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Excitation spectrum and supersolidity of a two-leg bosonic ring ladder
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We consider a system of weakly interacting bosons confined on a planar double lattice ring subjected to
two artificial gauge fields. This system is known to display three phases: the Meissner phase, where the flow
of particles is carried at the edges of the system without transverse current; a vortex phase, characterized by
nonzero transverse current; and a biased-ladder phase, characterized by an imbalance of the population of the
two rings. We use the Bogoliubov approximation to determine the excitation spectrum in the three phases, the
dynamic structure factor, and the quantum fluctuation corrections to the first-order correlation function. Our
analysis reveals supersolid features as well as Josephson modes, corresponding to out-of-phase modes of the
finite ring.
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I. INTRODUCTION

Supersolidity is a combined effect of solid order and super-
fluid flow. In a bosonic system, a supersolid may be formed
by breaking two symmetries: (a) the continuous translational
symmetry in order to create a crystal order (or discrete trans-
lational symmetry on a lattice), and (b) the U(1) symmetry
in order to create a Bose-Einstein condensate. The latter is
a superfluid thanks to the irrotationality of the velocity field
associated with the condensate wave function. The concept
of supersolidity was first introduced in the context of liquid
helium more than 50 years ago [1,2]. With ultracold atoms, su-
persolidity has been observed with Bose-Einstein condensates
in a cavity [3–5] as well as in dipolar quantum gases [6–9].
Both experimental realizations of supersolidity are based on
long-range interactions [10], a key ingredient first introduced
by Gross [11]. Another route to reach supersolidity is to have
a peculiar single-particle dispersion, e.g., one with two de-
generate minima. An example of this second case is provided
by spin-orbit coupled Bose gases where supersolidity has also
been studied [5,12]. Experimentally, crystal order in spin-orbit
coupled Bose gases has been evidenced by the observation
of stripes [13]. However, the visibility of the fringes of the
density is limited by interspecies interactions and is a major
issue to overcome.

In this work, we consider a two-leg bosonic ring lattice
subjected to two gauge fields. Here, thanks to the peculiar
geometry of the system, the interspecies interactions can
be completely suppressed, hence providing a new arena for
studying supersolidity in a condition of high fringe visibility.
As for the case of a spin-orbit coupled Bose gas, in a two-leg
bosonic ring ladder there is no explicit long-range interaction,
but it emerges as an effective low-energy property due to
the effect of gauge field and tunnel coupling between the
rings.

The bosonic ladder under a gauge field in a linear geometry
has been the object of intense theoretical work by means of
density-matrix renormalization group (DMRG) simulations

[14–16] and field-theoretical methods [17–20]. Those studies
have provided a complete characterization of the phase dia-
gram of this system, showing various phase. Among them, we
mention the chiral superfluid phases, the chiral Mott insulat-
ing phases displaying Meissner currents [18,21], and vortex-
Mott insulating phases [22]. In the weakly interacting regime,
which will be the focus of this work, an additional phase has
been predicted [23]: the biased-ladder phase, characterized
by an imbalanced population of the bosons between the two
legs, explicitly breaking Z2 symmetry. In conjunction with
these theoretical advances, the experimental realization of the
bosonic flux ladder has been reported in optical lattices [24] as
well as for lattices in synthetic dimensions, both for fermionic
and bosonic quantum gases [25,26].

In this paper, we focus on a ladder in the form of a double
ring subjected to different flux in each leg. This geometry
is amenable to experimental realization and it minimizes the
effects of boundaries. For this system, we provide several
indications for supersolid features. First of all, we study the
properties of the excitation spectrum in order to demonstrate
the first-order coherence. In the Meissner phase, we find a
single Goldstone mode associated with Bose-Einstein conden-
sation in the only minimum of the single-particle dispersion
relation. In the biased ladder phase, in addition to the phonon
branch, we predict the existence of a roton minimum. This is
the precursor of the vortex phase, in agreement with previous
studies [23]. In the vortex phase, two Goldstone modes are
observed, associated with the spontaneous breaking of U(1)
and translational symmetry. Further proof of the coherence
properties of the system is provided by the calculation of the
first-order spatial correlation function.

As a second step, we then provide various indications
of spatial crystal-like order. First of all, in the excitation
spectrum of the vortex phases we find a folding of the Bril-
louin zone. This is a consequence of the formation of spatial
modulations in the mean-field condensate density due to the
formation of a vortex lattice along the ring. Furthermore, the
analysis of the static structure factor shows the emergence
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FIG. 1. Sketch of the system studied in this work: coplanar
ring lattices with the same number of sites, with interring tunnel
energy K , intraring tunnel energies Jei�p with p = 1, 2, and on-site
interaction U .

of a peak at finite wave vector, corresponding to the density
modulation along the rings.

Taking together the various pieces of evidence on co-
herence properties and crystalline order, we obtain univocal
evidence of supersolidity. Coupled rings under gauge fields
hence provide a novel platform for the experimental study of
supersolid order with ultracold atoms.

