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Spectral invariance and scaling law for nonstationary optical fields
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We develop a scaling law for a class of statistically nonstationary scalar optical fields, which ensures spectral
invariance on their propagation into the far zone of a planar source. The invariance involves the constraint that
the normalized far-zone spectrum must be the same in every direction of observation, as well as equal to the
normalized area-averaged source spectrum. Thus, it additionally represents an extension of the earlier work by
Wolf on stationary fields [Phys. Rev. Lett. 56, 1370 (1986)] that assumed the normalized source spectrum as
independent of position. We present examples of both nonstationary and stationary fields that satisfy the scaling
law and extended spectral invariance.
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I. INTRODUCTION

Wolf’s scaling law for spectral invariance [1] is one of the
cornerstone results in classical coherence theory, prompting
a flood of follow-up research [2–8]. This law establishes a
condition under which the normalized far-zone spectrum of
a scalar optical field emanating from a planar source is the
same in all directions of observation while additionally being
equal to the normalized spectrum at the plane of a quasiho-
mogeneous source that is taken to be point-wise constant. It
was soon found both theoretically and experimentally that
although many common sources obey the scaling law, it is
not difficult to create sources that violate it; in the latter case
noticeable spectral shifts can occur [9–12].

Up to now, the scaling law has been studied only in the
context of statistically stationary fields. The purpose of the
present work is to extend it beyond the stationary case by
considering a class of nonstationary (pulsed or nonpulsed)
fields which covers, e.g., sources which are spatially quasi-
homogeneous at every frequency.

Our starting point is slightly more general than that of Wolf
[1]. We retain the requirement that the normalized far-zone
spectrum must be directionally invariant. However, we allow
the source spectrum to vary with position in such a way that
the normalized source-averaged spectrum is equal to the nor-
malized far-zone spectrum. Such an assumption is physically
appropriate, for example, when considering radiation from the
sun (with sunspots, corona, flares, etc.) and other natural or
manmade sources that spectrally exhibit spatial variations. In
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the stationary case this extended starting point leads exactly
to the original functional form of the scaling law.

The paper is organized as follows. We begin in Sec. II
with expressions that relate the far-zone spectrum with the
source-plane correlation function of a scalar optical field. The
main result of this paper, i.e., the spectral scaling law for
nonstationary fields, is derived in Sec. III. Some analytical ex-
amples of pulsed and stationary fields that satisfy our scaling
law are presented in Sec. IV. Finally, the main conclusions are
summarized and some discussion of the results is provided in
Sec. V.

II. FAR-ZONE SPECTRUM

Considering the geometry of Fig. 1, we denote the scalar
field at point ρ = (x, y) in the source plane z = 0 by E (ρ; ω),
where ω is the angular frequency. An arbitrary point at a
distance r in the far zone is denoted by r = rŝ, with ŝ = (σ, sz )
being a unit direction vector and σ = (sx, sy) its transverse
component. Throughout the work we assume that the field is
propagating in vacuum. The far field in direction ŝ is of the
form (see Ref. [13], Sec. 3.2.2)

E (∞)(ŝ; ω) = −i2πsz
ω

c
A
(ω

c
σ; ω

)exp (iωr/c)

r
. (1)

In Eq. (1), c is the vacuum speed of light,

A(κ; ω) = 1

(2π )2

∫ ∞

−∞
E (ρ; ω) exp (−iκ · ρ)d2ρ (2)

is the angular spectrum of the source-plane field E (ρ; ω), and
κ = (kx, ky) is the spatial-frequency vector.
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FIG. 1. Notation related to propagation of a partially coherent
field into the far zone. Here D represents the effective source area,
and � is the effective coherence area of the source.

