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We present analytic expressions for the s-parametrized currents on the sphere for both unitary and dissipative
evolutions. We examine the spatial distribution of the flow generated by these currents for quadratic Hamilto-
nians. The results are applied for the study of the quantum dissipative dynamics of the time-honored Kerr and
Lipkin models, exploring the appearance of the semiclassical limit in stable, unstable, and tunneling regimes.
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I. INTRODUCTION

Presenting quantum mechanics as a statistical theory on a
classical phase space has attracted a great deal of attention
since the very early days of this discipline. This framework
gives an alternative point of view that provides more insight
and understanding [1-6], and, in addition, avoids the operator
formalism, thereby freeing quantization of the burden of the
Hilbert space [7].

The main ingredient for any successful phase-space
method is a bona fide mapping that relates operators with
functions defined on a smooth manifold ./, the phase space
of the system, endowed with a very precise mathematical
structure [8]. This mapping, first suggested by Weyl [9] and
later put on solid ground by Stratonovich [10], is not unique.
In fact, a whole family of s-parametrized functions can be as-
signed to each operator and the choice of a particular element
of the family depends on its convenience for each problem.
In particular, the time-honored quasiprobability distributions
are the functions connected with the density operator. The
most common choices of s are +1, 0, and —1, which corre-
spond to the P (Glauber-Sudarshan) [11,12], W (Wigner) [13],
and Q (Husimi) [14] functions, respectively. For continuous
variables (such as Cartesian position and momentum), the
quintessential example that fueled the interest for this field,
the parameter s defines different orderings of the basic vari-
ables.

These quasiprobability distributions and their correspond-
ing equations of motion give the right tools for the represen-
tation of quantum dynamics entirely in the language of phase-
space variables. Actually, a substantial step to addressing
this question came from the work of Groenewold [15] and
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Moyal [16], who showed that the evolution equation can be
written as

AW, 1) = w1, W)}, (1.1)

where Q € .# are points in phase space, WF(,S)(Q) is the
Weyl symbol of the Hamiltonian, and the Moyal bracket
{-.} is the image of the commutator [times (i%)~'] under
the Weyl-Stratonovitch map. Therefore, Eq. (1.1) is formally
identical to its quantum version for the density operator, if
one replaces the commutator with the Moyal bracket. This
equation contains, in general, higher-order derivatives, which
reflects the analytical properties of the map. This complicates,
in general, getting any analytical solution [17].

It turns out that the dynamics in Eq. (1.1) can be rewritten
as a continuity equation,

AWI(Q, 1) = -V - JNQ,1), (1.2)

as it was recently discussed for one-dimensional
systems [18-23]. Nonetheless, there is a substantial difference
between the classical and quantum regimes.

In classical statistical mechanics, the conservative evolu-
tion of the (positive) phase-space distribution function f (€2, t)
is given by the famous Liouville equation [24]

O f(Q,1) ={f(,1), Ha},

with {-, -} being the Poisson brackets on .# . This can also be
expressed as a continuity equation,

(1.3)

0 f(2,1) ==V -Jua(2,1), (1.4)
but now the classical current is
Jcl = V(Q)f(Qs t)v (15)

where v(2) & VH, is related to the velocity field generated
by the Hamiltonian H; on .# . In other words, v(£2) induces
a Hamiltonian propagation,

F(Q,0) 5 £(2,1) = fIQu(), 0],

so that the distribution function is preserved along every
classical trajectory 2.1(¢). The stagnation points {£2;}, where

(1.6)
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Ja (€2, 1) = 0, coincide with either the zeros of v(£2) or those
of f(£2,0).

For the quantum dynamics, J®(,¢) can be conve-
niently represented as a (differential) operator acting on the
quasiprobability distribution; i.e.,

JOQ, 1) =JVQ W@, ). (1.7)

In the semiclassical limit, when the dynamics of distribution
resembles the motion of an incompressible fluid, J©(Q) —
v(£2). In contradistinction, in the full quantum regime, tra-
jectories do not exist globally for systems whose phase-space
distributions can develop areas with nonpositive values and
the velocity is not a well-defined function [25]. Consequently,
Eq. (1.7) describes not only the propagation and deformations
of Wi(Q,1), as in Eq. (1.6), but also the emergence of

interference patterns [in particular, the evolution of W;S)(Q)
into a zero-amplitude function at the nonclassical stagnation
points].

