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Probe response of a cavity-optomechanical system coupling to a frequency-dependent bath
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We investigate the probe response of a cavity-optomechanical system with its mechanical oscillator coupling to
a bosonic bath characterized by the Ohmic spectrum density. By employing the spectrum decomposition scheme,
we simplify the original non-Markovian equation of motion for the system and then examine the dynamics of
the intracavity field. Furthermore, we work out the probe response function and simplify it further with the linear
fitting method. Based on this simplification, we obtain the details of the probe spectral profile and find that
the probe response changes smoothly from the optomechanically induced transparency (OMIT) regime to the
normal mode splitting regime as the driving strength increases due to the lifting of frequency degeneracy of the
OMIT system by the non-Markovian effect. We also find notable probe amplification under the cavity driving
resonant condition. Our method can be applied to solving a non-Markovian problem in quantum optics or other
fields of physics where a bath with any frequency-dependent structure must be considered.
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I. INTRODUCTION

Cavity optomechanics [1,2] explores the interaction be-
tween optical modes and mechanical modes as well as relevant
physical effects. With a cavity optomechanical system (OMS),
one can control the mechanical response of a system by an
optical field and, reversely, the optical response of a system
by a mechanical or another optical field. It is this character
of the cavity OMS that leads to its potential applications
in ultrasensitive measurements [3–6], the quantum optical
effects [7–10], and quantum information processing [11,12].
Optomechanically induced transparency (OMIT) is a typical
example of light-control light via mechanical motion. The
remarkable feature of the OMIT, like the well-known atomic
electromagnetically induced transparency (EIT) [13,14], is the
steep variation of the refractive index achieved inside the in-
duced nonabsorptive bandwidth. Since the OMIT was first ob-
served [15,16], successful investigations in this subject have
been made, such as the OMIT-based slow-light [17,18] and
ultrasensitive measurements [19–22], multicavity and hybrid
OMIT [23–29], and optomechanically induced amplification
(OMIA) [30–34].

The motion of a realistic mechanical oscillator is affected
by its surroundings. If its oscillating frequency is much
larger than the coupling strength with its environment and
the correlation time of the environment is much smaller
than the characteristic time of the system, the information
associated with the amplitude and phase flows unilaterally via
the mechanical degrees of freedom out of the system. The
dynamics of the oscillator can then be described in the Born-
Markovian approximation [35]. However, this approximation
is not applicable when the oscillator couples strongly with a
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finite and frequency-dependent bath, and one may see now
the flowing back of those that have flowed out, i.e., the
memory effect. There is already some research progress in
this aspect, including the experimental observation of non-
Markovian regimes of a heat bath coupled to an OMS [36]
and the theoretical demonstration of the positive role of the
non-Markovian effect in the generation and preservation of
the optomechanical entanglement [37,38], the cooling of the
optomechanical oscillator beyond the conventional Marko-
vian limit [39], the optomechanical force sensor [40], and
the OMIA due to the non-Markovian cavity’s electromagnetic
reservoir [41]. In addition, the environmental engineering
technique [42–45] is emerging as a promising tool for ma-
nipulating the non-Markovian environment and, therefore, the
quantum dynamics of cavity OMSs, with which more secrets
in this field will be declassified.

The difficulty in addressing a non-Markovian problem lies
in the memory effect. Mathematically, it is a problem of how
to deal with an integrodifferential equation with respect to
both time and bath degrees of freedom. In a few special
cases, the problem can be simplified because the spectral
density of a bath has a simple form, for example, Lorentzian
or Debye form, which allows the analytical calculation of
integration. In this paper, we investigate the OMIT where a
mechanical oscillator couples to a bosonic bath characterized
by the Ohmic spectrum density. The frequency dependence of
the bath and the strong enough coupling of the bath with the
oscillator ensure the observable action of the non-Markovian
effect. We employ the spectrum decomposition scheme (SDS)
[46], which was proposed for expanding the bath correlation
function required by the hierarchical equations of motion
technique in solving complicated non-Markovian problems
[47], to numerically fit the spectral density function with a set
of analytically treatable Lorentzian functions, and then trans-
form the original integrodifferential equation for the OMIT
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system into a set of nonlinear ordinary differential equations.
We examine the dynamics of the system related to the output
field at frequencies of the control and probe fields, and work
out the steady-state probe response function. By using the
linear fitting method, we simplify this function and obtain the
structure information of the probe response spectrum. We find
the effective role of the non-Markovian effect in generating
the OMIT effect and analyze the condition under which a
notable probe amplification in the OMIT system is achieved.

