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Within the BCS-Leggett mean-field model of a balanced mixture of two different spin fermionic atoms, we
calculate the BCS pair probability distribution and the density correlation functions both between atoms with
the same and different spin states, being able to accurately extract their spatial large-distance behavior along the
BEC-BCS crossover. It is found that, after different initial transients, these distributions show an exponential
decay and a well-defined periodic oscillatory behavior, which we analyze throughout the whole crossover. In
addition, we derive analytic expressions for the mean pair size and the correlation lengths of the same and
different density correlation functions. While in general, in the BCS side, there are long-range correlations and, in
the BEC region, the behavior is dominated by tight-pair formation, each distribution shows its own characteristic
behavior, yielding all together a quite complete description of the spatial structure of the superfluid along the
crossover.
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I. INTRODUCTION

The physics of a mixture of two fermionic species with
tunable interactions remains as a subject of current interest.
Such a model system is ubiquitous in a wide range of physical
phenomena, ranging from its realization in ultracold gases,
commonly found now in many laboratories [1–10] as one
explanation of high-temperature superconductivity [11–15],
to a description of nuclear matter in certain stars [16–20].
The overall physical picture is of a gas of large, overlap-
ping Cooper pairs of atoms in the Bardeen-Cooper-Schrieffer
(BCS) regime and, in the other extreme, a Bose-Einstein
condensate (BEC) of tight molecules, with a smooth crossover
occurring in the neighborhood within the two-body collision
scattering resonance and the sign change of the chemical
potential [21–24]. The theoretical work on this subject is
already overwhelming; for instance, see Refs. [16,25,26]
as excellent reviews. An important and apparently simple
question concerns the size of the pairs of atoms of the two
different species along the crossover and, although there are
already several discussions to answer this question [15,25,27–
32], it does not and perhaps cannot have a simple or sole
answer since this is clearly a many-body problem. Here, we
readdress this question and pose it more as an analysis of
the spatial structure of the mixture rather than just a question
concerning the size of the pairs. For this goal, within the
mean-field BCS-Leggett theory, by an accurate calculation of
their spatial dependence, we study the following two-body
distributions: the BCS pair wave function, the density corre-
lation function of atoms of different species and the density
correlation function of like particles. The three of them are
obtained directly from the standard variational solution of the
problem at zero temperature [23]. In addition, we introduce a
postulated “pair-binding” wave function or distribution, based

on the pair-binding energy [33], as a reference for the previous
three functions.

Our analysis is based mainly on a numerical evaluation
of the spatial dependence for the mentioned distributions,
which allows us to accurately fit their exponential decay
length as well as their oscillatory wave numbers and phases
for long distances. In addition, we provide exact analytical
expressions for the correlation lengths of all the distribu-
tions, being defined as the normalized second moment of
each distribution [16]. These characteristic lengths and the
associated oscillatory behavior yield a very complete picture
of the physical nature of the pairing phenomenon along the
whole crossover. We first observe that the three distribution
functions behave differently in some regions while similarly
in others. For instance, on the BCS side, both correlation func-
tions, of the same and different species, show the expected
long-range behavior with divergent coherence or correlation
lengths, while the BCS probability distribution shows a finite
average pair radius [27]. The three previous results put to-
gether indicate that, in the BCS limit, although the pair mean
size is finite there are pairs of all sizes as all distributions
decay algebraically. On the other limit, at BEC, now the unlike
particle correlation function and the BCS pair probability
distribution have the same localized behavior, while the same
species correlation function decays extremely fast in its own
way. This is certainly another indication of the formation of
a gas of bosonic molecules where there are no Pauli-blocking
correlations of atoms in the same spin state. The binding-pair
distribution is a reference that fits quite well the envelope of
the calculated distributions in the crossover. Regarding the
oscillatory behavior, we find that, in the long-distance limit,
the three distributions spatially oscillate with the same wave
number that tends to the Fermi momentum in the BCS limit
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and vanishes in the BEC limit. The like and unlike atomic
correlations oscillate perfectly out of phase, showing a nested
structure that becomes more evident in the BCS limit. While
such a structure remains in the BEC side, it is evidently
arrested by the fast exponential decay and low-frequency
oscillations. The BCS wave function oscillates with the same
frequency but its relative phase changes along the crossover.

The article is organized as follows: First we briefly review
the BCS-Leggett mean-field model as a reference for the
calculation and discussion of the pair BCS wave function and
the correlation functions in the following sections. In Sec. III
we discuss the mentioned distributions and discuss how, by
deforming the Fourier transform contours in the k complex
plane, we are able to calculate numerically the distributions
for any pair spatial separation. In Sec. IV we analyze the
average pair radius and the correlation lengths by means of
exact analytical expressions. We conclude with some final
remarks. In the Appendix we give the essential details for
the contour deformation of Sec. III and the exact analytical
expressions that we provide along in the text.