The currents J) (S, 1) bear several unexpected features
from a classical viewpoint [19-23]. The distribution and
character of the stagnation points can be used for detecting
the quantumness of the evolution, both from the Wigner and
the Husimi currents [26].

Interestingly, the quasiprobability currents can be properly
defined not only in the unitary case but also in the presence of
dissipation [27-29]. The analysis of these dissipative currents
can provide interesting insights into the decoherence dynam-
ics [30], especially in the presence of purely quantum effects,
such as self-interference and tunneling.

Recently, it has been shown that the description of the
evolution in terms of currents can be extended in natural ways
to spinlike systems, where the classical phase space is the unit
sphere [31]. Actually, in the simplest yet relevant case of a
nonlinear Kerr medium, the spatial distribution of the phase-
space Wigner current and in, particular, of the stagnation lines
(one of the components of the Kerr current is always zero)
allows one to distinguish quantum from classical dynamics,
even for short times.

In the present paper we introduce the s-ordered currents
for spinlike systems whose evolution is governed by quadratic
Hamiltonians and apply it to the analysis of the dynamics
of the Kerr [32,33] and Lipkin-Meshkov-Glick [34-36] mod-
els, both in the unitary and the dissipative case. The most
representative examples of spin dynamics, stable, unstable,
and tunneling (evolution in the classically forbidden regions),
will be analyzed on the basis of spatial distributions of the
quantum currents. Although we get analytical expressions for
any s-ordered distribution, our numerical analysis is focused
on the Wigner propagation, for it reveals in the most conspic-
uous manner the quantum dynamical behavior in the case of
nonlinear evolution.

II. QUASIPROBABILITY DISTRIBUTIONS
ON THE SPHERE

We consider a system whose dynamical symmetry group
is SU(2). The corresponding Lie algebra su(2) is spanned by
the operators {S, S’y, 8.} satisfying the standard commutation
relations [S,, S'y] = iS, and cyclic permutations (in units i =
1, which will be used throughout). The Casimir operator is

=8+ gyz + 82 = S(S + 1)1, so the eigenvalue S (which
is a nonnegative integer or half integer) labels the irreducible
representations (irreps).

We take a fixed irrep of spin S, with the (25 4+ 1)-
dimensional carrier space 75 spanned by the standard angular
momentum basis {|S,m) | m = =S, ..., S}, whose elements
are simultaneous eigenstates of §2 and S.:

S%S,m) =SS+ IS, m), SIS, m) =m|S,m). (2.1

The highest weight state is |S, S) and it is annihilated by
the ladder operator S, (with Sy =8, & iS’y). The isotropy
subgroup (i.e., the largest subgroup that leaves the highest
weight state invariant) consists of all the elements of the form
exp(ixS.), so it is isomorphic to U(1). The coset space is then
SU(2)/U(1), which is just the unit sphere .%5 (the so-called
Bloch sphere), and it is the classical phase space, the natural
arena to describe the dynamics.

The s-parametrized Weyl-Stratanovich map

A WOQ) = Trld ()], (22)

where Q2 = (0, ¢) € .5, puts in one-to-one correspondence,
each operator A invariantly acting on .74 with a function on
the sphere .. The corresponding kernels @® are defined
as [37-39]

2§ K
4 - A
A~ (5) _ SS S vk N
w (Q)_‘/zs+1§ Y (CE ko) Y, TS, 23)

K=0g=—K

where Yk,(€2) are the spherical harmonics, Cgl”,'nlyszmz the

Clebsch-Gordan coefficients, and qu the irreducible tensor
operators [40,41],

N
s [2K+1

= Sm’ ,
TKq N 28 —+ 1 mm,z:_SCSm,Kq|S» m ><S, m|,

2.4)

As expected, they are properly normalized

25 +1
4

Tr[® ()] = 1, / dQ oW Q) =1, (2.5)
5%

with dQ2 = sin6d6fd¢ being the invariant measure on the
sphere.