The paper is organized as follows. In Sec. II, we intro-
duce the OMIT model under consideration and work out the
corresponding non-Markovian Heisenberg-Langevin equation
simplified with the SDS. In Sec. III, we examine the dynamics
of the intracavity fields at the frequency of the cavity mode
and the probe field. Based on the result of Sec. III, we analyze
in Sec. IV the steady-state probe response of our OMIT
system. Section V presents our conclusions.

II. MODEL DESCRIPTION

The model considered in this paper contains an optical
Fabry-Pérot cavity with one of its mirrors acting as a me-
chanical oscillator of frequency ωm. The vibration mode of
the oscillator is coupled with the cavity mode of frequency
ωc via radiation pressure and also with a non-Markovian
environment modeled by a structured bosonic bath. The cavity
mode is driven by a strong coherent field of frequency ωd ,
probed by a weak field of frequency ωp, and also damped
by an electromagnetic reservoir. We assume that the bath is
composed of an infinitive collection of independent harmonic
oscillators. If operators ĤS , ĤE , and ĤI are denoted as the
Hamiltonians of the system, the environment, and the system
plus environment, respectively, we can write the Hamiltonian
of the whole model as

Ĥ = ĤS + ĤE + ĤI (1)

with

ĤS = h̄ωcâ†â + h̄ωmb̂†b̂ − h̄gâ†â(b̂† + b̂)

+ ih̄[(εd e−iωd t + εpe−iωpt )â† − H.c.], (2)

ĤE =
∑

k

h̄ω′
kâ†

k âk +
∑

k

h̄ωkb̂†
kb̂k, (3)

ĤI =
∑

k

h̄ε′
k (â†

k + âk )(â† + â)

+
∑

k

h̄εk (b̂†
k + b̂k )(b̂† + b̂). (4)

In Eqs. (2)–(4), â (â†) and b̂(b̂†) are the annihilation (cre-
ation) operators of the cavity mode and the mechanical
mode. g is the oscillator-cavity coupling constant defined as
g = (ωc/L)

√
h̄/2mωm with L being the cavity length and m

being the mass of the oscillator. εd = √
2κ℘d/(h̄ωd ) [εp =√

2κ℘p/(h̄ωp)] is the amplitudes of the strong driving (weak
probe) field, where℘d (℘p) is the driving (probe) power, and κ

is the cavity damping rate. âk (â†
k ) is the annihilation (creation)

operator of the reservoir for the cavity mode and b̂k (b̂†
k) is the

annihilation (creation) operator of the bath for the mechanical
mode. εk and ε′

k are the corresponding coupling constants of

the reservoir with the cavity and of the bath with the oscillator,
respectively.

The OMIT system fulfils Heisenberg-Langevin equations
of motion. By the conventional consideration, we take the
reservoir for the cavity mode as a Markovian electromagnetic
vacuum, which, in the rotating-wave approximation, causes
the cavity mode damping at rate κ . As to the bath for the
mechanical oscillator, we assume it has a structure character-
ized by spectral density J (ω) defined as

∑
k ε2

k δ(ω − ωk ) ⇒
ε2
ω/c

dn
dω

≡ J (ω) with dn
dω

being the bath oscillator density, and
go beyond the rotating approximation with respect to the the
oscillator-bath coupling. Following the textbook of quantum
optics [48], from Hamiltonian Eq. (1) we can write down the
formal solution of the bath operator b̂k

˙̂bk (t ) = b̂k (0)e−iωkt − iεk

∫ t

0
dτ [b̂†(τ ) + b̂(τ )]e−iωk (t−τ ) (5)

and, subsequently, the Heisenberg equations for the system
operators â and b̂:

˙̂a = −
(

i	c + κ

2

)
â + igâ(b̂† + b̂) + εd + εpe−iδpt + √

κ âin,

(6)

˙̂b = −iωmb̂ + igâ†â +
∫ t

0
dτK (t − τ )[b̂†(τ ) + b̂(τ )] − ξ (t ),

(7)

where we have rotated the system at the frequency ωd of the
driven field. In Eqs. (6) and (7), 	c = ωc − ωd , δp = ωp −
ωd , âin is the input noise operator for the cavity mode, K (t )
is the integral kernel defined as K (t ) = 2i

