
PHYSICAL REVIEW A 101, 033807 (2020)

Adiabatic geometric phase in fully nonlinear three-wave mixing
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In a nonlinear three-wave mixing process, the interacting waves can accumulate an adiabatic geometric phase
(AGP) if the nonlinear coefficient of the crystal is modulated in a proper manner along the nonlinear crystal. This
concept was studied so far only for the case in which the pump wave is much stronger than the two other waves,
hence can be assumed to be constant. Here we extend this analysis for the fully nonlinear process, in which
all three waves can be depleted and we show that the sign and magnitude of the AGP can be controlled by the
period, phase, and duty cycle of the nonlinear modulation pattern. In this fully nonlinear interaction, all the states
of the system can be mapped onto a closed surface. Specifically, we study a process in which the eigenstate of
the system follows a circular rotation on the surface. Our analysis reveals that the AGP equals to the difference
between the total phase accumulated along the circular trajectory and that along its vertical projection, which
is universal for the undepleted (linear) and depleted (nonlinear) cases. Moreover, the analysis reveals that the
AGPs in the processes of sum-frequency generation and difference-frequency generation have opposite chirality.
Finally, we utilize the AGP in the fully nonlinear case for splitting the beam into different diffraction orders in
the far field.
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I. INTRODUCTION

When an eigenstate of a quantum system follows a closed
path by slowly varying the parameters of its Hamiltonian,
an adiabatic geometric phase (AGP) is acquired, in addition
to the dynamical phase [1,2]. In past decades, the creation
and the application of AGPs in various systems have an been
active topic of research in quantum physics [3–6], condensed
matter physics [7–9], and optics [10–12]. AGP can also be
accumulated in a nonlinear optical process, either by using
circular polarized light on metasurfaces [13–16], or by relying
on the spectral degree of freedom of the interacting waves,
by varying the nonlinear modulation pattern along the non-
linear crystal [17,18]. Furthermore, wavefront shaping and
nonreciprocal transmission were realized experimentally by
creating the AGP through circular rotation of the quasi-phase-
matching (QPM) parameters in the χ (2) nonlinear process
using sum-frequency generation (SFG) [19]. The analysis of
AGP in nonlinear processes was based so far on the unde-
pleted pump approximation: The weak idler and signal are
coupled by a strong pump. In this case, the photon fluxes of
two waves (idler and signal) conserve to a total norm, and they
also construct two eigenstates that satisfy the superposition
principle. Hence, such a nonlinear process can be analyzed as
a linear system and can be described by spin-1/2 dynamics
[18,20,21]. In this case, the AGP can be well predicted via the
available knowledge on the dynamics of two-level systems.
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However, when the intensities of the signal and idler are
comparable to that of the pump, the undepleted pump ap-
proximation becomes invalid since the superposition principle
and the conservation of norm cannot be assumed anymore.
Adiabatic frequency conversion in the fully nonlinear case
was studied in recent years [22–24], a criterion for adiabaticity
was defined [25], and fully nonlinear adiabatic processes
were demonstrated experimentally, e.g., quasi-phase-matched
second harmonic generation [26,27], birefringently phase-
matched second harmonic generation [28], and parametric
amplification [29]. Nevertheless, how to control and predict
the AGP in the fully nonlinear case remains an open question
[30].

In this paper, we aim to solve this question in a pump-
depleted χ (2) process by adiabatically varying the QPM pa-
rameters. A geometric analysis is provided for a simple and
effective prediction. Furthermore, we verify the analysis not
only by the SFG process but also for the difference-frequency
generation (DFG) process. The rest of the paper is structured
as follows. A geometric description of the dynamics of the
pump-depleted three-wave mixing (TWM) process under a
circular rotation of three QPM parameters is developed in
Sec. II. An optical interferometric scheme for measuring the
AGP and a theoretical analysis of how to calculate the AGP
are illustrated by the pump-depleted SFG process in Secs. III
and IV, respectively. AGP for the pump-depleted DFG process
is discussed in Sec. V. In Sec. VI, we discuss a potential
application of utilizing AGP for all-optical beam shaping in
the fully nonlinear regime. The main results of the paper are
summarized in Sec. VII.
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II. GEOMETRIC REPRESENTATION OF
THREE-WAVE MIXING