Consequently, the symbol of A can be concisely
expressed as

Y i X K y )
W Q) = Vas+1 Z Z (CSs.k0) Akq Yin (),

K=0g=—K
(2.6)
where Ag, = Tr(ATIf;). As some relevant examples we shall
need in what follows, we quote

R S —s/2
Sim> Wy = (—S+ 1) V(S + Dn,

A A 1
(s) (s) (5)
{Si, 51+ & "V{s,,sj]+ = (gij ninj + 58"1[25(‘? +D- %ij ]’
2.7)

where n is a unit vector in the direction of Q € .%,
{-, -}+ stands for the anticommutator, and Sa”i(js) =1 - %& i)

[S2S — 1)](173)/2[(25‘ +3)(S + 1)](1+s)/2_
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The traditional SU(2) quasiprobability distributions are just
the s symbols of the density operator p. The value s =0
corresponds to the standard Wigner function, whereas s = £1
leads to P and Q functions, respectively, defined as dual
coefficients in the basis of spin coherent states [42,43]

1Q) = exp[30(Se™™ — 5_€)]IS. S), (2.8)
according to
_25+1
T 4nm

0(Q) = (Q[p[2), p /y dS2 P(Q2) [2)(S2].

2.9
The symbols WA(‘V) (2) are covariant under SU(2) transforma-
tions and provide the overlap relation

Tr (pd) = 251!

dAQWQW, Q). (2.10)
pZ)

A number of alternative generalized quasiprobability distribu-
tions can be found using the method of Cohen [44] (see also
Ref. [45]).

In this representation, the Moyal equation (1.1), as indi-
cated in the Introduction, involves higher-order derivatives.
However, it admits an expansion on the parameter & =
(2S +1)~'. When ¢ < 1, we are in the semiclassical limit
and one can show that [46—49]

AW (Q, 1) = 2e{W(Q, 1), WP ()} + 50(e?) + O(e?),

(2.11)

where {-, -} are the Poisson brackets on the sphere .,

1

{f(2), g(2)} = ﬁ(%f 908 — 0o.f 048)- (2.12)

Therefore, the first-order corrections to the classical evolution

~O(&?) vanish for the Wigner function and consist of second-
order derivatives of W =" ().

The lowest-order approximation, known as the truncated
Wigner Approximation (TWA) [50-56], describes propaga-
tion of every point of the initial distribution along the cor-
responding classical trajectories €2(¢), which are solutions of
the Hamilton equations; viz,

W(Q, 1) > WOQ(—1),1 =0]. (2.13)

This semiclassical evolution allows one to predict the short-
time behavior [57,58]. The positive and negative parts of
Wp(”(Q, t = 0) are deformed according to Eq. (2.13), so that
their volumes are preserved during the validity of the TWA.

III. HAMILTONIAN DYNAMICS AND CURRENTS
ON THE SPHERE

The exact evolution equation for Wp(”(SZ) has been derived
in Ref. [59] (see also Refs. [60,61], where the corresponding
star product for the map is discussed). In most physical ap-
plications only Hamiltonians quadratic in the spin generators
play an important role. Typical examples include second-
harmonic generation, homogeneous spin-spin interactions,
spin-orbit splitting, and atom-field interactions in the dipole
approximation [62]. The generic second-order Hamiltonian
reads

H= Za; S+ Zb,‘k{ﬁj, Si}+ = Hy + i,
i ik

3.1)

where H; and Hyy refer to the linear and nonlinear parts of
the Hamiltonian.

The evolution equation for the Hamiltonian (3.1) can be
rewritten in terms of the Poisson brackets (2.12) as follows:

S —s/2
) _ . ) .
ale = <S_—}—1> Xi:a, {Wp ,I’l,}
1 A s A K
t5. Zb_/k[{GkW(‘), ni} +{G;W¥, n}].
J.k
(3.2)
where
GV = m(1 £ e) £ie(n x Ly,
GO = Im@(L?) - Le [ + 2i(n x L)@~ (L.

