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We study theoretically the Floquet edge states in a photonic analog of the driven Su-Schrieffer-Heeger model
implemented by an array of identical single-mode dielectric waveguides, where the time-dependent driving is
modeled by periodically bended waveguides. We combine the coupled-mode theory with the Floquet-Bloch
analysis and within this framework determine a band structure of the periodic system. We develop a theoretical
approach for calculation of the edge states in semi-infinite systems and investigate their topological properties.
In particular, we explore the dynamics of the 0- and π -edge states which reveal profound differences depending
on their topological phase. To verify our observations, we simulate the power transport along the end of such
a waveguide array and show that its spectra can be assigned to the excitation of the edge modes. The results
obtained indicate that driving-induced topological properties of the edge modes can be exploited in controlling
flow of light in periodically driven photonic structures and may provide insight into Floquet engineering of the
realistic photonic systems.

DOI: 10.1103/PhysRevA.101.033805

I. INTRODUCTION

Topological phases in various dimensions attracted
widespread interest since the discovery of the quantum Hall
effect [1]. It revealed the existence of a new class of ro-
bust quantum phenomena beyond the Landau paradigm of
spontaneous symmetry breaking that can be linked to the
presence of energy gaps for bulk excitations. It was shown
that the topological insulators behave as insulators in the
bulk and their properties can have a profound impact on the
character of the boundary modes which can propagate along
the boundary without backscattering even in the presence of
static disorder [2,3]. Discovery of topological insulators has
triggered enormous interest in many areas [2] including solid
state [4], cold atom [5], and photonic systems [6–10].

A typical example of a one-dimensional topological insu-
lator is the tight-binding Su-Schrieffer-Heeger (SSH) model
[11] which describes dimerization in the chain of identical
sites coupled via alternating strong and weak bonds. The
topological character of the chain is controlled by the relative
strength of the intracell and intercell couplings C1 and C2,
respectively, and as a consequence of bulk-boundary corre-
spondence principle it supports one topological state localized
at each boundary if |C1/C2| < 1, while its existence is linked
to the topological invariant called the Zak phase [12].

Following the development in the field of topological in-
sulators, time-periodic driving was suggested besides a strong
magnetic field and spin-orbit coupling as a third alternative

that can be used in realizing topologically nontrivial phases.
The underlying principle of this area called Floquet engineer-
ing [13] is based on the driving of the system with a certain
frequency � which leads to a hybridization of the eigenstates
of a static system and allows realization of new topologically
nontrivial phases that are unaccessible in a static system. The
effects of a time-dependent perturbation were employed in
ultracold optical lattices [14], time crystals [15], and photonic
structures [16,17]. Appropriately selected driving regimes
allow for tuning transport regimes from ballistic to localized
[18,19] and inducing quantum phase transitions [20]. Periodic
driving can change the topological properties of a system.
It was shown that in periodically driven systems bulk-edge
correspondence has to be generalized and the existence of
anomalous edge states (ES) corresponding to unique bulk
topological invariants were predicted [21,22]. For example,
a system, which is topologically trivial in equilibrium, can
become a topological insulator under periodic driving due
to breaking of time-reversal symmetry [23]. On the other
hand, the time-reversal symmetry breaking is not necessary
in driven SSH systems where a gap opening mechanism re-
lies on the spatial periodicity of time-dependent perturbation
[24]. Anomalous π modes have been recently observed in a
photonic Floquet simulator consisting of periodically bended
ultrathin metallic arrays of coupled corrugated waveguides,
which support spoof surface plasmon polaritons at microwave
to infrared frequencies [25]. Unlike the systems subject to
periodic driving, any local perturbation in a system with a
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nontrivial topology does not lead to change of the topological
character of the bulk bands, nevertheless it was shown that lo-
cal periodic driving can lead to breakdown of the topological
protection and dramatic depopulation of the ES [26].

In our paper we study theoretically spectral properties
and dynamics of the topologically protected edge states in a
photonic Floquet simulator of the driven SSH model. Since
in waveguide arrays the propagation distance plays the role
of time, the time-dependent perturbations can be realized
by the periodically bended waveguides. The substitution is
based on exploiting mathematical equivalence between the
time-dependent Schrödinger equation and the coupled-mode
theory (CMT) and consequently allows for the temporal
dynamics of an electronic wave packet to be mapped to
spatial evolution of the light field. To calculate the edge
states we developed a theoretical approach which yields so-
lutions in semi-infinite structures. We explored the dynamics
of the 0- and π -edge states and we have shown that their
properties can be effectively exploited in controlling flow of
light.