The two-frequency cross-spectral density (CSD) function
of a nonstationary optical field at the source plane, which de-
scribes correlations between the field values at spatial points
ρ1 and ρ2 and (angular) frequencies ω1 and ω2, is defined as

W (ρ1, ρ2; ω1, ω2) = 〈E∗(ρ1; ω1)E (ρ2; ω2)〉. (3)

Here E (ρ; ω) is a single field realization, the brackets de-
note ensemble averaging, and the asterisk represents complex
conjugation. The source-plane spectral density is given by
S(ρ; ω) = W (ρ, ρ; ω,ω), while the far-zone spectral density
is defined as

S(∞)(ŝ; ω) = 〈E (∞)∗(ŝ; ω)E (∞)(ŝ; ω)〉. (4)

On inserting from Eq. (1) into Eq. (4) and using Eqs. (2) and
(3), we readily find that

S(∞)(ŝ; ω) =
(

2πsz

r

)2(ω

c

)2
T

(ω

c
σ,

ω

c
σ; ω,ω

)
, (5)

where

T (κ1, κ2; ω1, ω2) = 1

(2π )4

∫∫ ∞

−∞
W (ρ1, ρ2; ω1, ω2)

× exp[i(κ1 · ρ1 − κ2 · ρ2)]d2ρ1d2ρ2

(6)

is the two-frequency angular correlation function. The nor-
malized spectrum in the far zone,

s(∞)(ŝ; ω) = S(∞)(ŝ; ω)∫ ∞
0 S(∞)(ŝ; ω)dω

, (7)

is then given by

s(∞)(ŝ; ω) = (ω/c)2T (ωσ/c, ωσ/c; ω,ω)∫ ∞
0 (ω/c)2T (ωσ/c, ωσ/c; ω,ω)dω

. (8)

Some comments are in order at this point.
First, only the diagonal (ω1 = ω2 = ω) element of the

source two-frequency CSD function W (ρ1, ρ2; ω1, ω2) ap-
pears in the expressions [cf., Eqs. (6) and (8)], since only
the frequency component ω of the source-plane field con-
tributes to the far-zone spectrum at frequency ω. This is
naturally true regardless of whether the field is nonstationary
or stationary, and therefore the expressions in the case of
stationary fields similarly involve the usual cross-spectral
density function W (ρ1, ρ2; ω) at frequency ω [1]. Secondly,

one may reasonably expect that there may be a multitude of
two-frequency correlation functions W (ρ1, ρ2; ω1, ω2) with
the same diagonal element W (ρ1, ρ2; ω,ω), leading to a rich
variety of potential two-frequency solutions. This is not the
case with W (ρ1, ρ2; ω) of stationary fields, which only has a
single frequency variable.

III. SPECTRAL SCALING LAW FOR NONSTATIONARY
FIELDS

In what follows, we consider nonstationary fields at the
source plane that have two-frequency CSDs of the form

W (ρ1, ρ2; ω1, ω2) = [S(ρ̄; ω1)S(ρ̄; ω2)]1/2

× g(ρ1, ρ2; ω1, ω2), (9)

where g(ρ1, ρ2; ω1, ω2) = g∗(ρ2, ρ1; ω2, ω1) is a Hermitian
function that satisfies a boundary condition

g(ρ1, ρ2; ω,ω) = ν(�ρ; ω), (10)

but is, in general, not equal to the degree of coherence,

μ(ρ1, ρ2; ω1, ω2) = W (ρ1, ρ2; ω1, ω2)

[S(ρ1; ω1)S(ρ2; ω2)]1/2
. (11)

In Eqs. (9) and (10), ρ̄ = (ρ1 + ρ2)/2 and �ρ = ρ2 − ρ1 are
average and difference spatial coordinates at the source plane,
and ν(�ρ; ω) has the property ν(0; ω) = 1. We proceed to
show that all fields having these characteristics with ν(�ρ; ω)
obeying the scaling law satisfy the spectral invariance. An
example field obeying Eqs. (9) and (10) (and the scaling law)
can be constructed as an incoherent superposition of Hermite-
Gaussian field modes, as will be shown in Sec. IV. We remark
that the CSD function constituted by Eqs. (9) and (10) may
not be the most general one but it is the largest we have found,
and it includes several different fields that are realizable in
practice, as we demonstrate below.