Following the derivation of Luther et al. [31], the dy-
namical dimensionless coupled wave equations for the TWM
process are governed by

dq1/dτ = i��q1 − igq∗
2q3, (1)

dq2/dτ = i��q2 − igq∗
1q3, (2)

dq3/dτ = i��q3 − ig∗q1q2, (3)

where some of the normalization to the parameters are bor-
rowed from [32]

τ = ηz, η = 2d

πc

(
ω1ω2ω3

n1n2n3

3∑
l=1

nl

ωl
|Ãl0|2

)1/2

,

q j = Aje
i[�k0z−∫ z

0 K	(z′ )dz′]

/(
ω j

n j

3∑
l=1

nl

ωl
|Al0|2

)1/2

,

�� = [�k0 − K	(τ )]/η, g = 
(τ )eiφd (τ ). (4)

Here, z is the propagation distance; nj , ω j , Aj are the refractive
index, angular frequency, and amplitude, respectively, of the
slowly varying envelope of the jth wave (Aj0 is Aj at τ = 0);
d is the second-order nonlinear susceptibility; �k0 = k1 +
k2 − k3 (where k j is the wave vector of the jth wave) is the
phase mismatch; and K	(τ ), 
(τ ) = sin[πD(τ )] [with 0 �
D(τ ) � 1], and φd(τ ) are the wave vector, the effective duty
cycle, and the phase of the QPM modulation, respectively.
|q j |2 is proportional to the photon flux at the jth wave, and
their initial condition automatically satisfies

∑3
j=1 |q(0)

j |2 = 1
[cf. Eq. (A15) in Appendix A]. The detailed derivation from
the original slowly varying envelope equation of TWM to its
dimensionless form is presented in Appendix A.

Equations (1)–(3) can be presented via a canonical Hamil-
tonian structure,

dqj

dτ
= −2i

∂H

∂q∗
j

, (5)

where the Hamiltonian is H = 1
2 (gq∗

1q∗
2q3 + g∗q1q2q∗

3 ) −
��
2

∑3
j=1 |q j |2 The Manley-Rowe (MR) relations, which de-

fine three constants of motion for this Hamiltonian, are
K1 = |q1|2 + |q3|2, K2 = |q1|2 − |q2|2, and K3 = |q2|2 + |q3|2
[25,31,32].

To show the geometric motion of Eqs. (1)–(3) in the
state space, a set of coordinates (X,Y, Z ) and a surface
ϕ(X,Y, Z ) = 0 are introduced by defining [31,32]

X + iY = q1q2q∗
3, Z = |q3|2, (6)

ϕ = X 2 + Y 2 − Z (Z − K1)(Z − K3). (7)

The shape and size (small or large) of this surface are defined
by the initial condition of q(0)

1,2,3. The Hamiltonian can be
expressed by the coordinates (6) as

H = (grX + giY ) + ��[Z − (K1 + K3)]/2, (8)

where gr = 
 cos φd and gi = 
 sin φd are the real and imagi-
nary parts of g, respectively. Note that the imaginary part of g,
which is created when φd �= 0 or π , can give rise to the Y
component of the Hamiltonian in the depleted case.

Based on the geometric definition in Eqs. (6)–(8), the
dynamics of Eq. (5) can be expressed in geometric form by
defining a state vector W = X î + Y ĵ + Zk̂ and a QPM vector
B(τ ) = ∇H = (gr, gi,��/2) as

dW/dτ = {W, H} = B(τ ) × ∇ϕ, (9)

where ∇ = î∂X + ĵ∂Y + k̂∂Z . In the following, we will inter-
pret the dynamics and assemble the AGP by means of this
geometric description. For convenience, it is natural to fix the
QPM vector as a unit vector (i.e., |B(τ )| ≡ 1).