To fabricate a photonic Floquet simulator several designs
may be employed. The first experiments were realized by
periodically bending ultrathin metallic arrays of coupled cor-
rugated waveguides, which support spoof surface plasmon
polaritons at microwave to infrared range [25,27]. In optical
domain, other technologies are available such as a laser-
written waveguides in fused silica [28] or dielectric loaded
surface plasmon waveguides with in-plane modulation and
dielectric waveguide arrays with out-of-plane modulation [26]
fabricated by electron beam lithography and direct three-
dimensional (3D) laser printing.

The paper is organized as follows: In Sec. II we describe
our waveguide array system which mimics the driven SSH
model and provides an introduction into the formulation of
the CMT based techniques which are described in detail in
Appendix. In Sec. III we first present band structures and
spectra of the ES which may appear in the gaps, then we
describe their properties and demonstrate how they affect the
transport properties of the system. We discuss the possibilities
of steering of light beam by exploiting topological properties
of the ES with respect to both the driving frequency and the
phase. In Appendix A 1 we present our implementation of the
Floquet-Bloch analysis which extends the method described
in Ref. [26] to the case of the global driving and its appli-
cation for the calculation of a band structure in terms of the
quasienergies. The extension of this technique which allows
us to calculate the ES in semi-infinite arrays is described in
Appendix A 2.

II. STRUCTURE AND FORMULATION

In this paper we study theoretical characteristics of the
topologically protected ES in a photonic Floquet simula-
tor based on one-dimensional (1D) array dielectric coupled
waveguides under time-periodic driving. Since in the waveg-
uide model the propagation distance z corresponds to time
t , the modulation of the coupling coefficients is realized by
periodically bending the waveguide in xz plane, see Fig. 1(a).
The evolution of the light in the structure is described by CMT

FIG. 1. (a) A schematic picture of the periodically driven waveg-
uide array. The structure consists of two sublattices marked by two
different colors with two coupling coefficients C1 and C2. The periods
a and T = 2π/� in x and z direction, respectively, are indicated.
(b) and (c) The band structures for �C/C̄ = ±0.3, �V/C̄ = 0.2 and
(b) �/C̄ = 5; (c) �/C̄ = 2.5. The dashed horizontal lines indicate
the first Brillouin zone for quasienergy. The color scale represents
the spectral weight at a given energy.

[29,30] as

i
dψn

dz
= Cn−1ψn−1 + Cnψn+1, (1)

where ψn is the modal amplitude on the nth waveguide (n ∈
Z) and Cn is the coupling coefficient between waveguides n
and (n + 1).

The system is periodic in x direction with the period a that
consists of two waveguides so that the coupling coefficients
(for fixed z) alternate between two values C2m+1 = C1 and
C2m = C2 where m ∈ Z and which correspond to the intercell
and intracell coupling, respectively. By using the Floquet-
Bloch boundary condition

ψn+2 = λψn, λ ≡ exp (−ikxa), (2)

where kx is the Floquet-Bloch wave number (“momentum”)
we transform Eq. (1) into the momentum space as

i
d

dz

(
ψ1

ψ2

)
=

(
0 C1 + C2λ

−1

C1 + C2λ 0

)(
ψ1

ψ2

)
. (3)

If there is no driving (i.e., C1,2 are independent of z) the
solution has the form ψn(z) ∝ exp(−iεz), where ε is referred
to as “energy.” It is well known that in this static case the
SSH model is a band insulator when |C1| �= |C2| with trivial
and nontrivial topology when |C1| > |C2| and |C1| < |C2|,
respectively. The topological character of the dimerized chain
implies a fundamental difference in spectrum of a finite or
semi-infinite nontrivial system: A system with nontrivial
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topology (unlike the trivial one) supports topologically
protected ES exponentially decaying along the x axis and
localized near structure ends with an energy ε inside the gap.

In the following, we consider periodic modulation of cou-
pling coefficients in the form

C1,2(z) = C̄ ± �C ± �V cos(�z + ϕ), (4)

where �C is the dimerization strength and �V is the driving
amplitude. In order to obtain the bulk and edge states we solve
Eq. (3) with suitable additional conditions. The procedure is
based on the Floquet-Bloch theory [31,32], see also Ref. [26],
and is described in more detail in Appendix. Within this
formalism a band structure of a system governed by a time-
periodic Hamiltonian with period T = 2π/� can be unam-
biguously described in terms of so-called (quasi)energies ε,
analogs of the eigenenergies in a time-independent problem.
The corresponding Floquet states belong to the extended
Hilbert space, which is a direct product of the usual Hilbert
space and the space of periodic functions exp(ip�t ), where
index p defines a subspace called Floquet replica.