Finally, we address some features peculiar to the finite ring
case, and in particular the emergence of Josephson modes
for weakly coupled rings. These modes correspond to a spa-
tially uniform out-of-phase oscillation of particles between
the rings, hence providing further indication of the coherence
among the two rings.

II. MODEL AND METHOD

We consider a Bose gas confined in a double ring lattice
(see Fig. 1). In the tight-binding approximation, we model the
system using the Bose-Hubbard Hamiltonian:

Ĥ = Ĥ0 + Ĥint

= −
Ns∑

l=1,p=1,2

Jp(â†
l,pâl+1,pei�p + â†

l+1,pâl,pe−i�p )

− K
Ns∑

l=1

(â†
l,1âl,2 + â†

l,2âl,1)

+ U

2

Ns∑
l=1,p=1,2

a†
l,pâ†

l,pâl,pâl,p, (1)

where the position of a particle on each ring is indicated by an
integer l ∈ [1, Ns], with Ns the number of sites in each ring,
and âl,p and â†

l,p are, respectively, the bosonic destruction and

creation operators at site l each ring, with p = 1, 2 indicating
the inner and outer ring, respectively. In Eq. (1), J1 and J2

are the tunneling amplitudes from one site to another along
each ring, K is the tunneling amplitude between the two rings,
connecting only sites with the same position index l , and �1,2

are the fluxes threading each ring.

A. Bogoliubov–de Gennes equations

In this work, we focus on the regime of weak interactions
and large filling of the double ring. In this regime, the ground
state is well approximated by a Bose-Einstein condensate
occupying both rings. While there is no Bose-Einstein con-
densation in an infinite one-dimensional system, in a finite
system Bose-Einstein condensation occurs and corresponds
to the macroscopic occupation of the lowest energy level of
the system. Furthermore, at weak interactions and in a finite-
size system, the phase fluctuations typical of low-dimensional
systems are weak and cut off by the system size [27].

To obtain the excitation spectrum of the double ring in
the Bogoliubov approximation, we start from the Heisenberg
equations of motion for the bosonic field operators âl,α [28]
and we replace âl,α in the quantum Hamiltonian (1) by âl,α =
�

(0)
l,α + δâl,α . The field �

(0)
l,α is the ground-state condensate

wave function, a solution of the coupled discrete nonlinear
Schrödinger equations,

μ�l,1 = −J�l+1,1ei(�+φ/2) − J�l−1,1e−i(�+φ/2)

− K�l,2 + U |�l,1|2�l,1,

μ�l,2 = −J�l+1,2ei(�−φ/2) − J�l−1,2e−i(�−φ/2)

− K�l,1 + U |�l,2|2�l,2, (2)

where � = �1+�2
2 , φ = �1 − �2, and μ is the chemical

potential. In the following, we will consider for simplicity
the case � = 0. The next step consists in the expansion
and truncation of the Hamiltonian (1) to quadratic order in
δâl,p, δâ†

l,p, yielding the Bogoliubov Hamiltonian

ĤBog = (
δâ†

1, δâ1, δâ†
2, δâ2

)
H (2)

⎛
⎜⎜⎝

δâ1

δâ†
1

δâ2

δâ†
2

⎞
⎟⎟⎠, (3)

where δâ†
p = (δâ†

1,p, δâ†
2,p, . . . , δâ†

l,p) and the matrix H (2) can
be written in the following form:

H (2) =

⎛
⎜⎜⎝

A1 B1 −K 0
B∗

1 A∗
1 0 −K

−K 0 A2 B2

0 −K B∗
2 A∗

2

⎞
⎟⎟⎠. (4)

The matrix Ap with p = 1, 2 is given by

Ap =

⎛
⎜⎜⎜⎜⎜⎜⎝

2U |� (0)
1,p|2 −Jei�p

−Je−i�p 2U |� (0)
2,p|2

· · · −Je−i�p

...
. . .

...

−Jei�p · · · 2U |� (0)
Ns−1,p|2 −Jei�p

−Je−i�p 2U |� (0)
Ns,p|2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)
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and Bp and Kp are diagonal matrices of dimension Ns × Ns, i.e., Bp = diag(U (� (0)
1,p)2, . . . ,U (� (0)

Ns,p)2), K = KI, with I the
identity matrix. We search then a transformation to quasiparticle operators γ̂ν for an excitation in mode ν, such that the
Bogoliubov Hamiltonian takes diagonal form

HBog =
∑

ν

h̄ωνγ̂
†
ν γ̂ν . (6)

We use the following general transformation, where the operators γ̂ν follow the usual bosonic commutation rules, [γ̂ν, γ̂ν ′ ] = 0,
[γ̂ν, γ̂

†
ν ′] = δν,ν ′ ,

δâl,p =
∑

ν

h(p)
ν,l γ̂ν − Q∗(p)

ν,l γ̂ †
ν . (7)