The typical processes for the TWM are the SFG and the
difference-frequency generation (DFG). For the SFG process,
the initial conditions are generally set as q(0)

1,2 �= 0 and q(0)
3 =0,

which indicates that W is initiated at the south pole of the
state surface. For the DFG process, we can set the initial
conditions as q(0)

2,3 �= 0 and q(0)
1 = 0. In this case, W is initiated

at the north pole of the state surface. The adiabatic evolution
requires to remain at an eigenstate over the entire process.
Moreover, we require one to complete the process at the initial
state, so that the QPM vector must satisfy B(0) = B(T ) =
k̂. Hence, the circular rotation of the QPM vector can be
expediently set as per [18],

��(τ )/2 = sin2 � cos �τ + cos2 �, (10)


(τ ) =
√

1 − (sin2 � cos �τ + cos2 �)2, (11)

φd (τ ) = ± arctan
sin �τ

cos �(1 − cos �τ )
, (12)

where � is the angle of the normal vector of the plane of
the circular trajectory [see Fig. 1(a)] and is defined with
respect to the k̂ axis. � = 2π/T is the angular velocity
(here, T = ηL is the period of evolution, where L is the
length of the crystal). The positive and negative signs on
the right-hand side of Eq. (12) refer to the different ro-
tational directions. According to Eq. (4), the relationships
between � and the other two QPM parameters are given
by K	(τ ) = �k0 − 2η(sin2 � cos �τ + cos2 �) and D(τ ) =
(1/π ) arcsin

√
1 − (sin2 � cos �τ + cos2 �)

2
. Since we as-

sume a circular trajectory that starts at the upper top point
in the parameter space [see in Fig. 1(a)], the angle � defines
the trajectory in the parameter space and the corresponding
variation of the state vector. A typical example of these QPM
parameters varying along τ for a rotation is displayed in
Fig. 1(b). This rotation can be imparted by binary modulation
of the sign of χ (2) along the nonlinear crystal, which can be re-
alized, for example, by electric field poling of the ferroelectric
crystals [33,34]. A typical example of a trajectory drawn by
the rotation of the state vector W, which follows the rotation
of the QPM vector in Fig. 1(a), is displayed in Fig. 1(c).
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FIG. 1. (a) A typical example of a clockwise circular rotation
of the QPM vector B(τ ) on its parameter space sphere with � =
π/4. (b) The variations of the poling period ��, the duty cycle

, and phase φd, of the nonlinear coefficient along the nonlinear
crystal in order to achieve � = π/4. (c) A corresponding rotation
of the state vector W(τ ), which follows the clockwise rotation of
the QPM vector in (a), draws a trajectory onto the state surface (7)
with initial conditions (I1, I2, I3) = (0.4, 0.6, 0) (where Ij = |q0

j |2).
(d) AGP accumulations for q1,2 in (c) along the scaled propagation
coordinate.

III. PHASE DIFFERENCE BETWEEN THE CLOCKWISE
AND THE COUNTERCLOCKWISE ROTATION

In the undepleted case, a Mach-Zhender interferometer can
be used to measure the AGP [17,18], as shown in Fig. 2(a),
where in the two arms we have two crystals with opposite
rotational direction, which are denoted, respectively, by ±φd.
The total phase shift in each of the two arms can be written as

±φd : �±
j = D j ± β j, (13)

where �±
j is the total phase shift of q j in the different arms,

D j represents the related dynamical phases, and β j is the ac-
cumulated geometric phase. Here, the definitions of the signs
are adopted from Eq. (12). Based on Eq. (13), the magnitude

FIG. 2. (a) Interferometric setup for measuring the phase dif-
ference between clockwise and counterclockwise circular rotations.
(b) Circular rotation for SFG. The blue and the red trajectories show
the counterclockwise (c.c.) and clockwise (c.) rotations, respectively.
The black trajectory is the round-trip (r.t.) motion. Here, we select
� = 0.3π and (I1, I2, I3) = (0.4, 0.6, 0). (c) Accumulation of β1 for
the clockwise (red solid curve) and counterclockwise (blue dashed
curve) in (b).

FIG. 3. Circular rotation for SFG. (a) β2/β1 versus I1/I2 with
different values of �. (b)β1,2 versus I1 − I2 for � = π/3. (c) The
sum of AGP for q1,2 versus � with a different depletion level. Here,
the symbols (circle, square, and rhombus) represent the numerical
results from the interferometric scheme in Eq. (14), while the dashed
curve is the prediction from Eqs. (19) and (21). The black curve is
the theoretical result from Eq. (15) for the undepleted case.

of the geometric phase for wave q j can be calculated by

β j = (�+
j − �−

j )/2 = �� j/2. (14)

We will extend this scheme to the depleted case, and its
validity will be verified by the analysis in the next section.
The numerical simulations for the depleted SFG and the DFG
process are conducted using Eqs. (1)–(3) with two different
types of initial conditions, which are initiated from the two
poles of the state surface. The algorithm for the numerical
simulation is the four-step Runge-Kutta method [35]. In the
simulation, we select the length of the crystal as L = T/η =
5 cm with η = 25 cm−1, hence, T = 125, which is the period
of the rotation and sufficient in practice for an adiabatic
evolution [20].