II. BEC-BCS MEAN-FIELD CONTACT
INTERACTION MIXTURE GAS

We consider the usual contact-interaction many-body
Hamiltonian of a balanced gas mixture of fermion atoms in
two hyperfine states σ =↑,↓ in the low-density and low-
energy regime, using the grand potential �̂ = Ĥ − μN̂ ,

�̂ =
∑
k,σ

(εk − μ)c†kσ ckσ + g

V

∑
k1

∑
k4

c†k1↑c†−k1↓c−k4↓ck4↑,

(1)

where g = 4π h̄2a/m is the interaction constant, a is the s-
wave scattering length, εk = h̄2k2/2m, V is the volume of the
sample, and the sums are over all wave vectors k. To find
the ground state we use the BCS-Leggett variational method
[22,23,34], although one can also rely on the mean-field
method [16], or the exact solution in the thermodynamic limit
[27]. The BCS-Leggett variational approach introduces the
BCS wave function to minimize the grand potential

|�BCS〉 =
∏

k

(uk + vkc†k↑c†−k↓)|0〉, (2)

where ĉ†kσ
are the creation operators of fermionic atoms with

momentum k and spin σ =↑,↓. The variational parameters
satisfy the normalization condition |uk|2 + |vk|2 = 1 and are
given by {

u2
k

v2
k

}
= 1

2

[
1 ± εk − μ√

(εk − μ)2 + �2

]
, (3)

where the gap � has been introduced. For completeness and
for further purposes below, we first give analytic expressions
for the thermodynamic variables: the regularized gap �, the
number N = 〈N̂〉, and the gas ground-state energy E0 = 〈Ĥ〉
equations. As shown in the Appendix, these quantities and
the second moments of the distributions, defined below, can
all be expressed in terms of hypergeometric functions F =
2F1(a, b; c, (1 − z)/2), which in some cases can also be ex-
pressed in terms of Legendre functions Pν

μ(z), with z being a

natural dimensionless quantity,

z = − μ√
μ2 + �2

. (4)

We note that −1 < z < +1, and that the deep BCS limit,
a → 0−, is z → −1, while the BEC limit, a → 0+, is z →
+1. In all the expressions we use the thermodynamic limit∑

k → V
(2π )3

∫
d3k. Then, the so-called regularized gap equa-

tion, which expresses the scattering length a in terms of the
chemical potential μ and the gap �, can be written as

− m

4π h̄2a
= 1

2V

∑
k

(
1√

(εk − μ)2 + �2
− 1

εk

)

= − 1

8π

(
2m

h̄2

)3/2

(μ2 + �2)1/4P 1
2
(z), (5)

while the number, or rather the particle density equation, n =
N/V , is

n = 1

V

∑
k

(
1 − εk − μ√

(εk − μ)2 + �2

)

= 1

4π

(
2m

h̄2

)3/2

(μ2 + �2)3/4
[ − P 3

2
(z) + zP 1

2
(z)

]
. (6)

Since we are considering a balanced mixture, the number of
↑ atoms equal those of spin ↓, being N/2.

In the same way, the total energy density e0 = E0/V is

e0 = 1

V

∑
k

(
εk − εk (εk − μ) − �2/2√

(εk − μ)2 + �2

)

= 1

4π

(
2m

h̄2

)3/2

(μ2 + �2)5/4

×
[

P 5
2
(z) − zP 3

2
(z) + 1

2
(1 − z2)P 1

2
(z)

]
. (7)

The above quantities have already been found in similar or
other forms in other references [27–29]. We do include them
here for the analysis performed below.

Combining Eqs. (5) and (6) into Eq. (7), and using a
recursion relation of Legendre functions, yields the following
closed expression of e0 in terms of the four thermodynamic
quantities n, μ, a, and �,

e0 = −1

5

[
m

4π h̄2a
�2 − 3μn

]
. (8)

As it will be of use below, we can identify the binding energy
per pair as [27]

εb = 2

N
(EF − E0) = 2

5n

[
3(εF − μ)n + m

4π h̄2a
�2

]
, (9)

where EF = (3/5)NεF is the ground-state energy of N free
fermions, with εF = h̄2k2

F /2m and kF = (3π2n)1/3 being the
Fermi energy and momentum of the free gas, respectively.
In the mean-field method the quasiparticle spectrum suggests
that the energy to create such an excitation with k ≈ 0 is
given by

εspec =
√

μ2 + �2 − μ. (10)
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FIG. 1. Dimensionless chemical potential μ̃ = μ/εF , gap �̃ =
�/εF , binding-pair energy ε̃b = εb/εF , and spectroscopic threshold
ε̃spec = εspec/εF , as functions of 1/kF a.

This quantity has been used to analyze rf-spectroscopy of
pair dissociation [25,35]. As we see below, this energy is very
close to εb along the whole crossover.