For example, the above CSD form covers nonstationary
fields which are spatially quasihomogeneous at all frequen-
cies. The complex degree of coherence for this source type
can be found by inserting Eq. (9) to Eq. (11), yielding

μ(ρ1, ρ2; ω1, ω2)

= [S(ρ̄; ω1)S(ρ̄; ω2)]1/2g(ρ̄,�ρ; ω1, ω2)

[S(ρ̄ − �ρ/2; ω1)S(ρ̄ + �ρ/2; ω2)]1/2
, (12)

where

g(ρ̄,�ρ; ω1, ω2) = g(ρ1, ρ2; ω1, ω2). (13)

Expressions (9)–(13) imply that the source field does not nec-
essarily need to be spatially quasihomogeneous. If, however,
the spectral density at the source plane satisfies the conditions

S(ρ̄ ± �ρ/2; ω) ≈ S(ρ̄; ω), (14)

we have μ(ρ1, ρ2; ω1, ω2) ≈ g(ρ1, ρ2; ω1, ω2). Further,
μ(ρ1, ρ2; ω,ω) ≈ ν(�ρ; ω), which means that the field
is spatially quasihomogeneous at any single frequency ω

(though not necessarily for an arbitrary pair of frequencies ω1

and ω2).
Inserting from Eq. (9) into Eq. (6), we find that the angular

self-correlation function is of the form

T (κ, κ; ω,ω) = (2π )−2S(int)(ω)ν̃(κ; ω), (15)
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where

S(int)(ω) =
∫ ∞

−∞
S(ρ̄; ω)d2ρ̄ (16)

is the source-integrated spectral density, and

ν̃(κ; ω) = 1

(2π )2

∫ ∞

−∞
ν(�ρ; ω) exp (−iκ · �ρ)d2�ρ. (17)

It then follows from Eq. (8) that

s(∞)(ŝ; ω) = (ω/c)2S(int)(ω)ν̃(ωσ/c; ω)∫ ∞
0 (ω/c)2S(int)(ω)ν̃(ωσ/c; ω)dω

, (18)

and the condition that the far-zone spectrum is the same in all
directions ŝ is thus satisfied, at least if the factorization rule

ν̃(ωσ/c; ω) = F (ω)H̃ (σ) (19)

holds. Using this rule and the inverse of Eq. (17), we find that

ν(�ρ; ω) =
(ω

c

)2
F (ω)H

(ω

c
�ρ

)
, (20)

where

H
(ω

c
�ρ

)
=

∫ ∞

−∞
H̃ (σ) exp

(
i
ω

c
σ · �ρ

)
d2σ. (21)

Since ν(0; ω) = 1, we have F (ω) = [(ω/c)2H (0)]−1, and
hence

ν(�ρ; ω) = H (ω�ρ/c)

H (0)
. (22)

We refer to this expression as the scaling law of nonstationary
scalar optical fields. When this condition holds, the normal-
ized far-zone spectrum given by Eq. (18) reduces to

s(∞)(ŝ; ω) = S(int)(ω)∫ ∞
0 S(int)(ω)dω

= s̄(ω), (23)

where s̄(ω) represents the normalized source-averaged spec-
tral density. Therefore, if the source CSD has the form of
Eqs. (9) and (10) and the scaling law of Eq. (22) is satisfied,
the normalized spectrum in any direction in the far zone is
the same as the normalized spatially averaged source-plane
spectrum, i.e., the field exhibits spectral invariance.