For the SFG process, we assume that the initial conditions
satisfy I2 � I1 > 0 and I3 = 0 (note that I j = |q(0)

j |2). If q(0)
1,2

satisfy I1 � I2, the system returns to the undepleted case,
which is initiated by a weak idler (q1) wave and an undepleted
strong pump (q2) wave. If these waves satisfy I1 = I2, the
system undergoes a fully depleted SFG process. Hence, the
system’s degree of depletion can be controlled by the ratio
I1/I2.

With these initial conditions, we find that the state vector
W(τ ) starts from the south pole of the state surface (7) and
draws a circular trajectory following the slow rotation of the
QPM vector B(τ ) [see an example for a clockwise and a
counterclockwise circular rotation in Fig. 2(b)]. The positive
and negative signs in Eq. (12) refer to the clockwise and the
counterclockwise rotation, respectively, which are shown by
the red and blue curves in Fig. 2(b). Because q3(0) = q3(T ) =
0 and the AGPs are accumulated in the original frequencies,
only the AGPs of q1,2 are taken into account for this case. A
typical example of the accumulations of β1,2 (for a clockwise
circular rotation) are displayed in Fig. 1(d).

The ratio of β2/β1 as a function of I1/I2 is displayed in
Fig. 3(a). This panel shows that the AGP of q1 is the dominant
component when I1 < I2, i.e., the phase accumulation in q1

is much larger than in q2. The dominant role of q1 can be
further enhanced by increasing the value of �. It is interesting
to note that small change in the ratio I1/I2 near the point
in which they are equal, e.g., at the intersection point of
(I1/I2, β2/β1) = (1, 1) and for the case θ = π/3, leads to
dramatic change of the ratio β2/β1. Note that this calculation
is still valid if we exchange I1 and I2, which means that the
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large phase modulation is now accumulated at ω2 (rather than
at ω1), when I1 > I2. All of these relations are analytically
predicted by Eq. (21) in Sec. IV. Figure 3(b) displays the
detailed variations of β1,2 as a function of the difference of
I1 − I2.

Figure 3(c) displays the sum of the two phases, β1 + β2,
as a function of � for different ratios of I1 and I2. When the
depletion is weak, i.e., I1 � I2, β2 ≈ 0, and β1 is very close
to the analytical prediction of the AGP in the undepleted case
[18],

β1 = −π (1 − cos �). (15)

Equation (15) implies the clockwise rotation acquires a neg-
ative value of AGP. If the rotation direction switches to a
counterclockwise type, a positive value of AGP is acquired.
Therefore, the AGP in the process of SFG satisfies a right-
hand chirality. Left-hand chirality would be obtained by per-
forming a DFG process.

IV. ANALYTICAL DESCRIPTION

The numerical results we obtained in the previous section
can be verified by the following theoretical analysis: Under
the adiabatic condition, the variation of states q j in the whole
process remains an eigenstate with a geometric phase factor
as

q j (τ ) = q̃ je
iβ j (τ ), (16)

where q̃ j and β j are the eigenstate and the accumulated AGP
for the jth wave, respectively. Here, we provide the derivation
of β j by using j = 1 as an example. Substituting Eq. (16) with
j = 1 into Eq. (1),

iμ1q̃1 + iq̃1(dβ1/dτ ) = i��q̃1 − igq∗
2q3e−iβ1 , (17)

where μ1 is the eigenvalue of q̃1 because dq̃1/dτ =
iμ1q̃1. Multiply Eq. (17) by q̃∗

1, and noting that
|q1|2 = |q̃1|2 and q̃∗

1 = q1eiβ1 ; this yields dβ1/dτ =
(��|q1|2 − gq∗

1q∗
2q3)/|q1|2 − μ1. Therefore, the evolution of

β1 can be obtained by

β1(τ ) =
∫ τ

0
[(��|q1|2 − gq∗

1q∗
2q3)/|q1|2 − μ1]dτ ′. (18)

By applying Eq. (5), the overall AGP of β1 can also be
obtained by rewriting Eq. (18) as

β1 =
∫ T

0

(
− 1

|q1|2 2q∗
1
∂H

∂q∗
1

)
dτ −

∫ T

0
μ1dτ = �1 − D1,

(19)

where �1 and D1 are the total phase differences and the
dynamical phase of q1, respectively.