∑
k ε2

k sin (ωkt ) =
2i

∫ ∞
0 dωJ (ω) sin (ωt ), and ξ (t ) is the bath noise operator

given by ξ (t ) = i
∑

k εk[b̂†
k (0)eiωkt + b̂k (0)e−iωkt ]. Equation

(7) has the time-integration term depending on the whole
evolutionary history from time t0 to t , which indicates that the
dynamics of the OMIT system is of the memory effect. In the
Markovian regime, this term reduces to −γmb̂ in the rotating-
wave approximation, where γm is the oscillator damping rate.

Integrodifferential equation (7) is rather difficult to treat
due to its double integration with respect to time t and
frequency ω. We now employ the SDS [46] to reduce the
complexity. We assume that the bath has the Ohmic spectral
density J (ω) = ηωe−ω/ω̄c [49], where ω̄c is the cutoff fre-
quency determining the position of the peak of the spectral
density and η is the dimensionless coupling strength between
the oscillator and the bath. According to the SDS [46], the
spectral density J (ω) can be numerically fitted with a sum of
Lorentzian functions:

J (ω) =
N∑

j=1

Pjω[
(ω +  j )2 + �2

j

][
(ω −  j )2 + �2

j

] . (8)

Here N is the number of Lorentzian modes required for
fitting use. {Pj, j, � j} ( j = 1, 2, . . . , N) is the set of fitting
parameters for the jth Lorentzian mode, obtained by using
the simulated annealing method [50]. Table I presents the
values of {Pj, j, � j}, and Fig. 1 shows the comparison of
the original (solid black line) with the fitted (dashed red
line) spectral density lines, where a very good agreement
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TABLE I. Fitting parameters in the Lorentzian-mode-
decomposition scheme for the Ohmic spectral density [46].

Ohmic Pj/(η4ωc )  j/ωc � j/ωc

1 12.0677 0.2378 2.2593
2 −19.9762 0.0888 5.4377
3 0.1834 0.0482 0.8099

over the whole range of frequency can be seen. Replacing
J (ω) in the integral kernel K (t ) with its decomposition (8)
and finishing the integration over the bath frequencies, we
transform Eq. (7) into

˙̂b = −iωmb̂ + igâ†â +
∑

j

iPjπ

2 j� j

∫ t

0
dτe−� j (t−τ )

× sin[ j (t − τ )][b̂†(τ ) + b̂(τ )] − ξ (t ), (9)

with which our further analysis can be simplified.

III. NON-MARKOVIAN DYNAMICS OF THE
OMIT SYSTEM

In this section, we examine the non-Markovian dynamics
of the OMIT system. Similar to the atomic EIT [13,14], the
OMIT is the phenomenon of mean response of the cavity
optomechanical system to the probe field in the presence of
the driving field. This means that the quantum fluctuations are
not under consideration and thus the factorization assumption
〈ÂB̂〉 = 〈Â〉〈B̂〉 is reasonable. We focus on three main com-
ponents of the intracavity field, which, in the original frame,
oscillate at frequencies ωd , ωp, and 2ωd − ωp, and obtain
them from the following expansion:

〈Q̂〉(t ) = Q0(t ) + Q+(t )εpe−iδpt + Q−(t )ε∗
peiδpt , (10)

where 〈Q̂〉(t ) stands for the expectation of operator Q̂ (Q̂ =
â, b̂), and Qσ (t ) (Qσ = aσ , bσ , with subscripts σ = 0,+,−
referring, respectively, to the above three frequencies) is the
time-dependent coefficient of the σ component. Substituting
Eq. (10) into both sides of Eqs. (6) and (9) in their mean value
forms, dropping the terms that contain the products of more
than one small quantity εp, and finally equating coefficients

FIG. 1. Comparison of Ohmic spectral density (solid black line)
with its Lorentzian-mode decomposition (dashed red line) based on
Eq. (8) [46].

of terms with the same frequency, we derive the following
equations of motion for Qσ (t ):