It is important to recognize that the scaling law (22)
sets constraints only on the boundary value of the function
g(ρ1, ρ2; ω1, ω2) in Eq. (9). In addition, only the Hermitian
condition

g∗(ρ1, ρ2; ω1, ω2) = g(ρ2, ρ1; ω2, ω1) (24)

needs to be satisfied. Thus, the set of allowed functions
g(ρ1, ρ2; ω2, ω1) is apparently very large. For example, all
(Hermitian) choices of the functional form

g(ρ1, ρ2; ω1, ω2) = f [(ω2ρ2 − ω1ρ1)/c] (25)

are acceptable. A specific example of a field expressible by
Eqs. (9) and (10) and which satisfies the scaling law without
necessarily being quasihomogeneous will be introduced in
Sec. IV B 2.

We note that since the spectral invariance and scaling-law
analysis from Eq. (15) onwards involves only the frequency
component ω, the same result—that is, Eq. (22)—applies to

S

A ML

FIG. 2. Schematic illustration of generation of a pulsed sec-
ondary light source that obeys the scaling law. Here S is a thermal
source, A is an aperture, L is an achromatic lens, and M is a temporal
intensity modulator.

stationary fields alike. By starting from the stationary-field
CSD of the form

W (ρ1, ρ2; ω) = S(ρ̄; ω)ν(�ρ; ω), (26)

we find that ν(�ρ; ω) must satisfy Eq. (22) in order to
obey spectral invariance. If the field is quasihomogeneous,
i.e., if the approximations in Eq. (14) can be made, we
have ν(�ρ; ω) ≈ μ(�ρ; ω). This is precisely Wolf’s original
scaling law [1].

IV. EXAMPLES

A. Image of thermal source

A simple example of a partially coherent pulsed source that
follows the scaling law is presented in Fig. 2. The aperture
A (width � wavelength of light) illuminated by a stationary
thermal source S represents an essentially spatially incoherent
planar source. When this source is imaged by an achromatic
lens L (such as a microscope objective), a quasihomogeneous
secondary source is generated whose spatial coherence prop-
erties depend on the size of the aperture A and the numerical
aperture of the lens L (see, e.g., Ref. [14]) and satisfies the
original scaling law [1]. A temporal intensity modulator M
(such as an electro-optic modulator) inserted in the image
plane converts the stationary secondary source into a pulsed
source without affecting the spatial coherence, thereby gener-
ating a nonstationary source that satisfies the scaling law.

B. Superpositions of Hermite-Gaussian fields

Let us consider fully coherent, spatially normalized
Hermite-Gaussian (HG) fields that are of the separable form

ψmn(x, y; ω) = ψm(x; ω)ψn(y; ω), (27)

where m and n are non-negative integers and

ψm(x; ω) = [S0(ω)]1/4 (2/π )1/4

√
2mm!w0x(ω)

× Hm

[ √
2x

w0x(ω)

]
exp

[
− x2

w2
0x(ω)

]
. (28)

The function ψn(y; ω) has a similar form as Eq. (28), with m
and x replaced by n and y, respectively.

Here w0x(ω) and w0y(ω) define the transverse scales of the
field at frequency ω in the x and y directions. In the case of
w0 j (ω) = √

ω0/ωw0 j [15,16], j = x, y, the above HG modes
are the transverse modes (at the waist) of spherical-mirror
resonators and hence of significant practical importance. The
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spectral density of a fully coherent HG mode is given by

Smn(x, y; ω) = |ψmn(x, y; ω)|2

= |ψm(x; ω)|2|ψn(y; ω)|2. (29)

Let us, in particular, choose

w0 j (ω) = ω0

ω
w0 j, j = x, y, (30)

where w0x and w0y are the scale factors at a reference fre-
quency ω = ω0. With this choice all HG modes obey spectral
invariance, as we will see next. In fact, this appears to be the
only possible frequency dependence of the width parameters
that ensures spectral invariance. In addition, no physical or
mathematical principle exists that forbids the existence of
these fields. Potentially they could be realized by the methods
of [19]. Nonetheless, it is straightforward to show that the
frequency dependence of Eq. (30) is obtained in the far zone
if the waist-plane mode width is taken frequency independent.
Equation (28) then becomes

ψm(x; ω) = [S0(ω)]1/4 (2/π )1/4

√
2mm!w0x

√
ω

ω0

× Hm

(
ω

ω0

√
2x

w0x

)
exp

[
−

(
ω

ω0

)2 x2

w2
0x

]
(31)

and correspondingly for ψn(y; ω). We call the field mode
isotropic if w0x = w0y and m = n, otherwise anisotropic.