In our paper we assume lossless waveguides, however
our method allows us to treat global losses (such as radia-
tion losses due to the bending or ohmic losses) since they
are decoupled from dynamics (see, e.g., Ref. [33]) and can
be taken into account in the calculation of the transmitted
power. We choose such a value of the strength of modulation
�V/C̄ = 0.3 which along the period of the modulation T
ensures that one can neglect the losses due to the curvature
of the waveguide. Specifically, the upper frequency limit of
the driving frequency �/C̄ = 5 considered in our paper is
smaller than those arising from balanced trade-off between
the bending losses and the strength of dynamic effects chosen
in experimental realizations reported in Refs. [25,26], where
�/C̄ ≈ 7.5 and �/C̄ ≈ 6.5, respectively.

III. RESULTS

A. Floquet quasienergy spectrum of a driven structure

To demonstrate the properties of quasienergy spectra asso-
ciated with our system [Fig. 1(a)], we assume two values of
dimerization strength �C = ±0.3C̄, representing the native
trivial and nontrivial phase, respectively, and fix the amplitude
of the time-dependent modulation at �V = 0.2C̄; the values
are taken from Ref. [24]. We note that neither the sign of
�C nor the modulation shift ϕ in Eq. (4) affects the band
structure. However, we will show that ϕ plays an important
role in the excitation of the ES which may display strong
dependence on the propagation distance. Note that the case
ϕ = π corresponds to the value assumed in Ref. [24], where
nearby bonds have the opposite phases.

The band structures (expressed in normalized quantities)
are illustrated in Figs. 1(b) and 1(c) presenting p = 0, ±1
replicas which are displaced by p�. It was shown [24] that
one can distinguish two profoundly different regimes: In the
high-frequency regime different bands do not overlap at the
energy ε we are interested in, whereas the low-frequency
regime occurs when there is more than one state close to ε.
If the frequency is high enough the replicas are well separated
at any ε (so we are in the high-frequency regime for any ε)
[see Fig. 1(b)] and the bands in the first Brillouin zone

FIG. 2. (a) Maps of the 0 and π gaps as a function of the driving
frequency �/C̄. Thin vertical lines indicate the frequencies at which
the gaps are closed. Bold horizontal lines indicate the frequency
ranges in which π -ES (upper panel) and both 0-EST and 0-ESN
(lower panel) are supported. EST and ESN denote the ES in the
structures in trivial and nontrivial native topological phase, respec-
tively [see also annotation in (b)]. The bold lines corresponding to
the 0-EST are slightly vertically shifted with respect to the 0-ESN.
(b) Effective width weff vs driving frequency �/C̄ for the 0- and
π -edge states. Parameters: �C/C̄ = ±0.3 for trivial and nontrivial
native topological phase, �V/C̄ = 0.2.

−�/2 < ε � �/2 (FBZ) correspond to those of the undriven
native structure. In addition to the pre-existent gap centered at
zero energy ε = 0 and thus referred to as 0 gap (we consider
ε in FBZ only), the driving induces a new gap centered at
ε = �/2 known as π gap. The shaded areas in Fig. 2(a)
depict the variation of both gaps with the frequency �/C̄. By
decreasing � one gradually enters the low-frequency regime:
the replicas start to overlap with each other and become
degenerate at ε = �/2 [see Fig. 1(c)] or ε = 0 and the related
gaps are closed. However, due to the presence of driving the
corresponding degeneracies are lifted leading to reopening
the gaps [24]. The spectra shown in Fig. 1(c) correspond to
the case when one is in the low-frequency regime at ε = �/2
while still is in the high-frequency regime at ε = 0. The
transition points at which 0 gap closes occur at the frequencies
given by �(1)

m = 2C̄/m for kx = 0 and �(2)
m = 2|�C|/m for
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kxa = π (m = 1, 2, . . .). The transitions points at which π

gap closes occur at �(3)
m = 4C̄/(2m − 1) for kx = 0 and at

�(4)
m = 4|�C|/(2m − 1) for kxa = π . The positions of the

transition points are indicated by vertical lines in Fig. 2(a).

B. Edge states

It is well known that the driven structure can support ES
with the quasienergies ε = 0 or ε = �/2 within both 0 or
π gaps [21,24,34], in the following the states are referred to
as 0-ES and π -ES, respectively. The existence of ES can be
verified by evaluating either the band invariant Zak phase [12]
or the gap invariants ν0 and νπ derived in Ref. [21]. We also
calculated the ES directly by solving an eigenvalue problem
for a semi-infinite structure (see Appendix A 2). By evaluating
the Zak phase we determined the frequency ranges in which
the system supports 0- and π -ES indicated by bold lines in
Fig. 2(a). The calculation based on the invariants ν0 and νπ

provides identical intervals; however, the direct evaluation of
the ES yields slightly different results in the range �/C̄ < 0.8.
The origin of these discrepancies was attributed to the numer-
ical instabilities in searching eigensolutions of Eq. (A12) for
which |λα| < 1 in the case |λα| ≈ 1, which is typical at such
low frequencies.