As discussed in many texts, Eqs. (5) and (6) can be used to
solve for � and μ as functions of n and a, thus allowing us
to express all the physical quantities of the crossover in terms
of the latter as the independent thermodynamic variables. As
shown since the work of Leggett [23], the dependence of all
physical quantities on n and a can be expressed in terms of
the Fermi energy εF and the dimensionless quantity 1/kF a.
Hence, in Fig. 1 we plot μ, �, εb, and εspec, scaled with εF ,
as functions of 1/kF a. The behavior of � and μ is already
well known, showing the relevance of the gap � over the
chemical potential μ on the BCS side, while the opposite
happens in the BEC extreme. It is interesting to observe that
both εb and εspec behave similarly as the gap on the BCS side
and to the chemical potential in the BEC limit, thus serving
as interpolations between the two limits. As we see below,
the opposite spin-correlation length is closely related to these
two energies. Also, as obtained from the previous equations,
see also Ref. [27], we quote here the asymptotic values of
�, μ, and εb in the BCS and BEC limits, 1/kF a → −∞ and
1/kF a → +∞, respectively,

� ≈ 8εF e−2e
π

2kF a , μ ≈ εF

(
1 + 8e−4

[
π

kF a
− 5

])
e

π
kF a ,

εb ≈ 48εF e−4e
π

kF a for 1/kF a → −∞,

� ≈ εF

(
16

3πkF a

)1/2

, μ ≈ − εF

(kF a)2 ,

εb ≈ 2εF

(kF a)2 for 1/kF a → +∞. (11)

From the exact expressions (5) and (6), one can find
the known special values, first, at unitarity 1/kF a = 0,

μ/εF ≈ 0.59061, and �/εF ≈ 0.68640; and, second, at μ =
0, 1/kF a ≈ 0.55315, and �/εF ≈ 1.0518.

III. BCS-PAIR WAVE FUNCTION AND DENSITY
CORRELATION FUNCTIONS

As described in the introduction, the spatial structure of
the many-body BCS state cannot be solely pinned on a single
quantity but, rather, one can look at several relevant quantities
that, put together, yield a more complete picture without the
need of compromising the concept of what a Cooper pair
really is. For this, we look at the three two-body quantities
that can be extracted from the variational parameters uk and
vk . These are the BCS-pair probability density |φBCS(r)|2;
the density-density correlation function between different spin
species, G↑↓(r); and the density-density correlation function
between same species, G↑↑(r). The latter is equal to the
↓↓ correlation function due to the balance of the mixture.
Although these quantities have already been addressed in
the literature, the improvement here presented resides on the
fact that we are able to accurately calculate their spatial
dependence for any distance. In particular, we are able to
study the long-range behavior of all of them, yielding not
only their exponential decay lengths χBCS, χ↑↓, χ↑↑, but also
their respective main oscillatory wavelength or wave number
κBCS, κ↑↓, κ↑↑ as well as their relative phases. In addition, as
shown in the following section, we also calculate analytically
the mean pair radius and the correlation lengths defined as the
second moment of the corresponding distributions.

As was already pointed out by Leggett in his seminal work
[23], the BCS state, spatially, is the antisymmetric superpo-
sition of ↑↓ pairs, with every pair being in a two-body state
given by the following unnormalized wave function:

φBCS(r) = 1

(2π )3

∫
d3keik·r vk

uk
. (12)

As it is our claim here, however, the many-body spatial struc-
ture also depends on the next-in-importance density correla-
tion functions of like and unlike pairs. To make the appropriate
contrast among these three quantities, we stress that, while we
calculate the pair wave function, our emphasis is on the BCS
pair probability distribution |φBCS(r)|2.

To calculate the density correlation functions we recall that
the particle density operator at r of spin σ =↑ or ↓ is given by
n̂σ (r) = ψ̂†

σ (r)ψ̂σ (r) with the particle annihilation operator
given by

ψ̂σ (r) = 1√
V

∑
k

eik·rĉk,σ . (13)

Then, the density correlation function of antiparallel spins ↑↓
is found to be

G↑↓(r, r′) = 〈n̂↑(r)n̂↓
(
r′)〉 − 〈n̂↑(r)〉〈n̂↓

(
r′)〉

= |g↑↓(r − r′)|2,
(14)

with g↑↓(r) being the Fourier transform of vkuk ,

g↑↓(r) = 1

(2π )3

∫
d3keik·rvkuk . (15)
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As we discuss further below, this quantity has also been
identified as the “pair wave function” in several studies, see
Refs. [16,25,31,32]. Here, for definiteness we shall keep it
associated with the ↑↓ density correlations.

Third, the density correlation function with parallel ↑↑
spins (equal to ↓↓) can be found to be

G↑↑(r, r′) = 〈n̂↑(r)n̂↑(r′)〉 − 〈n̂↑(r)〉〈n̂↑(r′)〉
= n

2
δ3(r − r′) − |g↑↑(r − r′)|2, (16)

where now g↑↑(r) is the Fourier transform of v2
k ,

g↑↑(r) = 1

(2π )3

∫
d3keik·rv2

k . (17)

The density correlation function with parallel spins con-
sidered here differs from that commonly used in the literature
[26,36], the present one including the same site contribution
of the spin. This is important to note because the behavior is
completely different from those previously used. Hence, at the
two-body level, the structure of the BCS state is contained in
the quantities vk/uk , ukvk , and v2

k . It is of interest to point out
that the negative, or anticorrelation, sign in the second term of
the equal spin-correlation function reflects the Pauli exclusion
principle just as in the ideal Fermi gases [37].

