannot also be considered as intensified
noise of the photoreceiver for there is no noise in the center
of Fig. 9(c), although it is overexposed, so we need to know
specifically what physical quantity is measured in the center
of the energy flow distribution in Figs. 9(d) and 12(c).

The fact is that the second micro-objective MO2 in Fig. 8
generates in its focus an image of the forward flow only.
Therefore, in the center of this image there should be an area
(about 300 nm in diameter) with zero flow. However, due
to diffraction of the direct flow by this circle (similar to the
diffraction by an opaque disk and and likewise the Arago
spot), a local maximum appears in the center of the direct flow
distribution, as in Fig. 12(c). Thus, the measured patterns of
the axial component of the Poynting vector (Figs. 9 and 12)
prove that there is reverse energy flow on the optical axis near
the focus.

VI. FORCES EXERTED UPON A NANOPARTICLE
IN REVERSE ENERGY FLOW

When placed in a light field, a nanoparticle experiences
forces exerted upon it. For a Rayleigh nanoparticle, the
force is composed of a dissipative and a gradient force. The
Rayleigh particles with radius a < λ/20 experience the action
of a dissipative force Fs and a gradient force Fg, which are
derived from the well-known formulas [37,38]:

Fs = ez

(
8πn2

3c

)
k4a6

(
n2

1 − n2
2

n2
1 + 2n2

2

)2

Sor,z, (37)

Fg =
(

2πn2

c

)
a3

(
n2

1 − n2
2

n2
1 + 2n2

2

)
∇|E|2, (38)

where c is the speed of light in free space, a is the radius of
a spherical Rayleigh particle, and n1 and n2 are the refractive
indices of the particle and the medium. In Eq. (37), Sor,z is
the axial component of the orbital energy flow from Eq. (15).
Equation (37) demonstrates that the scattering force, acting on
a Rayleigh dielectric absorbing particle, placed on the optical
axis in the energy backflow region, is directed in the same
direction as light propagation. This means that the spin flow
Ssp from Eq. (15), which is directed backward in the backflow
region, does not affect the particle. In [34], an expression is
given for the light force acting on a small conducting particle
with the current, which is characterized by the conductivity σ :

F = σ

2
Re[E∗ × H]. (39)

Equation (39) was obtained in Ref. [34] under the con-
dition that the electric Lorentz force equals zero and hence
is suitable for a special type of particle. Equation (39) is
valid for electrically neutral conductive particles. The electric
current of electrically neutral MnS particles with a diameter of
4 μm and a conductivity of 1.0 × 107 (	 m)−1 in a liquid was
studied in [39].
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FIG. 13. Longitudinal components of force exerted along the
optical axis (r = 0) on an electrically neutral conductive particle
placed on the optical axis near the focus of a polarization vortex
[Fig. 4(b)].

In this case, the particle is affected by both orbital Sor

and spin Ssp energy flows (15). Figure 13 shows longitu-
dinal components of force exerted along the optical axis
(r = 0) on an electrically neutral conductive particle (radius
a = 10 nm, wavelength λ = 532 nm) placed on the optical
axis near the focus of a polarization vortex [Fig. 4(b)]. The
original beam has a power of 100 mW, with the focusing
performed for numerical aperture NA = 0.95. Conductivity,
σ = 1.0 × 107 (	 m)−1.

Using (21) and (22), we derive the longitudinal component
Sz of the Poynting vector near the focus of a polarization
vortex. Then, using (39), we derive the force exerted upon a
nanoparticle (Fig. 13). The force (39) will push the nanoparti-
cle in the negative direction along the z axis.

VII. CONCLUSIONS

Summing up, we have theoretically shown that analysis of
the interference pattern of four plane waves with specially
tailored linear polarization states indicates the presence of a
reverse energy flow. Regions of the direct and reverse energy
flows are staggered in the interference pattern. The magnitude
of the reverse energy flow is in direct proportion to the
angle of convergence of the plane waves (the angle of the
wave vector with the optical axis), attaining its maximum

at the convergence angle close to 90°. In some regions of
the interference pattern, when summed up, the right-handed
triplets k(kz > 0), E, and H generate an electromagnetic field
described by a right-handed triplet k(kz < 0), E, and H. These
regions are characterized by the negative propagation of light.
A similar explanation of the mechanism behind the generation
of a reverse energy flow has been shown to apply to the case
of focusing a second-order polarization vortex [Fig. 5(b)].

Using two identical micro-objectives with a numerical
aperture of 0.95, it has been demonstrated experimentally that
the intensity on the optical axis near the focus of an optical
vortex with a topological charge of 2 is zero for right circular
polarization and nonzero for left circular polarization. This
confirms that in the latter case there is a reverse flow of light
energy on the optical axis, since in the center of the measured
energy flow distribution there is a very weak local maximum
(the Arago spot) caused by diffraction of the forward flow by
a circle 300 nm in diameter (the diameter of the tube with
the reverse flow). Comparing the numerical and experimental
intensity distributions, it is possible to determine the diameter
of a “tube” with the reverse flow. It is equal to the distance
between the first intensity nulls. For the numerical aperture
0.95 and the wavelength 532 nm, the diameter of the tube of
the reverse flow along the optical axis is 300 nm.