The features shown in Fig. 2(a) resemble those found for
quantum systems in Refs. [21,24,34]. Namely, we confirmed
that in the high-frequency limit the behavior of the driven
system corresponds to that of the undriven one so that the 0
gap hosts the ES when the static system is in nontrivial phase.
In contrast, the presence of the ES in the π gap is independent
of the native topology of an undriven system.

We characterize a spatial extent of the ES with the effective
width defined as weff = log(0.5)/ log(λmax), where λmax ≡
max |λα| is the maximum value occurring in the expansion
Eq. (A10), i.e., weff estimates the distance (expressed in
the waveguide number) at which the intensity of ES drops
to half of its initial value. The results shown in Fig. 2(b)
demonstrate a surprising fact that the most of the ES are
significantly delocalized—see the ranges �/C̄ < 1 for 0-ES
and �/C̄ < 4/3 for π -ES, where the weff mostly exceeds 104,
and as a result they cannot be effectively excited by a finite
source. We observe strong localization only for 0-ES in the
frequency range �/C̄ > 2 (system in nontrivial native phase)
where weff ∼ 1 and for π -ES in the interval 4/3 < �/C̄ < 4
for both native phases where weff ∼ 3. The effective width
obtained for the 0-ES in trivial phase in the frequency range
1 < �/C̄ < 2 indicates a substantionally weaker localization
only when �/C̄ → 1, while it predicts an extendedlike wave
function pattern as the weff grows rapidly when �/C̄ → 2.
Figure 2(b) also illustrates that weff associated with π -ES does
not depend on the native topological phase. It is important to
keep in mind that the weff is by its definition independent of
the propagation distance z and, therefore, it is of interest to
analyze the dynamics of the corresponding wave functions.

The properties of the effective width shown in Fig. 2(b)
unveil a profoundly different behavior between the 0-ES
which occur in the high-frequency range when �/C̄ > 2 for
the system in nontrivial native phase and those which appear
in the 0 gap for trivial native phase when 1 < �/C̄ < 2. In
order to gain a deeper insight into the latter observation,

FIG. 3. Zero edge states in the semi-infinite structure. The left
panels [(a) and (c)]: Intensity distributions |ψn(z)|2 over one period
for � = 2.5 and � = 1.1, respectively. The right panels [(b) and
(d)]: The corresponding eigenfunctions at the beginning of the period
ψn(0), the colors of the markers correspond to those assigned to
sublattices shown in Fig. 1(a). For calculation of ψn(z) we set ϕ = 0,
other parameters are the same as in Fig. 2.

we present in Figs. 3(a) and 3(b) and Figs. 3(c) and 3(d)
the distributions of the intensity and the real part of the
eigenfunction (at z = 0) belonging to the 0-ES at �/C̄ =
2.5 and �/C̄ = 1.1, respectively. The patterns obtained for
�/C̄ = 2.5 resemble to a great extent those describing ES
of undriven structures in nontrivial phase: the wave function
ψn(0) is nonzero only on “odd” sublattice (n = 1, 3, 5, . . . ).
Its intensity distribution |ψn(z)|2 exhibits weak dependence on
the normalized propagation distance z/T and ψn(z) converges
to the wave function associated with the ES of the undriven
structure when �/C̄ is further increased. The nature of 0-ES
at �/C̄ = 1.1 state [Figs. 3(c)-3(d)] essentially differs from
that corresponding to the high-frequency regime as its wave
function reveals a delocalized pattern: the wave function for
z = 0 and z = T/2 is nonzero on an odd sublattice only and its
strong variation along the propagation distance corresponds to
excitation of p = ±1 replicas and leads to periodic exchange
of the intensity between an odd and even (n = 2, 4, 6, . . . )
sublattice.

We have verified that the π -ES for both native phases
appear in the same frequency ranges [see Fig. 2(a)] and they
possess the same effective width. Let us now focus on the
dynamical properties of the π -ES. To do so we display in
Fig. 4 the states at �/C̄ = 2.5 and �/C̄ = 1.6 (only nontrivial
phase). The intensity profiles of the π -ES at �/C̄ = 2.5 for
both native phases are localized on an even sublattice at
z = 0 (or z = T ) and display a periodic dependence of the
spatial distribution on the propagation distance, which shows
a remarkable difference. Namely, the intensity distribution for
the trivial phase z = T/2 occupies mostly waveguide n = 1
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FIG. 4. π -edge states in the semi-infinite structure. Description
of the graphs and the other parameters are the same as in Fig. 3.