From the previous discussion we see that the evaluation
of the BCS-pair probability distribution and of the density
correlation functions requires knowledge of φBCS(r), g↑↑(r),
and g↑↓(r), which in turn seemingly amounts to performing
Fourier transforms, see Eqs. (12), (15), and (17). These three
expressions can be generically written as

f (r) =
∫

d3keik·rF (k), (18)

with F (k) being vk/uk , ukvk , and v2
k , respectively. Since uk

and vk depend on k = |k| only, see Eq. (3), the functions f (r)
depends on r = |r| only as well and, hence, it can be generally
written as

f (r) = 1

4π2ir

∫ ∞

−∞
eikrkF (k)dk. (19)

Thus, the task is reduced to perform the one-dimensional
Fourier transform of kF (k). Since F (k) is a real even function
of k, the functions f (r) are also real. Calculating these Fourier
transforms numerically may be done by using a common fast
Fourier transform code. However, since the functions F (k)
decay algebraically for large k, the numerical precision of
f (r) is severely limited, making it very hard to find its large-r
behavior. Here we present an alternative approach that allows
for an accurate calculation of these Fourier transforms for any
value of r, short and very large. This gives rise to very precise
fits of the asymptotic forms of the BCS probability distribu-
tion and of the density correlation functions yielding a contri-
bution with an exponential decay and an oscillatory compo-
nent in the long-distance regime, as shown below. The mathe-
matical details are given in the Appendix and here we present
just the main aspects of the corresponding calculations.

As usual when dealing with this model, most of the an-
alytical and numerical complications arise from the square
root [(εk − μ)2 + �2]1/2 term and its long-k behavior in the

expressions for uk and vk , see Eq. (3). In the k complex
plane this square root gives rise to four branch points with
their corresponding branch cuts; see the Appendix. Hence, the
integral f (r) in Eq. (19) can be extended to the k complex
plane, followed by a deformation of the contour integral,
thus yielding an alternative expression for f (r) that can be
accurately numerically integrated for large values of r. As an
example, we write here the expression obtained for the pair
wave function φBCS(r) only,

φBCS(r) = − k3
F

π2�̃kF r

∫ ∞

τ0

(
2τ 2 − μ̃√

τ 2 − μ̃

)

×
√

(2τ 2 − μ̃)2 − (�̃2 + μ̃2)

× exp[−
√

τ 2 − μ̃kF r] sin (kF rτ )dτ (20)

where τ0 = {[μ̃ + (μ̃2 + �̃2)1/2]/2}1/2, μ̃ = μ/εF , and �̃ =
�/εF . While the above expression may look complicated, it
actually converges very fast and accurately due to the expo-
nentially decaying term in the integrand. The expressions for
g↑↑(r) and g↑↓(r) also contain the same exponential term with
an analogous fast convergence. Although one can calculate
any of the above distributions for any value of r, as shown in
Fig. 2, we mainly concentrate on their long-distance behavior,
as we now discuss. In the literature these three functions have
been studied for short distances [26,36].

A. Exponential decay lengths

The upper panel of Fig. 2 shows the BCS pair probability
distribution function |φBCS(r)|2, the ↑↓ density correlation
function G↑↓(r) and the ↑↑ density correlation function
−G↑↑(r) without the δ-function contribution, namely, just
the part |g↑↑(r)|2, see Eq. (16), for small values of r, where
differences are evident. However, once certain transient has
been passed, their asymptotic shape for large values of r
appear similar, as can be seen in the corresponding lower
panel of Fig. 2. The latter are plots in semilog scale show-
ing an oscillatory behavior with characteristic wave num-
bers κα and phases ϕα , which will be detailed below; here
we introduce a subindex to differentiate among the three
cases α = BCS, ↑↓, ↑↑. On top of the oscillations there is
a clear exponential decay with a characteristic exponential
decay length χα that certainly depends on kF a. Accurate
fits of χα , κα , and ϕα for each distribution, writing ρα (r) =
|φBCS(r)|2, G↑↑(r), G↑↓(r) yields a generic function for the
three distributions that can be written as

ρα (r) ≈ const

r2
e−

√
2r

χα Pα (καr + ϕα ), r � k−1
F , (21)

with Pα (καr + ϕα ) being a periodic function of r with wave-
length 2π/κα and phase ϕα . We would like to point out that
this full functional form has not been previously studied in
all the crossover region for the three functions that we are
considering. Indeed, there have been studies at short distances
only [25,26,38], where a predominant algebraic behavior is
expected. We emphasize here, however, that at long distances
there is always an exponential decay.