For the fully depleted case, i.e., the case of I1 = I2, eigen-
values μ1,2 have an explicit form as [25]

μ1,2 = [5�� +
√

��2 + 5|g|2(K1 + K3)]/6, (20)

where K1,3 are given by the MR relation. The top dashed
curve and the rhombuses in Fig. 3(c) represent the comparison
between β1,2 and Eqs. (18) and (14) for circular rotation
with different values of �. The agreement between these two
results demonstrates the validity of the analytical prediction

for the fully depleted cases. If the rotation is switched to
the counterclockwise type, i.e., g = 
e−iφd , the results satisfy
βcc

j = −βc
j > 0 [see an example in Fig. 2(c)], which clearly

indicates that the interferometric scheme in Sec. III remains
valid for the fully depleted cases. Because this scheme was
verified by two limits of depletion (undepleted case and fully
depleted case), one can expect that this scheme remains valid
for any level of depletion. In Sec. II or Appendix B, we will
explain why the green dashed curve (i.e., I1 = I2) stops at
� = 0.35π .

The eigenvalues μ j are independent of φd. This was shown
analytically in Eq. (20) for the case of the full depletion,
and was confirmed by us numerically for other levels of
depletion. The motion of eigenstates, which is governed by
the QPM vector defined as per Eqs. (10) and (11), creates
a round-trip trajectory on the state surface [see the black
curve in Fig. 2(b)]. By extending the subscript from j =
1–3 and applying the following transformation q′

j = q j/Nj ,

p′
j = −iq∗

j /Nj (where Nj = √
2|q j |2), Eq. (19) can be further

adjusted to a more concise form as

β j =
∫

©
p′

jdq′
j −

∫
��

p′
jdq′

j = �c
j − �rt

j , (21)

where �c
j , and �rt

j stand for the total phase of the jth wave
after circular (clockwise or counterclockwise) rotation and
round-trip motion, respectively. The subscripts “© =� or �”
denote the clockwise or the counterclockwise rotations and
“��” denotes round-trip motion. Equation (21) implies that
the acquired AGP for the entire process can be viewed as
the difference of the action-angle variables in the phase space
of (q′

j, p′
i ) [36] between two kinds of motion (the circular

rotation and round-trip motion).
According to the above discussions, these three kinds

of motions (clockwise, counterclockwise circular rotations,
and round-trip motion) share the same μ j . Correspondingly,
numerical simulations reveal that the Hamiltonian of each of
these motions obtains the same value at each point through the
entire process. In spite of this degeneracy, the phases that the
waves accumulate in each of these motions are different. We
found numerically that the total phase of the round-trip motion
is �rt

j = ∫
μ jdτ ′ ≡ D j , and the total phases of the clockwise

and the counterclockwise are �c
j = D j ± |βc

j |, respectively,
which is exactly the same as Eq. (13). Hence, the consistence
between Eq. (13) and Eq. (21), which is also demonstrated by
the numerical simulations, indicates that the interferometric
scheme is valid for all levels of depletion.

Because the circular rotation is manipulated by
(��,
, φd ), while the round-trip motion is driven by
only (��,
), the trajectory of W(τ ) of round-trip motion
can be viewed as the vertical projection of its counterparts in
the circular and counter-circular rotations [see in Fig. 2(b)].
Hence, the AGP can be also viewed as the difference
between the total phase accumulated along the circular
trajectory with respect to its vertical projection in the space
of (X,Y, Z ). A visualization for these three types of motions
with (I1, I2) = (0.4, 0.6) and � = 0.3π are shown by a movie
in the Supplemental Material [35].