(3.3)

Here, L. = (L, L,, L) is a differential realization of the angu-
lar momentum operators; viz,

L, = i(sin ¢dy + cot 6 cos @9y),
Ly = i(— cos ¢dp + cot 0 sin ¢pdy),
L, = —idy, (3.4)

and £? =[24L2+[? is the Casimir operator on the
sphere, namely

N 1
P? = —(399 + cotf dyp + — 3 8¢¢>, 3.5)
sin” 6
so that szLm(Q) = L(L + 1)Y7,(€2) (note that, except for a
sign, it is the Laplacian operator on the sphere). Finally, the
function @ reads

D(x) = [2 — 2(2x% + 1)+ 21 — 2(2x2 + 1) + e*x4]'/2.
(3.6)
The equation of motion (3.2) can be immediately recast
in the form of Eq. (1.2). The currents (1.7), J© = (J5”, Jq(f)),
can be conveniently represented as the actions of differential
operators on the corresponding quasiprobability distributions:

JQ. 1) =V WD, (3.7)
with
J© = (1_;2)_”2@ Zaia¢ n;
+ﬁ > bi[den; G + 9pmGY).
Jk
#=~(15) " Tann
(3.8)

1 ~ ]
—g ijk[agl’le](:) + BgnkG;‘Y)].
ik

It is worth noticing that J& are first-order operators (observe
that n x L is just the angular part of the gradient operator
in spherical coordinates [41]), whereas J© contains higher-
order derivatives because of the dependence on the Casimir
operator 22
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The current associated with the linear Hamiltonian Hj.
generates a rigid rotation of the initial distribution; i.e., the
quantum and classical currents coincide in this case.

In the general case, the quantum dynamics is described
by current operators that do not reduce to a multiplication by
some phase-space function, as in the classical case. This leads
to a nontrivial evolution of the stagnation points £2;, wherein
J9(;,1) = 0, as we shall see in Sec. V. The properties of
the vector field J©)(£,¢) in the vicinity of the stagnation
points can be studied, e.g., with the winding number [19,26]
1(2)) = % fL dp, where ¢ is the angle between the flow
and some fixed reference axis in the loop L. This number
takes the values /(€2;) = &1 for vortices and saddle points,
correspondingly. Nontrivial stagnation points [that do not
coincide with zeros of the initial distribution and the gradient
field VWP(I‘Y) (£2)] dynamically emerge and disappear only in
pairs (topological dipoles [26]) according to Poincaré-Hopf
theorem.

It is worth noting that the evolution (3.2) can be rewritten
in terms solely of the Poisson brackets with the Weyl symbol
of the Hamiltonian (3.1) in two instances: for the linear case
Hy and when the Hamiltonian is the square of an element of
the su(2) algebra; i.e., up to an SU(2) rotation, it has the form

Ay =082, oW ={TOWO w2}, (3.9)
J

Wb =—ilH, pl+
where [A\l,z are the superoperators,

Av(p)=28_p8; — 8,8 p—pS8,5_,

Iy @+ DA(D) + 2y nA (),

Ay(p)=28,p8_ -85,

where

pe (14e) ii(nxL)Z’
: & n,
1

1 L).
PO = —o(e?) - 8[1 NPHLE.LD. )“}D"(Ez),
2¢e 2 n,

(3.10)

and here i(n x L),/n, =tan® 9 (in general, an arbitrary
direction can be chosen instead of the z component). The
equation of motion in the form (3.9) appears as the so-called
second-kind continuity equation [63].

IV. DISSIPATIVE QUASIPROBABILITY CURRENTS
ON THE SPHERE

A. Dissipative currents

Models of dissipation address the interaction of a system
with an environment, whose characteristics are encoded in its
spectral density [64]. Here, we assume that the spin system
is coupled to a thermal bath at temperature 7. The resulting
effective dynamics is appropriately described by the Lindblad
equation [27-29]

4.1)

AA AA

- pS_8,, 4.2)

EeY

and 77 = [exp(fiwy /kT ) — 117" is the average number of excitatjons in the bath.
In the phase-space picture, the action of the superoperators A »(p) is represented by the following differential operators:

- 2201 :I:cos@)—i—ﬁ2 —

A N
G 4] 1(p) [
fz(lq:cose)—i-Lz

A2 (p) =

[-
{Al(ﬁ) > [P
s=0 [

A(®)

The dissipative phase-space dynamics of these spinlike
systems has been investigated by a number of authors
[43,65,66]. Interestingly, the Lindblad evolution can also
be recast as a continuity equation with current operators
given by

N 1 [1 . _
Jg(il) _ Ey[g sinf@ — 9y (1 +2n:|:cos€)},

" 1 cosf
D = —Ey[:ttané’ + @7+ 1) ]a,,;

an 0
. 1
JO(O) = —]/|:

1 5
7|52 sin@ (2% — 2+ 1)dy

2¢e
1. —1, 02
+& 89+§sm9 (L),

cosf e
tan 0

N 1 X
o _ L — _ —1, 2
Jy = 2)/[(Zn+ 1) g > N(Z )]8¢ 4.4)

Lcos® + 1 sin03p)D(L?) + e(L? — cos 6 — Lsin0dy) P
—+—L2 + < (cos@ + 5 sméag)d)(fz) — 8(32 —cosf — 1 sm939)

L(2cos 6 + sin03p) [WED(Q),
+ 1(2cos 6 + 5in 095 |[WEV(Q),

“4.3)
(LH W),

1 HWOQ).

2

2

(

In the high-temperature regime (7 >> 1), all the maps (s =
+1, 0) lead to the same equation of motion, viz,

Ap) = 3y AL+ Ro)(p) > =3y AL + gy WV(Q),

4.5
and the currents take the simple form
s cos 6
JO > —yidy, SO ~—y7 3. 4.6
ynde, Jy vaog % (4.6)

In the presence of dissipation, the stagnation points may
become sinks and sources. Their distribution and dynamics
are quite different in the high- (7 >> 1) and zero-temperature
(n = 0) limits. For instance, Eqgs. (4.6) generate at t =0 a
source of a free-evolving vector field at the maximum of the
initial spin coherent state |2 = (;r /2, 0)), centered in the X
axis. During the dissipative evolution, this stagnation point
slowly moves towards the south pole of the Bloch sphere
(which represents the ground state of the spin system) together

033803-4
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0278 ¢

FIG. 1. Snapshots of the Wigner function corresponding to the free dissipative evolution of the initial spin coherent state |22 = (7 /2, 0)),
with y = 0.015 and § = 10. Red and white lines are stagnation lines for J, and J,, respectively. The pseudocolor encodes the Wigner function
and the black arrows indicate the direction and the strength of the flow. The upper panel corresponds to the high-temperature limit, here

n = 100; the lower panel is for n = 0.

with the distribution, as it shown in the upper panel of Fig. 1.
In the opposite limit of 7 = 0, the structure of stagnation
points is significantly richer. In the meridian ¢ = 0, along
which the initial coherent state |2 = (7 /2, 0)) decays, there
are two stagnation points: a sink and a source located below
and above the maximum of the distribution, as it is shown in
the lower panel of Fig. 1. These stagnation points move in the
opposite directions (to the south and north poles).

B. Classical limit

In the large spin limit, &¢ — 0, only the Wigner current
tends to the classical form. Indeed, taking into account that
D(L?) ~ 2 + O(2), the operators J© reduce to c-numbers;
that is, J© ~ v + O(¢), with

0
v =2¢ (ﬁad)w[i )(Q)

= 2:VW Q). 4.7
—39W1_(10)(Q)) eVW,"(Q2) 4.7)

Here, WIL(IO)(SZ) is the corresponding symbol of the Hamilto-
nian, which, using Eq. (2.7), is

1 1
WI-(I )(Q)Z 5 aini—I—E bjknknj.
i Jk

According to Eq. (3.7), in this limit the points of the dis-
tribution W/)(())(SZ) just follow the flow generated by J.. In
contradistinction, the Q and P currents have nonvanishing
corrections in this semiclassical limit.

In the same limit, the dissipative current fés) dominates,
especially in the zero-temperature limit. This indicates that
the main direction of the dissipative motion is towards the

(4.8)

south pole. For instance, the initial distribution of the Wigner
dissipative currents [Eq. (4.4)] for the coherent state |2 =
(r /2, 0)) in the semiclassical can be approximated as follows:

O = 0) = S y cos ¢p(sin 6 cos 9)*72(1 + sin 6 cos p)
x [sin* 6 — (2 4 1) cos 0],
J(t = 0) = Sy sin ¢(sin 0 cos ¢)* (1 + sin 6 cos ¢)

x [(27 + 1)cos? 0 — 1/2]. (4.9)
In particular, along the meridian ¢ = 0, we have
JO@ =0) = S y(sin0)*2(1 + sin0)
x [sin?6 — cos 0Q2n + 1)], (4.10)

which indicates a source at & ~ 1/2n when n > 1 and a
principal sink at 6 ~ 0.9 when 7 = 0, as it can be seen in
Fig. 1.