ȧ0 = −
(

i	c + κ

2

)
a0 + iga0(b∗

0 + b0) + εca0,

ḃ0 = −iωmb0 + iga0a∗
0 −

∑
j

[
θ

( j)
01 + θ

( j)
02

]
,

(11)
θ̇

( j)
01 = −(� j + i j )θ

( j)
01 + 2I j (b

∗
0 + b0),

θ̇
( j)
02 = −(� j − i j )θ

( j)
02 − 2I j (b

∗
0 + b0),

with the definition

θ
( j)
01 (t ) =

∫ t

0
dτ

Pjπ

4 j� j
e−� j (t−τ )e−i j (t−τ )[b∗

0(τ ) + b0(τ )],

θ
( j)
02 (t ) = −

∫ t

0
dτ

Pjπ

4 j� j
e−� j (t−τ )ei j (t−τ )[b∗

0(τ ) + b0(τ )],

(12)

and

ȧ+ =
(

iδp − i	c − κ

2

)
a+ + 1

+ ig(a0b+ + b0a+ + a0b∗
− + b∗

0a+),

ḃ+ = i(δp − ωm)b+ + ig(a∗
0a+ + a0a∗

+)

−
∑

j

[
θ

( j)
+1 + θ

( j)
+2

]
,

ȧ∗
− =

(
iδp + i	c − κ

2

)
a∗

−

− ig(a∗
0b+ + b0a∗

− + a∗
0b∗

− + b∗
0a∗

−),

ḃ∗
− = i(δp + ωm)b∗

− − ig(a∗
0a+ + a0a∗

−)

+
∑

j

[
θ

( j)
+1 + θ

( j)
+2

]
,

θ̇
( j)
+1 = [iδp − (� j + i j )]θ

( j)
+1 + 2I j (b

∗
− + b+),

θ̇
( j)
+2 = [iδp − (� j − i j )]θ

( j)
+2 − 2I j (b

∗
− + b+), (13)

with the definition

θ
( j)
+1 (t ) =

∫ t

0
dτ

Pjπ

4 j� j
e−� j (t−τ )e−i( j−δp)(t−τ )

× [b∗
0(τ ) + b0(τ )],

θ
( j)
+2 (t ) = −

∫ t

0
dτ

Pjπ

4 j� j
e−� j (t−τ )ei( j+δp)(t−τ )

× [b∗
0(τ ) + b0(τ )], (14)

and I j = Pjπ

8 j� j
. The memory effect of the bath comes into

the OMIT dynamics through the time-dependent behavior of
θ

( j)
σ1 and θ

( j)
σ2 (σ = 0,+,−). Substituting Eq. (12) into the

equation on the second line of Eq. (11), we arrive at the
equations of motion for the expectations of operators â and
b̂, which are exactly the same as those obtained when we
make the expectation and factorization about Eqs. (6) and (7)
in the absence of the probe field. Equation (13) is not closed
because the time-dependent quantities a0 and b0 are involved
in the dynamics of quantities, a± and b±.
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(a)

(b)

FIG. 2. Time evolution of the (a) ωd component and (b) ωp

component of the output field based on Eqs. (11)–(14). The parame-
ters are εd/ωm = 104, 	c/ωm = 1.0, δp/ωm = 0.991, g/ωm = 10−5,
κ/ωm = 0.1, ω̄c/ωm = 50, and η = 10−4, and in the Markovian
case γm/ωm = 9.8 × 10−5. The three sets of spectral decomposition
parameters, {Pj, j, � j} for j = 1, 2, 3, come from Table I.

The OMIT is an optical effect that occurs in the steady
state. By employing the linear stability analysis about
Eqs. (11) and (13), we can obtain the parametric region for
the stable solutions. On the other hand, the memory effect is
unique to a non-Markovian system. The memory time can
be estimated in terms of the correlation time of the bath’s
noise operators ξ (t ), determined by the structure parameter
ω̄c of J (ω) in the case of the Ohmic spectrum density.
In addition, coupling constant η must be large enough so
that the memory effect can be detected. In Fig. 2 we show
the result with the set of parameters in the range obtain-
able with experimental techniques [51]: λ = 1064 nm, ℘d =
3.32 mW, ωm = 2π × 800 kHz, m = 145 ng, L = 10.0 mm,
κ = 2π × 80 kHz, 	c/ωm = 1.0, δp/ωm = 0.99, η = 10−4,
and ω̄c = 2π × 40 MHz [49]. From these parameters, we can
obtain scaled parameters in the equations above: g/ωm =
10−5, εd/ωm = 104, κ/ωm = 0.1, and ω̄c/ωm = 50. The three
sets of spectral decomposition parameters, {Pj, j, � j} for
j = 1, 2, 3, come from Fig. 1. The corresponding memory
time is about ωmt = 0.15, which already approaches the char-
acteristic time of the oscillator and is thus long enough to
interfere with the dynamics of the OMIT system. We note
here that all figures in the rest of this paper are plotted with
the parameters, if no specific declaration is made, that come
from Figs. 1 and 2. Figure 2(a) shows the time evolution of
the real part of the ωd component of the intracavity optical