The previous fit suggests that we associate an additional
function that helps to describe the spatial envelope of the pairs.
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FIG. 2. Distributions r2ρα (r), with ρα (r) = |φBCS(r)|2 (red), G↑↑(r) (green), G↑↓(r) (blue), as functions of kF r, for chosen values of 1/kF a
before and after the resonance, (a) 1/kF a = −5.0, (b) 1/kF a = −0.0046, (c) 1/kF a = 0.0064, (d) 1/kF a = 4.0. In the upper panel the solid
lines correspond to |φBCS(r)|2, long dashed lines to G↑↓(r), and short dashed lines to −G↑↑(r). The lower panel is in semilogarithmic scale. In
this panel, the upper curves correspond to |φBCS(r)|2, the middle ones to G↑↓(r), and lower curves to −G↑↑(r). The latter does not include the
δ-function contribution in both panels, see Eq. (16).

This we call the binding-pair function, which we write as

|�b(r)|2 = const

r2
e−√

2r/χb, (22)

valid for all values of r, with the exponential decay length χb

given by

χb ≡
(

h̄2

2mεb

)1/2

, (23)

where εb is the binding energy shown in Eq. (9). A spec-
troscopic length χspec [25,39] associated with the threshold
energy εspec, as given in Eq. (10), can also be used for
comparison. In fact, we have found χ↑↓ and χ↑↑ to be well fit
by χspec as well. However, we do not consider it here explicitly
since this length is very close to χb along the whole crossover,
as can be inferred from Fig. 1.

The exponential decay lengths χBCS, χ↑↓, χ↑↑, and χb are
plotted as functions of 1/kF a in Fig. 3, the first three with
solid lines and the latter with a large dashed line. We note
first that in the BEC regime all four exponential decaying
lengths behave essentially in the same way, indicating that
the dominating length scale is that of χb (below we give their
analytic asymptotic expression). On the other hand, in the
BCS limit, while χ↑↓ and χ↑↑ appear very close to χb, χBCS

shows definitely a different behavior, also appearing divergent
but at a much slower pace; as we will see below, when we
analyze the mean pair size and correlation lengths, also shown
in Fig. 3 with dashed lines, this departure makes a profound
difference and gives rise to a richer picture of the structure of
the mixture gas.

B. Characteristic wave numbers and phases

Two other important spatial features can be extracted from
the pair probability density and the correlation functions:
these are the characteristic wave number κα of the oscillatory
function and its phase ϕα . In Fig. 4(a) the plot of κBCS, κ↑↓,
and κ↑↑, as functions of 1/kF a, shows the striking conclusion
that, within our numerical precision, they are exactly the same.
This perhaps should not be surprising for the ↑↓ and ↑↑
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−4 −2 0 2

(a)

−4 −2 0 2

(b)

−4 −2 0 2

(c)

k
F
l

1/(kF a) 1/(kF a) 1/(kF a)

FIG. 3. Exponential decay lengths l = χα and correlation lengths
l = ξα , scaled with kF , as functions of 1/kF a, for the three dis-
tributions (a) |φBCS(r)|2, (b) G↑↓(r), and (c) G↑↑(r). Solid lines
correspond to the exponential decay lengths (a) χBCS, (b) χ↑↓, (c)
χ↑↑. Large dashed lines correspond to χb in the three panels. Short
dashed lines are the average pair radius (a) ξBCS and the correlation
lengths (b) ξ↑↓ and (c) ξ↑↑, as described in Sec. III. For comparison
we show a few points extracted from calculations already reported.
The points in panel (a) are of ξBCS from Ref. [27] and those in panel
(b) are of ξ↑↓ from Ref. [38].
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FIG. 4. (a) Characteristic wave vectors κBCS, κ↑↓, and κ↑↑, scaled
with kF , and (b) phase differences ϕBCS − ϕ↑↓, ϕBCS − ϕ↑↑, and
ϕ↑↓ − ϕ↑↑, in the long-distance behavior of the respective BCS pair
probability distributions and the density correlation functions; see
Fig. 2.

density correlations, since there must be a spatial correlation
of the spin species due to pairing. In the BCS limit the
characteristic wave number approaches the Fermi momentum
kF , an expected result [26,37], yet for the BEC limit it appears
to slowly vanish. The latter seems to be in agreement with
the fact that, in such a limit, the ↑↓ atoms form molecules
and the gas should appear completely uncorrelated for large
distances, as in any common gas. However, by looking at
Fig. 4(b), where the phase differences are shown, ϕ↑↑ − ϕ↑↓
and ϕBCS − ϕ↑↓, we observe that the former is always π while
the latter changes as a function of 1/kF a. The former perfect
phase difference can already be observed at short distances in
the upper panel of Fig. 2(a). Thus, the correlation functions
G↑↓(r) and G↑↑(r) show a very deep structure not only of
the ↑↓ pairs but also of the whole gas mixture, particularly
in the BCS side: as 1/kF a → −∞, the exponential decay
lengths χα and the correlation lengths ξα (see the following

section) for both correlation functions diverge in the same
way, indicating that those quantities become irrelevant in
determining the structure. Hence, the equality of κ↑↓ = κ↑↑
and the constancy of the phase difference ϕ↑↑ − ϕ↑↓, indicate
an average alternating shell structure from the perspective of
any given atom. Although this structure remains on the BEC
side, it is severely diminished by the vanishing of both χ↑↓
and χ↑↑.