In view of Eqs. (29)–(31), the spectral density of a single
HG field mode takes the form

Smn(x, y; ω) = S0(ω)

πw0xw0y2m+n−1m!n!

(
ω

ω0

)2

× H2
m

(
ω

ω0

√
2x

w0x

)
H2

n

(
ω

ω0

√
2y

w0y

)

× exp

[
−2

(
ω

ω0

)2
(

x2

w2
0x

+ y2

w2
0y

)]
. (32)

The source-averaged spectrum of a single HG mode can be
evaluated using the integral formula of Eq. (63) listed in the
Appendix. We straightforwardly obtain

S(int)
mn (ω) =

∫ ∞

−∞
Smn(x, y; ω)dxdy = S0(ω). (33)

Hence the normalized source-averaged spectral density,

s̄mn(ω) = S(int)
mn (ω)∫ ∞

0 S(int)
mn (ω)dω

= S0(ω)∫ ∞
0 S0(ω)dω

, (34)

is the same for every HG mode.
Let us next consider radiation into the far zone. Using the

integral formula of Eq. (64) and the analog of Eq. (2) we find
that the angular spectrum of a HG field mode is given by

Amn(kx, ky; ω) = Am(kx; ω)An(ky; ω), (35)

where

Am(kx; ω) = [S0(ω)]1/4 (−i)m

2π

(
2

π

)1/4(πw0x

2mm!

ω0

ω

)1/2

× Hm

(
1√
2

ω0

ω
w0xkx

)
exp

[
−1

4

(ω0

ω

)2
w2

0xk2
x

]
,

(36)

and An(ky; ω) is again of the same form with m and x replaced
by n and y, respectively. Using Eqs. (1) and (4) we find that
the far-zone spectrum of a single HG mode is

S(∞)
mn (ŝ; ω) =

(
2πsz

r

)2(ω

c

)2

×
∣∣∣Am

(ω

c
sx; ω

)∣∣∣2∣∣∣An

(ω

c
sy; ω

)∣∣∣2
. (37)

On inserting from Eq. (36), with substitutions k j = (ω/c)s j ,
j = x, y, we have

S(∞)
mn (ŝ; ω) = S0(ω)

(
k0sz

r

)2 (−1)m+nw0xw0y

π2m+n+1m!n!

× H2
m

(
1√
2

k0w0xsx

)
H2

n

(
1√
2

k0w0ysy

)

× exp

[
−1

2
k2

0

(
w2

0xs2
x + w2

0ys2
y

)]
, (38)

where k0 = ω0/c. Hence, the normalized spectrum in the far
zone, given by Eq. (7), is

s(∞)
mn (ŝ; ω) = S0(ω)∫ ∞

0 S0(ω)dω
. (39)

This result is independent of direction, the same for all m and
n, and in view of Eq. (34) is also equal to the source-averaged
spectrum.

Since the normalized spectrum of all field modes is of
the direction-independent form of Eq. (39), the same holds
true for their incoherent superpositions, regardless of whether
pulsed or stationary fields are considered. This spectrum is
also the same as the source-averaged spectrum of any such
superposition, and therefore our requirements for spectral in-
variance are fulfilled. Next we consider in more detail specific
HG-mode superpositions in the context of both stationary and
nonstationary fields.