field and its imaginary part. Figure 2(b) is devoted to the
ωp component of the intracavity optical field. It is seen that
after the transitional process is over the equilibrium is built
up between the OMIT system and its surroundings, and thus
the system reaches the steady state. By comparison, Fig. 2(b)
also presents the ωp component as the system works in
the Markovian approximation, where the decay rate γm of
the oscillator is decided based on γm = ∑

k ε2
k δ(ωm − ωk ) =

ηωme−ωm/ωc [49], and thus γm/ωm = 9.8 × 10−4. It is seen
that under this set of parametric conditions the non-Markovian
effect brings about the probe absorption of the ωp component
in the steady state much less than the Markovian one. We
find that the coupling strength η is an important parameter,
which determines not only the non-Markovian effect but also
the stability of the OMIT system. For instance, under the
condition that other parameters above are unchanged, the
system will lose its stability if η > 0.005.

IV. PROBE RESPONSE WITH NON-MARKOVIAN EFFECT

The output probe response of the OMIT system in the
frequency domain can be known from the steady-state so-
lution of Eqs. (11)–(13) through ET = κa+, the output field
at frequency ωp. From the real part of ET , Re(ET ), and its
imaginary part Im(ET ), we obtain its absorption and disper-
sion, respectively. ET can be rewritten as ET = E+ + E− as
the function of x = δp − ωm (see the Appendix for details),
i.e.,

E± = 1

2(x − x±)
ζ1(x)

{
i ± ζ2(x)[8β − ζ2(x)2]−

1
2
}
, (15)

x± = − i

2
[κ + i2(	 − ωm) − ζ2(x)] ± 1

2
[8β − ζ2(x)2]

1
2 , (16)

where x± is the complex eigenfrequencies of the OMIT
system [16,52] and derived from the denominator of ET (x),
with their real parts Re(x±) being the frequencies of trans-
mission modes “±” and their imaginary parts Im(x±) being
the linewidths. The functions ζi(x) (i = 1, 2) in Eqs. (15) and
(16) are defined as

ζ1(x) = 1 − 2iωmβ

[x2 + 2ωmx + ωmχ (x)]
(

κ
2 − ix − i	 − iωm

) ,

(17)

ζ2(x) = κ

2
+ i(	 − ωm) − i

χ (x)

2
, (18)

χ (x) = φ(x)

(
1 + ωm

	
+ iκ

2	

)
+ 1

	

(
2ωm + iκ

2
+ φ(x)

)
x

+
(

1

ωm
+ 3

	
+ iκ

2ωm	

)
x2 + 1

ωm	
x3, (19)

φ(x) =
∑

j

πPjωm{
2

j + [� j − i(x − ωm)]2
}
� j

, (20)

where β is propositional to the driving strength εd and
	 is the cavity detuning modified by the mechanical
motion.

Because the denominator of Eq. (15) is a high-order func-
tion of x, and E+ (x+) is not a complex conjugate of E− (x−),
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FIG. 3. (a) Plots of Re(xα ) and (b) plots of Im(xα ) (α = +, −)
via εd in both Markovian and non-Markovian cases, where the x
coordinate, ε̄d , of point o is the critical driving strength. (c) Plots
of Re[χ (x)] and Im[χ (x)] fulfilling Eq. (19) and of linear fit-
ting Re(μx + ν ), Im(μx + ν ) with μ = 1.9663 + 0.1i and ν/ωm =
1.25 × 10−2 + 7 × 10−4i. Parameters are the same as Fig. 2.

the non-Markovian probe response spectrum may display in
general an asymmetric multipeak structure, where each peak
represents an eigenmode with frequency equal to the peak
location Re(xα) on the x axis and with the linewidth equal
to the peak width Im(xα ). The following analysis is devoted
to the probe response in the range of the OMIT parameters.
First, let us recall the Markovian result. In this case, the
OMIT appears at the two-photon resonant point δp = ωm and
	 