[Figs. 4(a) and 4(b)], while the wave function for the nontriv-
ial phase is shifted to higher n waveguides inside the structure
[Figs. 4(c) and 4(d)] and this effect is significantly enhanced
as the modulation frequency is decreased to �/C̄ = 1.6 [Fig.
4(e)]. Both periodically varying patterns reflect the excitation
of the p = 0 and p = 1 Floquet replicas at a given driving
frequency and give rise to periodic exchange of the intensity
between odd and even sublattice.

The results shown in Figs. 3 and 4 illustrate behavior of the
wave function pattern at certain frequencies. Since these dis-
tributions may significantly change with the frequency as well
as within one period T , we evaluate another quantity which we
call the center of the ES n0(z) = ∑

n n|ψn(z)|2/∑n |ψn(z)|2.
The results of the numerical calculation for several values of
the propagation distance are presented in Fig. 5, where we
used 1 � n � 200. The spectral dependencies reveal qualita-
tively different behavior between the 0- [Figs. 5(a) and 5(b)]
and π -ES [Fig. 5(c)] in a given topological phase. In the
high-frequency limit the 0-ES should always converge to the
ES supported by the undriven structure for which the center
of ES is given by formula n(native)

0 = (1 + η2)/(1 − η2) with
η = (C̄ − �C)/(C̄ + �C); indeed Fig. 5(a) demonstrates that
n0 → n(native)

0 = 1.817 as �/C̄ → ∞ irrespective to the prop-
agation distance z. On the other hand, n0(z) for the same ES
exhibits an enhanced dependence on the z as �/C̄ decreases

FIG. 5. The ES center n0 for 0- and π -ES (see descriptions in the
graphs) at several positions z [see the legend in (a)]. Other parameters
are the same as in Fig. 3.

[Fig. 5(a)] and becomes divergent as �/C̄ → 2+. We note
that such unbounded behavior is not observed for the n0(z)
associated with 0-ES [Fig. 5(b)] when �/C̄ → 1+. In this
case n0(z) grows monotonically in the range 1 < �/C̄ < 2
and shows unbounded behavior as �/C̄ → 2−. By inspecting
the dependence of the n0(z) associated with the π -ES we
found that n0 at z = 0 is independent of the native topological
phase—see the blue curve in Fig. 5(c). This invariance breaks
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down as z increases in the first half of the period (0 � z �
T/2), where n0(z) is shifted towards the waveguides with
smaller and larger waveguide number n for the trivial and
nontrivial phase, respectively. The n0(z) for both π -ES in the
range 1.5 � �/C̄ � 3.5 was found to yield the values indi-
cating fairly localized wave functions, while n0(z) becomes
unbounded as �/C̄ approaches the transition points at both
ends of the relevant spectral region. We note that the features
described above play key role in the interpretation of the
transport properties of the system which are presented in the
following subsection.

C. Transport properties

To verify the properties of the ES described in the previous
section and to demonstrate their possible role in control-
ling flow of light in driven systems we simulate the power
transport along the edge of such a structure. The waveguide
array is excited at z = 0 in the edge waveguide n = 1, i.e.,
ψn(0) = δ1n, and the evolution of the field ψn(z) in the
structure with length L = 200/C̄ is calculated by solving
numerically Eq. (1) by using the Runge-Kutta technique. We
note that this approach can be employed in calculation of
the realistic waveguide arrays when the coupling coefficients
and other relevant parameters such as ohmic and bending
induced losses (all obtained numerically, e.g., from Comsol)
are implemented. A semi-infinite system is modeled with a
sufficiently large finite structure, for the given L we assumed
an array with 200 waveguides. First, we present the results
expressed in terms of the relative power PES = ∑25

n=1 |ψn(L)|2
transmitted to the output of the structure. Naturally, for a
sufficiently long structure the PES does not contain diffracted
power (associated with the excitation of bulk modes spreading
ballistically) and in fact it represents a fraction of input power
coupled into the ES. In Fig. 6 we show the relative power
PES as the function of driving frequency � for structures with
both native topological phases and for several phase shifts
ϕ. The curves correspond to different transport regimes that
can be controlled by varying the driving frequency � and
the phase ϕ. The features observed can be assigned to the
excitation of relevant ES that may lead to major suppression
of the diffraction. Some of the regimes are illustrated in
Figs. 7(a)–7(d).