1. Stationary fields

Let us first consider incoherent superpositions of HG
modes in the stationary case. To this end we represent
the (single-frequency) CSD in the form W (ρ1, ρ2; ω) =
W (x1, x2; ω)W (y1, y2; ω), where

W (x1, x2; ω) =
∞∑

m=0

cmψ∗
m(x1; ω)ψm(x2; ω), (40)

and a similar expansion applies to W (y1, y2; ω). We assume
that the modal functions are given by Eq. (31) and consider
the isotropic case w0x = w0y = w0 for brevity of notation.
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Additionally, we choose the modal weights as

cm = w0

√
2π

β

1

1 + 1/β

(
1 − β

1 + β

)m

, (41)

where β is a constant with values in the range 0 � β � 1. The
above choice for cm is motivated by the fact that it leads to the
Gaussian Schell-model fields [16–18].

We may now proceed in analogy with Ref. [16], where a
different class of partially coherent Gaussian fields (so-called
isodiffracting Gaussian Schell-model beams) was considered.
On inserting from Eqs. (31) and (41) into Eq. (40), we arrive
at an expression for the CSD, which can be evaluated using
the generating-function formula of Eq. (65) with

t = 1

2

1 − β

1 + β
. (42)

Performing the calculation results in

W (x1, x2; ω) = ω

ω0
[S0(ω)]1/2 exp

(
−1 + β2

2β

ω2

ω2
0

x2
1 + x2

2

w2
0

)

× exp

(
1 − β2

β

ω2

ω2
0

x1x2

w2
0

)
. (43)

On combining this result with a corresponding solution for
W (y1, y2; ω), we can represent the CSD in the Schell-model
form,

W (ρ1, ρ2; ω) = √
S(ρ1; ω)S(ρ2; ω) μ(�ρ; ω), (44)

where the spectral density is given by

S(ρ; ω) = S0(ω)

(
ω

ω0

)2

exp

[
−

(
ω

ω0

)2 2ρ2

w2

]
, (45)

and the complex degree of spectral coherence is

μ(�ρ; ω) = exp

[
−

(
ω

ω0

)2
�ρ2

2σ 2

]
. (46)

Here the parameters

w = w0√
β

(47)

and

σ =
√

β√
1 − β2

w0 (48)

represent the beam width and coherence width of the entire
partially coherent field, respectively. In view of Eqs. (47) and
(48), we have an explicit connection

β =
(

1 + w2

σ 2

)−1/2

(49)

between these beam parameters and the constant β.
Alternatively, we can express the CSD in the form of

Eq. (26). After some manipulation we find that

ν(�ρ; ω) = exp

[
−

(
ω

ω0

)2
�ρ2

2w2β2

]
, (50)

which satisfies Eq. (22). Hence, we have a class of stationary
fields that satisfies the scaling law and upholds extended
spectral invariance but may possess any degree of spatial
coherence.

In the quasihomogeneous limit (σ 	 w) the parameter β is
approximately given by β = σ/w. In this limit the right-hand
side of Eq. (50) takes on the form of the right-hand side
of Eq. (46), and thus the function ν(�ρ; ω) reduces to the
spectral complex degree of coherence μ(�ρ; ω). It should be
noted that the source spectrum given by Eq. (45) varies with
position also in the quasihomogeneous case (as was allowed
by our initial assumptions).

2. Nonstationary fields

In the case of nonstationary fields, we write the
separable two-frequency CSD of an incoherent superpo-
sition of HG modes in the form W (ρ1, ρ2; ω1, ω2) =
W (x1, x2; ω1, ω2)W (y1, y2; ω1, ω2), where

W (x1, x2; ω1, ω2) =
∞∑

m=0

cmψ∗
m(x1; ω1)ψm(x2; ω2), (51)

and a similar expansion holds for W (y1, y2; ω1, ω2). We again
choose the weight factors as in Eq. (41). By applying Eqs. (65)
and (42) and simplifying, we arrive at