 ωm, and E± gives rise to a two-peak spectrum. And x±
can be obtained analytically [15,16]. The dotted and dash-
dotted black lines for Re(x±) in Fig. 3(a) and for Im(x±)
in Fig. 3(b) show the locations and widths of peaks “±” as
the function of the driving strength εd , respectively. There
is a critical driving strength ε̄d . If εd < ε̄d , the OMIT arises
due to destructive interference between the intracavity probe
photon and anti-Stokes photon of the intracavity driving field,

with the transparency window in the transmission spectrum
centering at the resonant point Re(x±) = 0 and opening with
the width Im(x−) due to Re(E−) < 0. If εd > ε̄d , the probe
response enters the normal mode splitting (NMS) regime [53]
originating from the lifting of the frequency degeneracy of the
two resonant modes, i.e., Re(x+) �= Re(x−), due to the strong
driving field, where the absorption peaks separate a distance
proportional to the driving strength, but have a common fixed
width [15,16].

In the non-Markovian case, it is impossible to derive the
analytical expression of x± directly. As shown by Fig. 3(c)
for the parameters coming from Fig. 2, the complex func-
tion χ (x) at δp = ωm 
 	 varies slowly in x, and thus
we can make a linear fitting for it, i.e., χ (x) = μx + ν

with complex fitting coefficients μ (=1.9663 + 0.1i) and

(
(

(
(a)

(b)

(c)

FIG. 4. Plots of (a) Re(Eα ) and (b) Im(Eα ) with solid red, dashed
blue, and dotted blue lines corresponding to Eα (α = T, +, −),
respectively, and (c) Re(ET ) obtained based on (15) and (16) (solid
red line), linear fitting based on (15) and (21) (dotted black line),
and Markovian result (solid green line). The parameters are the same
as Fig. 2.
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ν [= (1.25 × 10−2 + 7 × 10−4i)ωm]. Then, inserting the lin-
ear expression of χ (x) into the denominator of Eq. (15), we
derive the analytical expression of x±:

x± = − i

2

[
κ

2
− iρ ±

√(
κ

2
+ iρ

)2

− 16βρ/ν

]
, (21)

where ρ is a complex constant defined as ρ = ν/(2 + μ).
If −iρ is replaced with γm, i.e., μ = 0.0 and −iν = γm,
Eq. (21) returns to its Markovian counterpart [16]. Obvi-
ously, two transmission peaks are always separated by a
distance Im

√
(κ/2 + iρ)2 − 16βρ/ν. This distance starts at

Re(−ρ) in the weak driving limit (εd = 0) and ends with
4Im[β/(2 + μ)]1/2 in the leading order of the strong driving.
Thus, there is no transition driving strength that can serve as
a distinct boundary between the OMIT and the NMS regimes.
The solid and dashed red lines in Figs. 3(a) and 3(b) are
plotted based on Eq. (21) and show Re(x±) and Im(x±) as
the function of driving strength εd , respectively, from which
we can see that the probe response changes smoothly from
the OMIT regime to the NMS regime as the driving strength
increases. Relatively, in the OMIT regime, the absorptive
peak locations change with respect to the Markovian results
more evidently than the peak widths do, while in the NMS
regime these peaks behave oppositely. The observation above
is attributed to the fact that the non-Markovian effect lifts the
frequency degeneracy of the system although it operates in
the OMIT regime, so that the connection of the OMIT with
the NMS regimes becomes smooth.

Figure 4 is plotted based on Eqs. (15) and (21), describing
in Fig. 4(a) the probe absorption spectrum Re(ET ), being the
sum of Re(E+) and Re(E−); in Fig. 4(b) its probe dispersion
partner Im(Eα ); and in Fig. 4(c) the comparison between the
Markovian and non-Markovian results. We can see all the
features of the non-Markovian OMIT predicted from Fig. 3(a)
and its OMIT dispersion inside the transparency window.
However, the window is not totally transparent due to the
surplus absorption after the asymmetric OMIT destructive
interference. We note here that in Fig. 4(c) the original
spectrum obtained based on Eqs. (15) and (16) (solid red
line) overlaps perfectly with that based on Eqs. (15) and (21)
obtained by linear fitting for χ (x) (dotted black line). Thus, for
the non-Markovian OMIT analysis, the treatment simplified
by the linear fitting for χ (x) is sufficiently precise. Figure 5
focuses on the case of strong driving (εd/ωm = 105) in the
NMS regime. As expected from Eq. (21), the strong driving
field enlarges the transparency region between the two NMS
absorptive peaks (see peaks 1-1′ from the solid red line for
η = 10−4). Interestingly, the strong oscillator-bath coupling
widens this region further (see peaks 2-2′ from the dotted
green line for η = 10−3).