In the areas where the reverse and forward flows “con-
verge,” optical whirls or toroidal energy flows appear.

It has also been calculated that a spherical conductivity
nanoparticle placed in the reverse energy flow region expe-
riences the action of a negative force.
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[5] M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky,
Appl. Phys. Lett. 104, 231110 (2014).

[6] N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Opt.
Lett. 22, 52 (1997).

[7] K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda,
J. Arlt, and K. Dholakia, J. Opt. B 4, S82 (2002).

[8] B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D.
Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova,
Phys. Rev. Lett. 99, 087701 (2007).

[9] A. Bandyopadhyay and R. P. Singh, Opt. Commun. 284, 256
(2011).

[10] A. Bandyopadhyay, S. Prabhakar, and R. P. Singh, Phys. Lett.
A 375, 1926 (2011).

[11] B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing,
H. J. Lezec, J. J. McClelland, and J. Unguris, Science 331, 192
(2011).

033811-11

https://doi.org/10.1098/rspa.1974.0012
https://doi.org/10.1098/rspa.1974.0012
https://doi.org/10.1098/rspa.1974.0012
https://doi.org/10.1098/rspa.1974.0012
https://doi.org/10.1088/1464-4258/11/9/094022
https://doi.org/10.1088/1464-4258/11/9/094022
https://doi.org/10.1088/1464-4258/11/9/094022
https://doi.org/10.1088/1464-4258/11/9/094022
https://doi.org/10.1364/OL.21.000827
https://doi.org/10.1364/OL.21.000827
https://doi.org/10.1364/OL.21.000827
https://doi.org/10.1364/OL.21.000827
https://doi.org/10.1063/1.4882418
https://doi.org/10.1063/1.4882418
https://doi.org/10.1063/1.4882418
https://doi.org/10.1063/1.4882418
https://doi.org/10.1364/OL.22.000052
https://doi.org/10.1364/OL.22.000052
https://doi.org/10.1364/OL.22.000052
https://doi.org/10.1364/OL.22.000052
https://doi.org/10.1088/1464-4266/4/2/373
https://doi.org/10.1088/1464-4266/4/2/373
https://doi.org/10.1088/1464-4266/4/2/373
https://doi.org/10.1088/1464-4266/4/2/373
https://doi.org/10.1103/PhysRevLett.99.087701
https://doi.org/10.1103/PhysRevLett.99.087701
https://doi.org/10.1103/PhysRevLett.99.087701
https://doi.org/10.1103/PhysRevLett.99.087701
https://doi.org/10.1016/j.optcom.2010.08.051
https://doi.org/10.1016/j.optcom.2010.08.051
https://doi.org/10.1016/j.optcom.2010.08.051
https://doi.org/10.1016/j.optcom.2010.08.051
https://doi.org/10.1016/j.physleta.2011.03.044
https://doi.org/10.1016/j.physleta.2011.03.044
https://doi.org/10.1016/j.physleta.2011.03.044
https://doi.org/10.1016/j.physleta.2011.03.044
https://doi.org/10.1126/science.1198804
https://doi.org/10.1126/science.1198804
https://doi.org/10.1126/science.1198804
https://doi.org/10.1126/science.1198804


V. V. KOTLYAR et al. PHYSICAL REVIEW A 101, 033811 (2020)

[12] V. V. Kotlyar, A. A. Kovalev, and A. G. Nalimov, Opt. Lett. 43,
2921 (2018).

[13] V. V. Kotlyar, A. G. Nalimov, and A. A. Kovalev, J. Opt. 20,
095603 (2018).

[14] V. V. Kotlyar, A. G. Nalimov, and S. S. Stafeev, Laser Phys. 28,
126203 (2018).

[15] V. V. Kotlyar and A. G. Nalimov, J. Opt. 20, 075101 (2018).
[16] B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358

(1959).
[17] B. Z. Katsenelenbaum, J. Commun. Technol. Electron. 42, 119

(1997).
[18] G. P. Karman, M. W. Beijersbergen, A. Van Duijl, and J. P.

Woerdman, Opt. Lett. 22, 1503 (1997).
[19] M. V. Berry, J. Mod. Opt. 45, 1845 (1998).
[20] A. V. Volyar, Tech. Phys. Lett. 26, 573 (2000).
[21] A. V. Volyar, V. G. Shvedov, and T. A. Fadeeva, Opt. Spectrosc.

91, 235 (2001).
[22] M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S.

Soskin, Opt. Spectrosc. 88, 260 (2000).
[23] A. V. Novitsky and D. V. Novitsky, J. Opt. Soc. Am. A 24, 2844

(2007).
[24] S. Sukhov and A. Dogariu, Opt. Lett. 35, 3847 (2010).

[25] C. W. Qiu, D. Palima, A. Novitsky, D. Gao, W. Ding, S. V.
Zhukovsky, and J. Gluckstad, Nanophotonics 3, 181 (2014).

[26] F. G. Mitri, J. Opt. Soc. Am. A 33, 1661 (2016).
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