W (x1, x2; ω1, ω2) =
(

ω1

ω0

ω2

ω0

)1/2

[S0(ω1)S0(ω2)]1/4

× exp

(
−1 + β2

2β

ω2
1x2

1 + ω2
2x2

2

ω2
0w

2
0

)

× exp

(
1 − β2

β

ω1ω2

ω2
0

x1x2

w2
0

)
. (52)

We can write the full CSD in the form

W (ρ1, ρ2; ω1, ω2) = √
S(ρ1; ω1)S(ρ2; ω2)

× μ(ρ1, ρ2; ω1, ω2), (53)

where the spectral density is still given by Eq. (45), and the
complex degree of spectral coherence has the form

μ(ρ1, ρ2; ω1, ω2) = exp

[
− (ω1ρ1 − ω2ρ2)2

2ω2
0σ

2

]
. (54)

The CSD defined by Eqs. (45), (53), and (54) obviously
reduces to Schell-model form (spatially) when ω1 = ω2 = ω

but not if ω1 
= ω2. In addition, the field becomes spatially
quasihomogeneous at any single frequency ω when σ 	 w.

The CSD in Eq. (52) can also be expressed in the form
of Eq. (9). To this end, it is convenient to revert to average
and difference spatial coordinates, and also use average and
difference frequency coordinates ω̄ = 1

2 (ω1 + ω2) and �ω =
ω2 − ω1. In doing so, Eq. (54) becomes

μ(ρ̄,�ρ; ω̄,�ω) = exp

[
− (�ωρ̄ + ω̄�ρ)2

2ω2
0σ

2

]
, (55)
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and the full CSD takes the form

W (ρ̄,�ρ; ω̄,�ω) =
[(

ω̄

ω0

)2

− 1

4

(
�ω

ω0

)2
]

[S0(ω1)S0(ω2)]1/2 exp

[
−

(
ω̄

ω0

)2 2ρ̄2

w2

]
exp

[
−

(
�ω

ω0

)2
ρ̄2

2w2β2

]

× exp

[
−

(
ω̄

ω0

)2
�ρ2

2w2β2

]
exp

[
−

(
�ω

ω0

)2
�ρ2

8w2

]
exp

(
− ω̄�ω

ω2
0

1 + β2

β2

ρ̄ · �ρ

w2

)
. (56)

If we represent this in the form of Eq. (9), we find that

g(ρ̄,�ρ; ω̄,�ω) = exp

[
−

(
�ω

ω0

)2( 1

β2
− 1

)
ρ̄2

2w2

]
exp

[
−

(
ω̄

ω0

)2
�ρ2

2w2β2

]
exp

(
− ω̄�ω

ω2
0

1 + β2

β2

ρ̄ · �ρ

w2

)

× exp

[
−

(
�ω

ω0

)2
�ρ2

8w2

]
. (57)

The first exponential in Eq. (57) can be simplified sightly by using 1/β2 − 1 = w2/σ 2. In particular,

g(ρ̄,�ρ; ω, 0) = exp

[
−

(
ω

ω0

)2
�ρ2

2w2β2

]
, (58)

which obviously satisfies the boundary condition of Eq. (10) and the scaling law of Eq. (22) for nonstationary fields. In the
quasihomogeneous case, β ≈ σ/w 	 1, Eq. (57) can be cast into the form

g(ρ̄,�ρ; ω̄,�ω) = exp

[
− (�ωρ̄ + ω̄�ρ)2

2ω2
0σ

2

]
exp

[
−

(
�ω

ω0

)2
�ρ2

8w2

]
. (59)

In this case the second exponential in Eq. (59) is effectively
constant (unity) within the coherence area and we therefore
have g(ρ1, ρ2; ω1, ω2) ≈ μ(ρ1, ρ2; ω1, ω2). In particular, if
ω1 = ω2, we get