The OMIA is the phenomenon of negative probe absorp-
tion that occurs due to constructive interference of the intra-
cavity probe field with the Stokes sideband of the intracavity
driving field when the driving field is resonant with the
motion blue sideband of the cavity, i.e., when 	c = −ωm

[31]. In the present model, we observe this phenomenon
even as the driving field is resonant with the cavity mode.
Figure 6 is plotted based on Eqs. (15) and (21) for 	c = 0.
The Re(ET ) spectrum now displays a four-peak structure,

FIG. 5. Plot of Re(ET ) for εd/ωm = 105, η = 10−4 (solid red
line), and η = 2 × 10−3 (dashed blue line). All other parameters are
the same as Fig. 2.

where the downward peaks mean the probe amplification
and, as shown by Fig. 6(b), each peak centers at the point
satisfying x − Re(xα ) = 0. A notable feature is a pair of sharp
amplification-absorption peaks 1-4 residing symmetrically at
x 
 −2ωm, 0, or δp ≈ ±ωm. Under the present parametric
condition, the amplification peak at δp ≈ ωm can be observed
as 	c takes the value in the range of |	c| � 0.23ωm. The
OMIA for the small cavity detuning may be considered as the
result of constructive interference of the intracavity probe field
with the intracavity anti-Stokes sideband of the driving field,
assisted by the resonantly excited cavity mode. On the other
hand, coupling to the frequency-dependent bath leads to the

）

︵

）

(a)

(b)

FIG. 6. (a) Plot of Re(ET ) for 	c = 0. The inset presents the
horizontally enlarged view centering at x 
 0 (δp 
 −ωm). (b) Plot
of x − Re.(xα ) via x for α = + (dashed line) and α = − (dotted
line). The peaks in (a) reside at x fulfilling x − Re.(xα ) = 0. All other
parameters are the same as Fig. 2.
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dynamics of the oscillator with the memory effect and thus
to a complicated time-dependent decay behavior, which may
result in the modifications of the characteristic frequencies of
the system and their linewidths. The above memory effect
comes into effect through the radiation-pressure coupling
between the oscillator and the optical mode, and increases
the adjustable ranges of the control parameters for the optical
response of interest.

V. CONCLUSION

In conclusion, we have investigated the influence of the
non-Markovian effect on the OMIT where the mechanical
oscillator couples a bath characterized by the Ohmic spec-
tral density. With the help of the SDS, we transformed the
original integrodifferential equation for the OMIT system
into a set of ordinary differential equations, which allows
us to easily carry out the stability analysis and the discus-
sion about the steady-state optical response of the OMIT
system under the influence of the non-Markovian effect. The
probe absorptive spectrum might have a multipeak structure
and the linear fitting treatment makes its details obtainable
analytically. We found that the non-Markovian effect leads
to the smooth transition of the probe response from the
OMIT regime to the NMS regime as the driving strength
increases. A notable probe amplification appears due to
constructive interference of the intracavity probe field with
the Stokes sideband of the intracavity driving field. Our
method can be applied to solving a non-Markovian problem
where a bath with any frequency-dependent structure must be
considered.
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APPENDIX: INTRACAVITY FIELD AT
PROBE FREQUENCY

The intracavity field at probe frequency ωp fulfils
Eqs. (11)–(13) and in steady state reads

a+ =
(
δ2 − ω2

m + φ
)[

κ
2 − i(δ + 	)

] − 2iωmβ(
δ2 − ω2

m + φ
)[

( κ
2 − iδ)2 + 	2

] + 4ωm	β
(A1)

with

ϕ = −
∑

j

πPj(
2

j + �2
j

)
� j

,

φ =
∑

j

πPjωm[
2

j + (� j − iδ)2
]
� j

,

β = g2|a0|2, (A2)

	 = 	c − 2β

ωm + ϕ
,

a0 = εd

i	 + κ
2

.
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