Specifically, for the trivial native phase, the high trans-
mission in the range 4/3 < �/C̄ < 4 shown in Fig. 6(a) for
ϕ �= 0 is due to the excitation of π -ES in this frequency
range [Fig. 2(a)] while for �/C̄ > 4 there are no ES available
and as a result transmitted power is zero. The evolution of
the field intensity in the zero transmission regime where the
whole input signal is diffracted is shown in Fig. 7(a). In the
range 4/3 < �/C̄ < 4, PES exhibits a strong dependence on
ϕ following typical behavior of both π -ES shown in Fig. 4.
For example, when ϕ = 0, the π -ES exhibit zero field at
odd sublattice at the beginning of the structure z = 0, they
cannot be excited with field intensity localized solely on
the waveguide n = 1, and, consequently, PES = 0. A nonzero
value of ϕ means that the ES considered is shifted within the
period T and thus it may be excited with a modified efficiency.
In the case of the π -ES presented in Fig. 4(a), increasing ϕ in
the interval 0 < ϕ < π gives rise to growing intensity on the

FIG. 6. The relative transmitted power PES vs driving frequency
� evaluated for four phase shifts ϕ of the modulation (see the legend)
in structures with length L = 200/C̄, excited in waveguide n = 1,
ψn(0) = δ1n, and for (a) trivial and (b) nontrivial phase. The results
for ϕ = ±π/2 cannot be distinguished in the scale of the graph.
Other parameters are the same as in Fig. 2.

waveguide n = 1 which in turn leads to increasing excitation
efficiency and thus results into the gradual enhancement of the
PES observed in Fig. 6(a), with maximum PES at ϕ = π . The
corresponding intensity evolution for �/C̄ = 2.5 and ϕ = π ,
where PES has its maximum with respect to both parameters,
is presented in Fig. 7(c).

We have shown that in the frequency range 1 < �/C̄ < 2
there exist besides π -ES also 0-ES [Fig. 2(a)]. However, they
do not affect the power spectrum in Fig. 6(a) in the range
1.6 � �/C̄ < 2 since they cannot be effectively excited by
a signal in one waveguide due to the large effective width
[see Fig. 2(b)]. When the modulation frequency is decreased
in the range 1 < �/C̄ � 1.6, the effective width decreases
and the amplitude arising from the 0-ES becomes significant;
the effect clearly manifests itself in nonzero transmission for
ϕ = 0. Furthermore, considering only the interval 1 � �/C̄ �
1.2, for ϕ = 0 and ϕ = π the 0-ES are excited approximately
with the same efficiency so the related power dependencies
are nearly the same. In contrast, for ϕ = ±π/2 the 0-ES
are weakly excited [their intensity |ψ1(±T/4)|2 is small yet
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FIG. 7. The evolution of the field intensity |ψn(z)|2 in structures
as in Fig. 6 in the following cases: (a)–(d) Waveguide n = 1 excited,
ψn(0) = δ1n; (e) and (f) waveguide n = 2 excited, ψn(0) = δ2n. (a),
(c), and (e) Trivial phase; (b), (d), and (f) nontrivial phase. (a) and
(b) �/C̄ = 5; (c)–(f) �/C̄ = 2.5. (a), (b), (e), and (f) ϕ = 0; (c) and
(d) ϕ = π . In order to provide more instructive maps we used a
logarithmic color scale and set its minimum at 0.01.

nonzero], which results in almost zero transmission. Such
a behavior is in agreement with the properties of the 0-ES
demonstrated in Figs. 3(c) and 3(d) for �/C̄ = 1.1.

Considering the nontrivial native phase [see Fig. 6(b)] the
spectra are dominated by excitation of the strongly localized
0-ES in the frequency range �/C̄ > 2 superimposed with a
minor component associated with the excitation of the π -ES
when ϕ �= 0 in the interval 4/3 < �/C̄ < 4. An exclusive
excitation of the 0-ES, which is illustrated in Fig. 7(b),
exhibits a weak dependence on the phase ϕ [see the PES in
the range �/C̄ > 4 in Fig. 6(b)], which becomes negligible
in the high-frequency limit. The excitation of π -ES in the
range 4/3 < �/C̄ < 2 affects the spectra in Fig. 6(b) similarly
as in Fig. 6(a) except its contribution to the total power is
weaker. It complies with the observation that field intensity
at z = T/2 on the waveguide n = 1 associated with the π -
ES for nontrivial phase is smaller than that of the trivial
phase [see Figs. 4(a) and 4(c)]. Therefore, π -ES excitation
efficiency is lower in the case of the nontrivial native phase.
A simultaneous excitation of the 0- and π -ES when ϕ = π

is demonstrated in Fig. 7(d), here the intensity exhibits an
oscillatory behavior due to the interference between these two
states.