V. EXAMPLES: KERR AND LIPKIN-MESHKOV-GLICK
MODELS

A. Kerr model

The simplest quadratic Hamiltonian corresponds to the so-
called Kerr medium, which is described by

5 &2
Hgerr = XSZ- (5.1
This leads to a remarkable non-Gaussian operation that
has set off a lot of interest due to possible applications
in a variety of fields, such as quantum nondemolition

033803-5
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FIG. 2. The Wigner symbol Wf(,O)(Q) for (a) the Kerr Hamilto-
nian and (b) the LMG Hamiltonian.

measurements [67-71], generation of quantum superpositions
[72—79], quantum teleportation [80,81], and quantum logic
[82-85].

As shown in Fig. 2, the Wigner symbol of Hyer has the
aspect of a valley centered at & = /2. The unitary currents
have only one nonzero component (f(;s) = (), and they are

o 1 ~
quo) = sin@[— cosf ®(L?)
2¢e

1 X
_Eg(cose +2 sin089)d>1($2)i|,

fqg‘) = sinO[2(S + 1) cos b + sin By ],

JV = sin0[28 cos 6 — sin O3]. (5.2

A peculiarity of these currents is the existence of stag-
nation lines, where J;SS)(Q) = 0 (see also the discussion in
Ref. [31]). When dissipation is included, both components
are present. In Fig. 3 we plot two snapshots of the Wigner
function for an initial coherent state (2.8) located at the equa-
tor 2 = (7 /2, 0) both for unitary and dissipative dynamics.

0.32

0.32

The first one is at the best squeezing time (xt ~ S™2/3),
where the maximum value of the spin squeezing, evaluated
as the normalized minimum fluctuation of spin components
A%s(t) on the tangent plane, orthogonal to the initial mean
spin vector n = (S(¢)) (s-n = 0) is achieved. The second
one is at the two-component cat time (x¢ = 7 /2) [33], when
the state becomes a superposition of two spin coherent states
(2= (/2,0)) + |2 = (r/2, 7))). When dissipation is in-
cluded, both components of the current are present. This leads
to transformation of stagnation lines into stagnation points, as
shown in Fig. 3. The 8 component of the dissipative current
significantly changes the pattern of the vector fields. The
currents [Eqgs. (4.4)] apparently generate a fast motion of
initial distributions to the south pole of the Bloch sphere;i.e., a
decay into the ground state |S, —S). Nonetheless, distributions
localized inside the potential valley move quite slowly into the
south pole, so that even some quantum interference effects
like residual Schrodinger cat states can be observed. In Fig. 3
we see that the interference pattern is partially destroyed for
times xt ~ 1, as expected, but the distribution is still mainly
concentrated inside the valley, despite the strong dissipation.

This can be understood by taking into account that for § =
10 at the minimum of the valley W, (min, ¢) = 0.125 and
the energy fluctuation in the state |2 = (7/2,0)) is AH ~
6.8, while at the south pole Wy (0 = 7, ¢p) =~ 109.75. Thus,
the distribution should overcome a significant potential barrier
in order to reach the south pole, which slows down the decay
of equatorially localized distributions to the ground state.

It is interesting to stress that, in contrast to the previous be-
havior, when the distributions are localized below the equator
they rapidly slide toward the south pole. This can be readably
observed in Fig. 4, where the Wigner function of an initial
spin coherent state with 2 = (37 /4, 0) at the two-component
cat time, xt = m /2, is shown.

FIG. 3. Snapshots of the Wigner function corresponding to the Kerr Hamiltonian (5.1) and the initial spin coherent state |Q2 = (7 /2, 0))
at the best squeezing time x¢ = 0.32 and at the two-component Schrodinger cat time x¢ = 7 /2. Left panel, unitary evolution; right panel,
dissipative evolution with y = 0.015. Red and white lines are stagnation lines for J; and J,,, respectively. The pseudocolor encodes the Wigner
function and the black arrows indicate the direction and the strength of the flow. We have used S = 10.
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7T
0 m/2

D < -

0 W— | — -

—Tr 0 T

¢

FIG. 4. Pseudocolor plot of the Wigner function for the initial
state |2 = (37 /4, 0)) at the two-component cat time in the case of
dissipative evolution (y = 0.015) with § = 10.