IV. MEAN PAIR RADIUS AND CORRELATION LENGTHS

Although all the spatial information we seek is in principle
contained in the full distribution functions described in the
previous section, there is a very important associated single
quantity that serves to characterize their overall behavior.
This is the second moment of the given spatial distribution,
which in the case of the BCS pair probability distribution
function yields the mean pair radius and in the correlation
functions gives their corresponding correlation lengths. These
are defined as follows:

ξ 2
α =

∣∣∫ r2ρα (r)d3r
∣∣∣∣∫ ρα (r)d3r

∣∣ , (24)

where ρα (r) is, again, either the BCS pair probability density
distribution |φBCS(r)|2, the pair correlation function G↑↓(r),
or the same spin-correlation function G↑↑(r). In the Appendix
we provide details for the calculation of the different lengths
ξα . Similarly to the procedure used to obtain Eqs. (12), (14),
and (16), one can also find closed analytical expressions
for the corresponding lengths in terms of hypergeometric
functions. In the case of the ↑↓ and ↑↑ correlation lengths,
the final result can be written explicitly as simple algebraic
functions.

We quote here the analytical expressions for the average
pair radius ξBCS and the correlation lengths ξ↑↓ and ξ↑↑:

ξ 2
BCS = h̄2

m(μ2 + �2)1/2

{
1√

2(1 − z)(1 + z)1/2

1 + 2z − z2 − 2z3 + 2
√

2(1 + z)1/2
(
P 5

2
(z) − zP 3

2
(z)

)
−F

(
7
2 ,− 5

2 ; 2, 1−z
2

) + zF
(

5
2 ,− 3

2 ; 2, 1−z
2

)
}

, (25)

ξ 2
↑↓ = 1

8

h̄2

2m

1

(μ2 + �2)1/2

5 + 8z + 3z2

(1 + z)2 , (26)

ξ 2
↑↑ = 3

8

h̄2

2m

1

(μ2 + �2)1/2

(
1 − z

1 + z

)
. (27)

In Figs. 3(a)–3(c), we plot ξBCS, ξ↑↓, and ξ↑↑, respectively, as
functions of 1/kF a with short dashed lines. Their asymptotic
limits, including that of the binding-energy pair distribution,
in the BCS limit, z → −1 and 1/kF a → −∞, are

ξBCS ≈
√

105

2kF

[
ψ

(
7

2

)
− ψ

(
5

2

)]1/2

=
√

21

2

1

kF
,

ξ↑↓ ≈ 1√
2

e2

8kF
e− π

2kF a , ξ↑↑ ≈
√

3

2

e2

8kF
e− π

2kF a ,

ξb ≈ 2√
3

e2

8kF
e− π

2kF a , (28)

where ψ (x) is the digamma function. Note that, in the BCS
limit, ξBCS reaches a finite limit. A few points extracted from
the results reported in Refs. [27] and [38] are plotted in Fig. 3,
showing agreement with our analytic results. Thus, while
|φBCS(r)|2 does become long ranged in the limit, we recall that
χBCS appears to bend in the BCS limit, see Fig. 3(a), growing
slower than χ↑↓ and χ↑↑. As a consequence, the numerator
and denominator of Eq. (24) both diverge as ∼�−1, yielding
a finite ξBCS. Thus, from the perspective of the pair wave
function, the pair size reaches a finite value in the BCS limit.
This is in stark contrast with the density correlation lengths
ξ↑↓ and ξ↑↑, which indeed diverge. However, there is no
contradiction since the latter are correlation lengths and their
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divergence are in agreement with the expected notion that the
correlation functions become long range. This indicates that,
while average pair radius is finite, the algebraic decay of the
wave function allows for pairs of all sizes. We also note that,
up to numerical factors of order one, ξ↑↓ ≈ ξ↑↑ ≈ ξb ∼ �−1,
also expressing the known fact that the gap is the relevant
energy scale in the BCS limit [25], which agrees with the
Pippard coherence length [15].

In the BEC limit, z → +1 and 1/kF a → +∞, we now
have the asymptotic behavior,

ξBCS ≈ a√
2
, ξ↑↓ ≈ a√

2
,

ξ↑↑ ≈
√

1

2π
(kF a)3/2a, ξb ≈ a√

2
. (29)

While now ξBCS ≈ ξ↑↓ ≈ ξb ∼ a ∼ |μ|−1/2, showing that the
relevant energy is μ and no longer the gap, the different
behavior is shown by ξ↑↑ which vanishes much faster than
the others, as can be seen in Fig. 3(c). This can be interpreted
as the loss of fermionic correlation between ↑↑ and ↓↓
atoms, since they now are part of bosonic indistinguishable
molecules. This is in line with the attained BEC charac-
ter of the gas in such a limit. To reinforce this point, the
decorrelation observed in the BEC side is accompanied by
the vanishing of the characteristic wave vectors κ↑↓ and κ↑↑;
namely, the wavelength of the nested structure gets diluted as
the pairs become tighter.