Equation (21) is universal for the undepleted (linear) and
the depleted (nonlinear) cases. It can also simplify the cal-
culation of AGP for any degrees of depletion. The results in
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FIG. 4. Circular rotation in the case of DFG. (a) The blue and red
trajectories are the counterclockwise (c.c.) and clockwise (c.) rota-
tions, respectively, with � = π/3 for initial conditions (I1, I2, I3) =
(0, 0.5, 0.5). The black curve represents the round-trip case. (b) The
AGP for q3 (i.e., β3) as a function of � for different ratios I2/I3. The
symbols were calculated with Eq. (14). The dashed lines were calcu-
lated with Eq. (21). The black solid curve represents the undepleted
case.

Fig. 3(c) (the dashed curves) demonstrate that Eq. (21) for β1,2

can match the interferometric scheme in Sec. III perfectly for
all levels of depletion.

Finally, it is necessary to point out that the AGPs in Eq. (14)
satisfy |β j | ∼ N−2

j ∼ I−1
j , which explains the reason why

β2/β1 < 1 with I1 < I2 or vice versa in Sec. III.

V. AGP IN THE DEPLETED DFG PROCESS

For the DFG process, we assume that the initial conditions
are I2,3 > 0 and I1 = 0. The rotation in DFG starts from the
north pole of the state surface (i.e., Z = |q(0)

3 |2). In this case,
the positive and negative signs in Eq. (12) remain to refer to
the clockwise and the counterclockwise rotation, respectively.
Because q1(0) = q1(T ) = 0 and the AGPs are accumulated in
the original frequencies, we consider only the phase informa-
tion for q2 and q3 in the following discussion.

Figure 4(a) shows typical examples of a counterclockwise
(blue curve) and a clockwise (red curve) circular rotation with
I2 = I3 = 1/2 and � = π/3. In contrary to the case of SFG,
numerical simulations show that β3 plays a dominant role
regardless of wether I2 > I3 or I2 < I3. Hence, the geometric
phase is accumulated mainly in q3 in this case. Figure 4(b)
displays the AGP, which is represented by β3 (we ignore the
contribution from β2 here) as a function of � with different
depleted conditions. Unlike the case of SFG, the AGPs in
the depleted DFG are all positive. According to Eq. (14),
the clockwise rotation gives a positive value, which means
that the AGP has a left-hand chirality. Hence, the SFG and
the DFG process have a different chirality for acquiring the
AGP. Moreover, the numerical simulations demonstrate that
Eq. (21) with j = 3 is valid in predicting the AGP for the DFG
process [see the different dashed curves in Fig. 4(b)].

VI. APPLICATION

The control of the adiabatic geometric phase opens exciting
new possibilities for all-optical manipulation of light. The first
potential application is a power-control phase modulator. In
Figs. 3(a) and 3(b), the strong dependence of the phase on

FIG. 5. Schematic drawing of the grating simulation. Each seg-
ment of poling in the x direction corresponds to clockwise rotation
and round-trip motion in parameter space. The period of each seg-
ment is set to be 	 = 50 μm.

the intensities may enable interesting new possibilities for
all-optical phase modulation of one optical wave by another
optical wave. For example, small variations in the intensity
of I1 near the equal intensities point will induce significant
variations in the phase of β2.

The other potential application is the AGP grating, which
can be utilized for splitting the beam into different diffraction
orders in the far field. Unlike the case of SFG with the unde-
pleted pump, here we consider the fully nonlinear second har-
monic generation process, hence only a single input wave is
needed. The crystal, which is assumed to be LiNbO3, is mod-
ulated by stripes of alternative circular rotation and round-trip
motion in the direction perpendicular to the propagation of
the light (see in Fig. 5). The poling is switched between
clockwise rotation and round-trip motion in parameter space
with � = π/4 and a period of 	 = 50 μm (see in Fig. 5).
The crystal has the following attributes: d33 = 23 pm/V, Lz =
1 cm, Lx = 2 mm. The laser used in the simulation has a beam
waist of 200 μm, peak power of 350 kW, and λFH = 1.064 μm
(where the subscript “FH” means the the first harmonic). The
simulation assumes a planar waveguide configuration, where
the diffraction in the y axis can be neglected.

The angular distance between diffraction orders is given by

X = λZ

	
= 0.0021 m, (22)

where f = 0.1 m is the focal distance of the lens used for
imaging the crystal output. This angular distance along with
the phase profile at the crystal end can be seen in Fig. 6(a),
and the far-field intensity after the crystal end is shown in
Fig. 6(b).

FIG. 6. (a) Phase profile of the beam at the end of the geometric
phase grating. (b) Far-field intensity after the crystal end.