We have seen that by setting the phase ϕ one can selectively
excite various ES and, in this way, control the transport
properties of the structure. The intensity patterns shown in
Figs. 3 and 4 suggest that the same effect may be achieved
by choosing a suitable combination of the incident waves. For
example, for the trivial native phase and frequencies 4/3 <

�/C̄ < 4, π -ES is excited with highest efficiency when the
signal is applied to the waveguide n = 1 and the phase ϕ = π

[Fig. 7(c)], or, alternatively, when the signal is applied to
the waveguide n = 2 and the phase ϕ = 0 [Fig. 7(e)]. For
the nontrivial native phase and frequencies 2 < �/C̄ < 4,
only π -ES can be excited when the signal is applied to the
waveguide n = 2 and ϕ = 0 [Fig. 7(f)].

We note that the spectra in Fig. 6 display additional
features that cannot be explained with excitation of the ES.
Specifically, all the peaks in the frequency range �/C̄ < 1
[Figs. 6(a) and 6(b)] and the peak at �/C̄ = 1.54 for the
nontrivial phase and ϕ = 0 [Fig. 6(b)] are attributed to the
resonances in the bulk spectra. The effect was confirmed by
calculating the dependence of the PES on structure length
L which shows decreasing dependence for the mentioned
features, in contrast to those associated with the excita-
tion of the ES which are not affected when the length is
changed.

IV. CONCLUSION

We study spectral properties and dynamics of the Flo-
quet edge states in an array of dielectric waveguides with
periodical modulation of coupling which mimics a driven
Su-Schrieffer-Heeger model. The system is described by
means of the coupled mode theory and the resulting equa-
tions are solved by the Floquet-Bloch analysis. Within this
framework we developed an approach for calculation of edge
states of semi-infinite systems and explored their topological
properties.

In particular, we describe in detail spectral properties and
dynamics of the 0- and π -edge states and we have shown that
they reveal profoundly different behavior depending on the
topological phase. In order to gain an additional insight into
quasienergy spectra we determined a spatial extent of the edge
states characterized by an effective width and we identified
the relevant frequency ranges in which edge states can be
excited by a finite source. We found that both 0-ES and π -ES
for �/C̄ < 1 are significantly delocalized and thus cannot be
used for guiding light along structure edges. In the case of the
nontrivial native phase the 0-ES is strongly localized only in
the high-frequency range �/C̄ > 2, where the state resembles
the behavior of the edge state of the undriven structure, i.e., it
exhibits a moderate dependence on the propagation distance
and occupies mainly the odd sublattice. In contrast, the 0-
ES which for the system in the trivial native phase exists
in the frequency range 1 < �/C̄ < 2, shows a substantially
weaker localization. The π -ES for both native phases are well
localized only in the range 4/3 < �/C̄ < 4 with the same
effective width at z = 0; however, their wave functions display
a topology-sensitive dynamics which reflects the excitation of
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the relevant Floquet replicas (p = 0 and p = 1) and leads to
periodic exchange of the intensity between the odd and even
sublattice. The features observed determine the excitation ef-
ficiency of the ES and crucially affect the transport properties
of the system.

To verify the results of the Floquet-Bloch analysis we
simulated power transport along the edge of the coupled sys-
tem for various parameters and identified different transport
regimes. We found that the excitation of the ES may lead to
major suppression of the diffraction when �/C̄ > 1. Namely,
for the nontrivial native phase, the most dominant effect is the
high transmission in the range �/C̄ > 2 due to the excitation
of the 0-ES, while for the trivial native phase, the nonzero
transmission in the range 4/3 < �/C̄ < 4 is associated with
excitation of the π -ES. We also demonstrated that the depen-
dence of the excitation efficiency on the driving phase and the
shape of the input signal can be conveniently exploited for
selective excitation of various ES.

In summary, we have proved that our CMT-based ap-
proach represents an efficient tool in the analysis of the
impact of driving on a 1D topological insulator given by the
photonic realization of the SSH model. The results obtained
suggest that the topological ideas can be employed in con-
trolling localization and steering of light in a periodically
driven waveguide array and may provide an insight into
the physics of the realistic photonic systems under periodic
driving.
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APPENDIX

1. Floquet-Bloch analysis, bulk states

The coupled mode equations [Eq. (1) or (3)] have the form
of the time-dependent Schrödinger equation

i
∂|ψ (t )〉

∂t
= H (t )|ψ (t )〉 (A1)

(we use t rather than z and set h̄ = 1, hereafter) with time-
periodic Hamiltonian H (t + T ) = H (t ), T = 2π/�. The
Floquet-Bloch theorem states that there is a complete set of
solutions of the form

|ψα (t )〉 = exp (−iεαt )|uα (t )〉, (A2)

where |uα (t )〉 = |uα (t + T )〉, εα is called quasienergy, and the
subscript α labels different solutions. Substitution of Eq. (A2)
into Eq. (A1) leads to the equation analogous to the time-
independent Schrödinger equation