We point out that g↑↓(r), the Fourier transform of ukvk , see
Eq. (15), and whose square yields the pair correlation function
G↑↓(r), has also been identified as the “pair wave function”
because it obeys a Schrödinger-like equation, as can be ob-
tained from the gap equation (5) [16,23,25]. In this regard, it
is considered that g↑↓(r) and its associated correlation length
ξ↑↓ essentially bears the Cooper pair structure. Indeed, Strinati
and collaborators [15,16,29,38] have thoroughly studied this
function and its length not only in the zero-temperature limit
as here but also at finite temperatures, and one can also
mention results of this function for finite range potentials
[30,40,41]. It is thus of interest to point out that the correlation
function G↑↓(r), apart from its spatial oscillations, is the
one most closely related to the binding-energy wave function
along the whole crossover. As we have studied here, however,
the full structure of the mixture emerges not only when the ↑↓
correlation function is considered but also when the ↑↑ corre-
lation function and the BCS-pair probability distributions are
taken into account.

V. CONCLUSIONS AND DISCUSSIONS

In this article we have addressed the spatial structure of the
gas mixture of two different fermionic species throughout the
BEC-BCS crossover at the zero-temperature mean-field level.
We analyze the BCS pair probability distribution function that
enters the many-body BCS ansatz and the equal ↑↑ and pair
↑↓ density correlation functions. By exploiting their nonan-
alytic structure in the complex plane of the Fourier k space,
we are able to accurately calculate them. In this way, we can
access their long-distance properties, such as their exponential

decay length, oscillatory behavior, and relative phases, see
Fig. 2, that determine their physical asymptotic behavior,
which is crucial to the understanding and characterization
of the different regimes along the crossover. The technique
developed here should be useful for dealing with typical
integrals that appear in related problems, since it avoids
the numerical difficulties of Fourier transforms of algebraic
decaying functions. This technical achievement was not only
responsible for our main physical results but we believe it is
the way to calculate many of the integrals that appear, for
instance, in calculations that include finite temperature and
fluctuations.

To summarize, as shown in Fig. 3, we find that, while
the three exponential decay lengths behave similarly, the
corresponding correlation lengths do show different behavior,
indicating the different physical properties that each distribu-
tion addresses. In Fig. 4, we observe that the spatial oscillating
frequencies of the three functions are the same, which with the
relative phase-difference behavior, point out the emergence of
a nested spatial structure of atoms with parallel and antipar-
allel spins, on average. This structure can, in principle, be
experimentally tested [25,39]. The exponential decay length
and frequency oscillations correspond to features of two-body
physics, already estimated in the BCS and BEC limit, with
our work contributing to their full description along the whole
crossover. In addition, we have also provided an analytic sys-
tematic procedure to deal with the integrals appearing in the
thermodynamic quantities and in the calculation of correlation
lengths. We have verified that some of our expressions indeed
agree with those already reported [27,38].

There are, however, natural extensions of this study that
should be addressed. One is the consideration of realistic
interatomic finite-range potentials [40,41] and the other is
the inclusion of finite temperatures [38] still at the level of
a mean-field description. For the case of finite temperatures
there are already solid advances, especially for the ↑↓ cor-
relation function [16,38]. In this context there is an addi-
tional length, the phase length, which is associated with the
Gaussian fluctuations of the order parameter [29]. Although
such an analysis is beyond the scope of the present work,
it is of interest to point out that such a quantity diverges
in both limits, as �−1 in the BCS limit and as |μ|1/2 in
the BEC limit, taking its smallest value near unitarity, in
contrast with the lengths discussed here. This suggests, as a
natural continuation of the present work, to look at the fluc-
tuations of all distributions here studied, even at the Gaussian
level.

Our calculations can be contrasted with those used in
Monte Carlo methods. The structure of the correlators that
we found may contribute to give physical insight for new
variational functions [36]. Also, comparing with those Monte
Carlo calculations, it can be seen that the correlation lengths
obtained here are a lower bound of the correlation lengths of
the complete many-body Hamiltonian [26].

To conclude we would like to briefly address the conse-
quences of the long-range behavior near unitarity and in the
BCS limit on current experimental studies with confined ultra-
cold gases. Typically, specially in the BEC side [7,42,43] and
in gases with bosons such as 87Rb [44] and 7Li, [45], the local
density approximation has been shown to be quite accurate.
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This can be understood as a result that the density correlation
length is (much) smaller than the size of the system. However,
this may not be true in the near and deep BCS regions. That
is, those vapor clouds may still be of relative mesoscopic size
and, therefore, the usual thermodynamic description could
not be directly applied to them. This deserves a further and
careful analysis of the different length scales involved in those
experiments.
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APPENDIX: ANALYTICAL EXPRESSIONS AND
CONTOUR DEFORMATION

1. Analytical expressions for thermodynamic functions and
correlation lengths

In expressions (5)–(7), for the gap, number density, and en-
ergy, the difficulty of the k integrals lie in the handling of the
factor [(εk − μ)2 + �2]β , when β = −3/2, −1/2, 1/2, . . . ,
a positive or negative semi-integer. The suggestion is to make
the following change of variables and rearrangements [46]:

[(εk − μ)2 + �2]β

= (μ2 + �2)β (x2 + 2xz + 1)β

= (μ2 + �2)β (1 + x)2β

(
1 − 2(1 − z)x

(1 + x)2

)β

, (A1)

where x = εk/(μ2 + �2)1/2 and z = −μ/(μ2 + �2)1/2 and
integrate over x. Since x/(1 + x)2 < 1 for x → 0 and x →
∞, one can perform a series expansion in powers of 2(1 −
z)x/(1 + x)2 of expression (A1). Then, all the resulting in-
tegrals can be rearranged as factors of a power series in
(1 − z)/2 that can be integrated term by term. This can a be a
lengthy exercise but it yields a series of convergent integrals,
which are all beta functions. The resulting series can be cast
in terms of hypergeometric functions,

F

(
a, b; c,

1 − z

2

)
=

∞∑
n=0

(a)n(b)n

n!(c)n

(
1 − z

2

)n

, (A2)

where (d )n are Pochhammer symbols. Depending on a, b, and
c, in some cases the hypergeometric functions can be written
in terms of Legendre functions and in others they can be
written explicitly [46,47].

For the calculation of the lengths ξα , Eq. (24), we first write
the distribution ρ(r) in terms of its Fourier expression. For
instance, for ρBCS(r) = |φBCS(r)|2, the length ξ can be recast
as

ξ 2
BCS =

∫
r2|φBCS(r)|2d3r∫ |φBCS(r)|2d3r

=
∫ |∇kφ̃BCS(k)|2d3k∫ |φ̃BCS(k)|2d3k

, (A3)

where φ̃BCS(k) = vk/uk is the Fourier transform of φBCS(r).
One integrates the expression in the second line by using the

FIG. 5. Illustration of the contour used in the Cauchy integral
formula, with κ = x + iy. Surrounding the branch cuts give four
paths denoted by li, with i = 1, 2, 3, 4.

procedure described in the previous paragraph (similarly for
ξ↑↓ and ξ↑↑).

2. Contour deformation for the calculation
of integral Eq. (19)

Here we show the steps to make the contour integration
around the branch cuts in Eq. (19). In the following, we use
the pair wave function vk/uk , but the same procedure can be
used for ukvk and v2

k .
Using the gap � = h̄2k2

�/2m to adimensionalize the k
integral and defining μ� = μ/�, the pair wave function is
given by the following equation:

(k�r)φ(k�r) = k3
�

4π2i
I (k�r), (A4)

where we have arranged the equation to focus only in the
following integral:

I (k�r) =
∫ ∞

−∞
κ[

√
(κ2 − μ�)2 + 1 − (κ2 − μ�)]eiκ (k�r)dκ.

(A5)

The integrand has four branch cuts due to the square root, as
illustrated in Fig. 5. To calculate them we use the principal
branch of the complex logarithm function. Then, the points κ

in the complex plane belonging to the branch cuts satisfy the
following equations:

Re[(κ2 − μ�)2 + 1] � 0, and Im[(κ2 − μ�)2 + 1] = 0.

(A6)

Using κ = x + iy it can be shown that the branch cuts cor-
respond to points in the hyperbola x2 − y2 = μ� with their
magnitude satisfying |κ|2 � (μ2

� + 1)1/2. Then, choosing a
contour C which surrounds the branch cuts in the upper half
plane like the one shown in Fig. 5, the Cauchy theorem allows
us to conclude that

∮
C f (κ )dκ = 0, where

f (κ ) = κ
√

(κ2 − μ�)2 + 1eiκ (k�r). (A7)

The term κ (κ2 − μ�)eiκ (k�r) can be removed from the in-
tegrand because it is analytic everywhere. Hence, it can be

033619-8



SPATIAL STRUCTURE OF THE PAIR WAVE FUNCTION … PHYSICAL REVIEW A 101, 033619 (2020)

concluded that∫ ∞

−∞
f (κ )dκ = 2

∫
l2

κi
√

|(κ2 − μ�)2 + 1|eiκ (k�r)dκ

+ 2
∫

l4

κi
√

|(κ2 − μ�)2 + 1|eiκ (k�r)dκ.

(A8)

with the branch cuts parametrized by γ2(t ) = t +
i(t2 − μ�)1/2 and γ4(t ) = −t + i(t2 − μ�)1/2, with
t ∈ [t0,∞) and

t0 =
(

μ� + (
μ2

� + 1
)1/2

2

)1/2

. (A9)

Substitution of the parametric equations into Eq. (A8) and
identifying the integral I (k�r) with the integral of f (κ ) in the
reals we arrive at the desired result,

I (k�r) = −4i
∫ ∞

t0

(
2t2 − μ�√

t2 − μ�

)√
4t2(t2 − μ�) − 1

× exp[−
√

t2 − μ�(k�r)] sin [t (k�r)]dt,

(A10)

which by a change of dimensions of k� in favor of kF , yields
Eq. (20).
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