033807-5



YONGYAO LI et al. PHYSICAL REVIEW A 101, 033807 (2020)

VII. CONCLUSION

In conclusion, we proposed a scheme of circular rotation
for accumulating AGP in the fully nonlinear regime of three-
wave mixing and analyzed the accumulated phase for the three
interacting waves. This adiabatic geometric phase is con-
trolled by a slow variation in the three quasi-phase-matching
parameters, the period K	(z), the duty cycle D(z), and the
phase φd(z). These three QPM parameters define a vector in
the parameter space and carry out a circular rotation. Under
the adiabatic condition, the state vector follows the rotation of
the QPM vector and draws a circular trajectory on the state
surface, and the AGP can be evaluated by an interferometric
scheme and predicted by a theoretical analysis. The theo-
retical analysis indicates that the AGP equals the difference
between the accumulated phase along the circular trajectory
(for either clockwise or counterclockwise) and the round-trip
trajectory, which can be viewed as the vertical projection
of the same circular trajectory. Our analysis is in excellent
agreement with the undepleted case when the intensity of one
of the two input waves is much larger than the other. The
different chiralities for the sum-frequency generation and the
difference-frequency generation are demonstrated throughout
our analysis. Our findings open new possibilities for all-
optical manipulation of light, without the need of a strong
and nearly undepleted pump. This is specifically relevant for
the efficient second harmonic generation process, in which the
pump must be depleted to enable efficient conversion. More-
over, we have identified conditions in which the accumulated
phase strongly depends on the intensities of the interacting
waves, thus enabling all-optical modulation of the phase of
one wave by the intensity of the other wave.

ACKNOWLEDGMENTS

This work was supported by the Israel Science Foundation
(ISF), Grant No. 1415/17, by the NNSFC (China) through
Grants No. 11874112, No. 11974146, and No. 11575063,
by the Natural Science Foundation of Guangdong Province
(China) through Grant No. 2017B030306009, and by the State
Scholarship Fund of China Scholarship council through File
No. 201808440001.

APPENDIX A: SCALED FORM OF THE DYNAMICAL
COUPLED WAVE EQUATIONS FOR THE

THREE-WAVE MIXING

The dynamical equations of three-wave mixing with the
slowly varying envelope are given by

∂zA1 = −i
2d (z)ω1

cn1
A∗

2A3e−i�k0z, (A1)

∂zA2 = −i
2d (z)ω2

cn2
A∗

1A3e−i�k0z, (A2)

∂zA3 = −i
2d (z)ω3

cn3
A1A2ei�k0z, (A3)

where A1,2,3 are the slowly varying envelopes of the idler,
pump, and signal waves, respectively; �k0 = k1 + k2 − k3 is
the phase mismatch; d (z) is the spatially varying magnitude
of the second-order nonlinear susceptibility, which can be

TABLE I. The detailed meaning of the characters in Eqs. (A4)
and (A5).

K	(z) Modulation wave vector
φd (z) Modulation phase
0 � D(z) � 1 Duty cycle
di j Nonlinear susceptibility tensor

described by the Fourier series with slowly varying compo-
nents as

d (z) = di j

∞∑
m=−∞

|dm(z)|

× exp

{
im

[∫ z

0
K	(z′)dz′ + φd(z)

]}
, (A4)

with

dm(z) =
{

(2/mπ ) sin [mπD(z)] m �= 0
2D(z) − 1 m = 0 . (A5)

The detailed meaning of the QPM (quasi-phase-matching)
parameters in Eqs. (A4) and (A5) are available in Table I.

If we only select m = ±1 from Eq. (A4), which are as-
sumed to provide best compensation for the phase mismatch,
Eq. (A4) can be simplified to

d (z) = di j

(
2

π

)
sin (πD(z))

× {
e+i[

∫ z
0 K	(z′ )dz′+φd (z)] + e−i[

∫ z
0 K	(z′ )dz′+φd (z)]}.