[
H (t ) − i

∂

∂t

]
|uα (t )〉 = εα|uα (t )〉, (A3)

where the operator on the left-hand side is called the
Floquet Hamiltonian with |uα (t )〉 being its eigenstates. Now

we expand H (t ) and |uα (t )〉 in Eq. (A3) into Fourier
series

H (t ) =
∞∑

p=−∞
Hp exp (−ip�t ), (A4)

|uα (t )〉 =
∞∑

p=−∞
|uα,p〉 exp (−ip�t ), (A5)

and obtain set of equations which leads to solving of the
eigenproblem

∞∑
q=−∞

(Hp−q − pδpq�)|uα,q〉 = εα|uα,q〉. (A6)

Within our model, the Hamiltonian is defined on the right-
hand side of Eq. (3) together with Eq. (4) in which we assume
ϕ = 0. By using the definitions C(0)

1,2 = C̄ ± �C one obtains

H0 =
(

0 C(0)
1 + C(0)

2 λ−1

C(0)
1 + C(0)

2 λ 0

)
, (A7)

H1 = H−1 = �V

2

(
0 1 − λ−1

1 − λ 0

)
, (A8)

and Hp = 0 for p �= 0,±1. Thus Eq. (A6) can be simplified as

(H0 − p�)|uα,p〉 + H1(|uα,p−1〉 + |uα,p+1〉) = εα|uα,p〉. (A9)

In order to solve the eigenproblem given by Eq. (A9) the
Fourier series have to be truncated. Here we used the condi-
tion |p| � 4C̄/� assuring that all replicas with quasienergies
within the first Brillouin zone are taken into account; more-
over, we numerically verified stability of this criterion.

The bulk modes are solutions of Eq. (A9) for |λ| = 1, i.e.,
π < kxa � π .

2. Edge states (ES)

While solutions of Eq. (A9) with |λ| �= 1 cannot occur in
the infinite structure, the ES in finite or semi-infinite structures
can be formed by their suitable superposition in the form

|ψ (t )〉 =
∑

α

Qα|ψα (t )〉, (A10)

where Qα are expansion coefficients, provided (i) ε is constant
(therefore, we drop the subscript α of the ε hereafter), (ii)
the superposition decays into the structure, and (iii) fulfils
boundary condition(s) at the structure end(s). As a result, the
subscript α acquires a different meaning as it labels all the
solutions of Eq. (A9) with given energy ε for all possible
values λα . In this paper we consider ES at the boundary
of the semi-infinite structure defined with n = 1, 2, 3, . . . in
Eq. (1). Thus conditions (ii) and (iii) translate to |λα| < 1 and
ψ0(z) = 0, respectively. Note that the superposition describes
the field in one period in x direction only. In order to obtain
the complete profile we have to use Eq. (2), i.e., to multiply
|ψα (t )〉 in Eq. (A10) with appropriate power of λα . If we
denote |uα,p〉 = (Aα,p Bα,p)T and use Eqs. (2) and (A10),
condition (iii) takes the form∑

α

(Bαp/λα )Qα = 0. (A11)
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This is a set of homogeneous equations for unknown Qα ,
its nonzero solution indicates an existence of ES. In our
computer program the problem was solved with the singular
value decomposition.

Because ε is constant, it is advantageous to rewrite
Eq. (A9) into a form suitable for calculation of λα for a given
value of ε. To this aim we substitute Eqs. (A7) and (A8) into
Eq. (A9), multiply the result from the left by matrix

(
λα 0
0 1

)
,

and group the terms that contain λα . After a few straightfor-
ward steps we obtain the generalized eigenproblem

Xp|uα,p〉 + W (|uα,p−1〉 + |uα,p+1〉)

= λα[Yp|uα,p〉 + W (|uα,p−1〉 + |uα,p+1〉)]. (A12)

where

Xp =
(

0 C(0)
2

C(0)
1 −ε − p�

)
, (A13)

Yp =
(

ε + p� −C(0)
1

−C(0)
2 0

)
, (A14)

W = �V

2

(
0 −1
1 0

)
. (A15)

Thus the main steps for obtaining ES are as follows:
(1) Define � and ε.
(2) Solve Eq. (A12) for λα , |uα,p〉; take all solutions for

which |λα| < 1.
(3) Solve Eq. (A11) for Qα , a nonzero solution indicates

an existing ES.
(4) Possibly use Eq. (A10) for a calculation of the wave

function of the ES.
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