B. Lipkin-Meshkov-Glick model

The Lipkin-Meshkov-Glick (LMG) model [34-36] was
originally proposed to deal with phase transitions in the nu-
clei. The model captures well the physics of two-mode Bose-
Einstein condensates [86] and Josephon junctions [87,88]. In
the language of spin operators the LMG Hamiltonian can be
written as

A

Hong = —h8 + ————
LMG TS+

(82— 82).

y

(5.3)

FIG. 6. Zoom of the Wigner function and the distribution of
currents at ht /T = 0.1 in the vicinity of the saddle point for the
LMG Hamiltonian for the stable unitary evolution. The initial stat
is the same as in Fig. 5.

For different values of the parameter A, the associated classi-
cal symbol has either one or two minima. Here, we take A ~
S, which corresponds to a double-well potential, as shown
in Fig. 2. The minima are located at (Ouin = 7 /2, Omin =
1.459) and (Omin = /2, $min = —1.459), separated by a lo-
cal maximum with a saddle point at (6, = 7w /2, ¢, = 0). The
LMG current operators are significantly more involved than
Eq. (5.3) and have the form in accordance with the general
expressions (3.8).
We consider two dynamical regimes:

ht/T

FIG. 5. Snapshots of the Wigner function corresponding to the LMG Hamiltonian (5.4) for the stable case. The initial spin coherent state
is |2 = (;r/2, —1.459)) at the times ht /T = 0.1 (top panels), ht/T = 0.5 (middle panels) and ht/T = 1 (bottom panels), where T here is
the period of oscillation between the two wells. Left panels, unitary evolution; right panels, dissipative evolution with y = 1 x 10~". Red and
white lines are stagnation lines for Jy and J,, respectively. In both cases the total spin is § = 10.
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FIG. 7. The flow .#(¢ = 0,¢) (5.4) for the same unitary (blue
dashed line) and dissipative (red line) dynamics as in Fig. 5 in terms
of the dimensionless time At /T .

1. Stable motion

We take an initial spin coherent state with Q =
(r /2, 1.459) located inside one of the potential wells (actu-
ally, the right one). The classical stable motion corresponds to
oscillations inside that well. Yet, due to tunneling, the state
is slowly transferred to the other well. In Fig. 5 we plot
snapshots of the Wigner current at some representative times.
The dynamics of the tunneling and the formation of the corre-
sponding interference patterns can be clearly appreciated.

The current direction and its intensity distribution provide
nontrivial information about tunneling dynamics indicating
the main paths of the state transfer. In particular, phase-
space currents explicitly show the spatial distribution of the
quasiprobability flow in classically forbidden areas, where
the standard density current j o« Im(y*V ) is zero. The red
lines and the white lines in Fig. 5 correspond to zero lines
of J d()o) and JQ(O), respectively, and their intersections reveal the
positions of the stagnation points.

In Fig. 6 we plot a magnification of the vicinity of the
saddle point, ¢; = 0 (at the same time as the first plot in
Fig. 5). The tunneling flow in both directions is manifest.

FIG. 8. The Wigner function, at the half-period of the stable
evolution of the initial spin coherent state |2 = (7 /2, 1.459)), for
the LMG Hamiltonian in the high-temperature limit. Here, n = 100,
y =0.05,and § = 10.

The counterclockwise vector field in the vicinity of the
stable point (Omin = /2, Pmin = —1.459) extends into the
classically forbidden region, generating a left-to-right flow
with the highest intensity in the region 8 < /2 (above the
equator). The tunneling flow freely crosses the stagnation
(white) line J;O)(SZ) = 0. The flow in the opposite direction
is mainly below the equator, as one can see in Fig. 6.

When a moderate dissipation is present, the tunneling be-
comes slower, in agreement with general considerations [89].
The interference pattern is largely destroyed. Nonetheless,
despite the very long transfer times from one well into another,
the distribution does not show any fingerprint of decay to
the ground state at the half-period of motion (when the
distribution has passed to another minimum). The reason for
such a behavior is the same as in the Kerr medium: To reach
the south pole following the lines of the dissipative current, a
distribution initially localized in the minimum of the potential
should overcome a potential barrier, which is significantly
higher than the local maximum: W,go)(émin, Pmin) = —47.567;
the energy fluctuation in the state |Q = (7/2, 1.459)) is
AH ~ 2.996, Wy (65, ¢5) = —10.488, while Wy (0 =, ¢) =
46.982, for our case of S = 10.