μ(�ρ; ω) = exp

[
−

(
ω

ω0

)2
�ρ2

2σ 2

]
, (60)

which again satisfies Eqs. (10) and (22).
Some interpretations of the example fields presented above

may help to emphasize their significance. In Sec. IV B 1,
while dealing with stationary fields we constructed the CSD
as an incoherent superposition of fully spatially coherent
HG modes with a particular frequency-dependent scale factor
given by Eq. (30). The result is a spatially partially coherent
(but spectrally incoherent) field that satisfies our extended
definition of spectral invariance. In Sec. IV B 2 we employed
an incoherent superposition of fully spatially and spectrally
coherent modal fields to construct the (two-frequency) CSD,
which also exhibits the property of spectral invariance. Be-
cause of the intricate space-frequency coupling that is evident
from, e.g., Eq. (55), the superposition is no longer a spectrally
fully coherent field. In particular, the spectral behavior of the
spatial degree of self-correlation,

μ(ρ̄, 0; ω̄,�ω) = exp

[
−

(
�ω

ω0

)2
ρ̄2

2σ 2

]
, (61)

depends on both the spatial positions and the frequency dif-
ference. This quantity equals unity only at the axial point
ρ̄ = 0, but its value reduces at off-axis positions because the
partial spatial coherence implies partial spectral coherence via
space-frequency coupling. This also leads to partial temporal

coherence of the superposed field, even though each modal
field is fully temporally coherent.

Finally, the spatial distribution of the spectral self-
correlation function,

μ(ρ̄,�ρ; ω̄, 0) = exp

[
−

(
ω̄

ω0

)2
�ρ2

2σ 2

]
, (62)

depends on both the observation frequency and the spatial
coordinate difference. Thus, it is spatially of the Schell-
model form and, remarkably, formally similar to the (single-
frequency) degree of spatial coherence of the corresponding
stationary field [cf., Eq. (46)].

V. DISCUSSION AND CONCLUSIONS

In the present study we considered a spectral invariance of
nonstationary (pulsed or nonpulsed) fields and extended the
scaling law beyond stationary fields. This was accomplished
by considering a class of nonstationary fields and requiring
that the normalized far-zone spectrum is the same in all
directions and equal to the source-averaged spectrum.

Specific examples of both stationary and pulsed fields that
satisfy our scaling law were presented. These fields were
constructed as incoherent superpositions of fully coherent
Hermite-Gaussian (HG) modal fields. Since the HG fields are
natural modes of oscillation of spherical-mirror resonators,
one may ask whether multimode pulsed fields from such
resonators (of, e.g., femtosecond lasers) satisfy the scaling
law. The answer is negative. In order to satisfy the scaling
law, the frequency dependence of the beam-waist dimen-
sions was required to satisfy Eq. (30). However, HG modes
from spherical-mirror resonators are isodiffracting with a
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different frequency dependence: w0 j (ω) = √
ω0/ωw0 j , j =

x, y. Therefore, none of their superpositions can satisfy the
scaling law, even in the quasihomogeneous case [16]. It may
be possible to employ optical systems with tailored chromatic
properties to transform pulsed fields from spherical-mirror
resonators into a form that satisfies the scaling law. The
design of such compensating optical systems would follow
procedures analogous to the design of achromatic Fourier-
transform lenses (see, e.g., Refs. [19–21]). However, this is
a subject of further study.
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APPENDIX

In this Appendix, we list some formulas used to derive the
results in the main text: the integral formulas∫ ∞

−∞
H2

m(x) exp(−x2)dx = 2mm!
√

π (A1)

and ∫ ∞

−∞
Hm(

√
2ax) exp(−ax2 ± ibx)dx

= (±i)m

√
π

a
Hm

(
b√
2a

)
exp

(
− b2

4a

)
(A2)

are given in Ref. [22], pages 811–812. The sum formula
∞∑

m=0

Hm(x)Hm(y)
tm

m!

= 1√
1 − 4t2

exp

[
−4t2(x2 + y2) − 4xyt

1 − 4t2

]
(A3)

can be found in Ref. [23] on page 194.
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