(A6)

The positive and negative frequency component of Eq. (A6)
can be substituted into Eqs. (A1) and (A2) and Eq. (A3),
respectively (which is similar to the application of rotating
wave approximation) [18]. Making a transformation of A1,2,3

to a rotating frame Ã1,2,3 by

A1 = Ã1 exp

{
−i

[
�k0z −

∫ z

0
K	(z′)dz′

]}
,

A2 = Ã2 exp

{
−i

[
�k0z −

∫ z

0
K	(z′)dz′

]}
,

A3 = Ã3 exp

{
−i

[
�k0z −

∫ z

0
K	(z′)dz′

]}
, (A7)

and substituting them into Eqs. (A1), (A2), and (A3), the
three-wave equations are changed to

∂zÃ1 = i[�k0 − K	(z)]Ã1

−i
2(π/2)di jω1

cn1
sin [πD(z)]eiφd (z)Ã∗

2Ã3, (A8)

∂zÃ2 = i[�k0 − K	(z)]Ã2

−i
2(π/2)di jω2

cn2
sin [πD(z)]eiφd (z)Ã∗

1Ã3, (A9)

∂zÃ3 = i[�k0 − K	(z)]Ã3

−i
2(π/2)di jω3

cn3
sin [πD(z)]e−iφd (z)Ã1Ã2. (A10)
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By applying the following definitions [32],

Ã j = q j

(
ω j

n j

3∑
l=1

nl

ωl
|Ãl0|2

)1/2

,

η = 2di j

πc

(
ω1ω2ω3

n1n2n3

3∑
l=1

nl

ωl
|Ãl0|2

)1/2

,

τ = ηz,

��(τ ) = [�k0 − K	(τ )]/η,

g(τ ) = sin [πD(τ )]eiφd (τ ) = 
(τ )eiφd (τ ), (A11)

Eqs. (A8)–(A10) can be changed to

dq1

dτ
= i��q1 − ig(τ )q∗

2q3, (A12)

dq2

dτ
= i��q2 − ig(τ )q∗

1q3, (A13)

dq3

dτ
= i��q3 − ig(τ )∗q1q2. (A14)

Obviously, according to the definitions in Eq. (A11), the
initial condition for Eqs. (A12)–(A14) satisfies

3∑
j

∣∣q(0)
j

∣∣2 =
3∑

j=1

|Aj0|2(ω j

n j

∑3
l=1

nl
ωl

|Al0|2
)

= 1∑3
l=1

nl
ωl

|Al0|2
3∑

j=1

n j

ω j
|Aj0|2 ≡ 1. (A15)

APPENDIX B: CUTOFF OF AGP CURVE AT � = 0.35π

FOR I1 = I2

At the case of I1 = I2, the system is under the fully de-
pleted condition. At this case, Ref. [25] had proved that the
eigenstate q̃1,2 ≡ 0 at �� < ��min, where

��min = −
√

2(K1 + K3) = −
√

2. (B1)

FIG. 7. (a) Trajectory of the W(τ ) of clockwise rotation with
� = 0.4π in the full depleted case (i.e., I1 = I2). (b)The evolutions
of the phase of β1 for the clockwise and counterclockwise rotation,
which are calculated via Eq. (21).

Here K1,3 are two constants which are given by the MR
relations. According to Eq. (A15), K1 + K3 = 1.

According to the definition in Eq. (10), one may obtain
�max ≈ 0.4π at �� = ��min. This result implies that the
curve of β1,2(�) must be stop at � = �max in the limit of
the full depletion.

Actually, Eq. (B1) did not consider the circular rotation of
the QPM vector. It was derived by fixing 
(τ ) ≡ 1. Hence,
for the case of circular rotation, i.e., 
(τ ) ∈ [0, 1], the value
of �max needs to be adjusted. The numerical simulations
demonstrated that the curve of β1,2(�) stops at �max ≈ 0.35π

for the circular rotation [see the top dashed curve and rhombus
in Fig. 3(c)].

At the limit of I1 = I2, because the eigenstates q̃1,2 = 0
in the case of � > �max. Under this circumstance, the state
vector W can reach the north pole of the surface. A typical
example of the trajectory of W(τ ) for this case is displayed
in Fig. 7(a), which shows that a strong helical trajectory is
produced after the W passing through the north pole. More-
over, in Ref. [25], at the cusp, the eigenstates cannot follow the
equivalent magnetic field vector since the adiabatic conditions
are no longer satisfied for the parameters of this calculation.
Figure 7(b) shows that the process of accumulating the AGP
in the case of Fig. 7(a), which manifests the failure in the
generation of the AGP.
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