The dissipative evolution for larger times drastically dif-
fers from the unitary one. While the Hamiltonian evolution
is quasiperiodic and the distribution oscillates between the
potential wells, the dissipation does not allow the transfer
of the whole distribution to the other well, and the inverse
tunneling back to the original well is significantly suppressed
in comparison with the unitary case. Actually, the decoher-
ence in a two-well tunneling acts as a viscous medium, in the
sense that it leads to a phase-space equilibration at long times,
when the initial quasiprobability becomes equally distributed
between the wells in the form of an incoherent superposition.

Useful information about the tunneling is provided by the
integral flow at the line ¢ = O (which separates the potential
wells),

F(p=0,1)= /de sing 1)) (0. =0.1),  (5.4)

which typifies the dominant direction of the propagation at a
given time.

In Fig. 7 we plot the flow (5.4) for one period of the
tunneling oscillation. During this time the initial distribution
is transferred to the other potential minimum and returns
back. One can observe that the direction of the Hamiltonian
evolution changes from right-to-left to left-to-right when the
distribution is completely transferred from the right potential
well to the left potential well. The flow in the presence of
dissipation is significantly smaller in the second half-period
of motion.

The vector field pattern is greatly simplified in the high-
temperature regime, 7 >> 1. One can observe in Fig. 8 that
at the half-period of motion there are only three stagnation
points, even if a partial transfer of the distribution is still
observed: two elliptic points at the minima of the potential
and a hyperbolic one at the saddle point. The rest of the
rich structure of the vector field distribution, present even at
zero-temperature dissipation, is killed by thermal fluctuations.
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FIG. 9. Snapshots of the Wigner function corresponding to the LMG Hamiltonian for the unstable case. The initial spin coherent state is
|2 = (7 /2, 0)) and the dimensionless times are it = 0.279 (top panels) and ht = 0.837 (bottom panels). Left panels, unitary evolution; right
panels, dissipative evolution with y = 0.05. Red and white lines are stagnation lines for J, and Jy, respectively. Again, the total spinis § = 10.

2. Unstable motion

Next, we consider the initial spin coherent state |Q2 =
(r/2,0)) centered at the saddle point (the classical sep-
aratrix). The directions of the current clearly indicate the
hyperbolic nature of the stagnation point (6, = 7 /2, ¢, = 0).
Quantum instability is reflected in a separation of the initial
distribution into two symmetric pieces moving toward the
minima, according to the current direction, with a subsequent
formation of a complex interference picture. This can be seen
in Fig. 9, where the snapshots of the Wigner function along
with the corresponding current lines are plotted. As the state
is initially at the local maxima, the decay to the ground state
is quite fast in the presence of dissipation. The presence of the
dissipative currents (4.4) breaks the symmetry of the motion,
although no significant sinks emerge for moderate evolution
times. The distribution clearly tends to the south pole along
the current lines at times approximately corresponding to the
half-period of oscillations in the Hamiltonian case, in sharp
contrast with the stable situation. Due to an unstable character
of the evolution, thermal fluctuations produce a very fast
decay and trivialization of the current, even for not very high
temperatures.

VI. CONCLUSIONS

In summary, we expect to have provided compelling evi-
dence demonstrating that the quantum currents J® (2, ¢) are

a useful tool for the analysis of the evolution in phase space.
Indeed, the spatial distribution of the quantum current allows
one to visualize the main directions of propagation of the dis-
tribution. Our analytic current operators explicitly underline
the strong differences between the Wigner and the Q and P
currents for SU(2) quadratic Hamiltonians: While for Q and P
the quantum effects are generated by the gradient operator, the
Wigner current also involves action of the Laplace operator,
which leads to a significantly more involved phase-space
interference patterns.

The effect of dissipation is twofold: it destroys the inter-
ference and generates a flow towards the south pole. Never-
theless, as we have seen in the example of the stable LMG
evolution, the impact of the decoherence on a given Hamilto-
nian dynamics depends essentially on the location of the initial
distribution.

It is worth noting that in the multispin case, when the clas-
sical phase space is a direct product of several two-spheres,
the geometrical representation of the currents (3.7) would
not be directly possible, but the analytical properties of the
stagnation points (e.g., the winding numbers) still can provide
useful information about the character of nonlinear evolution.
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