As a next step, we substitute Eq. (7) into the equation of motion, and we use the following properties:

[γ̂ν, H] = h̄ωνγ̂ν, (8)

[γ̂ †
ν , H] = −h̄ωνγ̂

†
ν . (9)

Finally, by equating the coefficients of the different modes {h(p)
ν , Q(p)

ν } we obtain that the modes have to verify the following
eigenvalue problem, corresponding to the Bogoliubov–de Gennes equations for the ring ladder:

ων

⎛
⎜⎜⎜⎝

h(1)
ν

Q(1)
ν

h(2)
ν

Q(2)
ν

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

A1 − μI B1 −K 0

−B∗
1 −A∗

1 + μI 0 K

−K 0 A2 − μI B2

0 K −B∗
2 −A∗

2 + μI

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

h(1)
ν

Q(1)
ν

h(2)
ν

Q(2)
ν

⎞
⎟⎟⎟⎠, (10)

where h(p)
ν = (h(p)

ν,1 · · · h(p)
ν,l · · · h(p)

ν,Ns
)T and Q(p)

ν = (Q(p)
ν,1 · · ·

Q(p)
ν,l · · · Q(α)

ν,Ns
)T , and the chemical potential is μ =

〈�(0)|H0|�(0)〉 + 2〈�(0)|Hint|�(0)〉. The eigenmodes satisfy
the following orthogonality relations, which follow from
commutation relations among γ̂ν :∑

ν,p

hp
ν,l

(
h(p)

ν,l ′
)∗ − Qp

ν,l

(
Q(p)

ν,l ′
)∗ = δl,l ′ , (11)

∑
l,p

hp
ν,l

(
h(p)

ν ′,l

)∗ − Qp
ν,l

(
Q(p)

ν ′,l

)∗ = δν,ν ′ . (12)

B. Dynamical structure factor

In this work, we will study the excitation spectrum of the
double ring lattice by studying the dynamical structure factor.
This is a powerful tool to study correlations in many-body
systems both theoretically and experimentally. The dynamical
structure factor corresponds to the space and time Fourier
transform of the density-density correlation function, and its
poles correspond to the collective excitation spectrum of the
system.

In the simplest case of a single-component one-
dimensional system, the dynamical structure factor is defined
as follows [29]:

S(q, ω) =
∑
s �=0

|〈s|ρ̂q|0〉|2δ(ω − ωs), (13)

where q and ω are the momentum and energy transferred by
the probe to the sample, |s〉 are many-body eigenstates of the
system and |0〉 is the ground state, ρ̂q is the density fluctuation
operator in momentum space, and ωs = Es − E0 is the energy
difference between the excited and the ground state.

For the case of coupled rings, since the excitations belong
to both rings, we need to define several dynamical structure

factors: Sp,p′ (q, ω), with p, p′ = 1, 2 being the ring index, and

Sp,p′ (q, ω) =
∑
s �=0

∣∣〈s|ρ̂ (p,p′ )
q |0〉∣∣2

δ(ω − ωs) (14)

with

ρ̂ (p,p′ )
q =

∑
k

â†
k+q,pâk,p′ , (15)

and q and k are wave vectors corresponding to the longitu-
dinal momentum along each ring, i.e., we have set âk,p =
(1/

√
Ns)

∑
j exp(ik j)â j,p Using the expansion (7) onto Bo-

goliubov modes, one can show that in the Bogoliubov approx-
imation, the dynamical structure factors are given by

Sp,p′ (q, ω)

=
∑
s �=0

∣∣∣∣∣
∑

l

(
�

(0)
l,p′h

∗(p)
s,l − �

∗(0)
l,p Q∗(p′ )

s,l

)
eiql

∣∣∣∣∣
2

δ(ω − ωs). (16)

To understand the low-energy properties of the system,
instead of using the operators âk,p, it is useful to refer to
the operators α̂k and β̂k that diagonalize the single-particle
noninteracting Hamiltonian H0 [see Appendix A and Eq. (A2)
for its definition] and introduce the structure factors Sλ,λ′ ,
where λ, λ′ = α or β referring to the corresponding operators.
In particular, the low-energy properties of the system under
study are governed by the lowest excitation branch associated
with the operator β̂k , and they can be accessed by studying the
dynamical structure factor Sβ,β :

Sβ,β (q, ω) =
∑
s �=0

∣∣〈s|ρ̂ (β )
q |0〉∣∣2

δ(ω − ωs), (17)

where we have defined ρ̂β
q = ∑

k β̂
†
k+qβ̂k .

033618-3



VICTORIN, PEDRI, AND MINGUZZI PHYSICAL REVIEW A 101, 033618 (2020)

FIG. 2. Phase diagram of the infinite ladder as a function of
the flux φ per plaquette (dimensionless) and tunnel ratio K/J for
interaction strength Un/J = 0.01. The Meissner (M), vortex (V), and
biased ladder (BL) phases are indicated in the figure.

C. Static structure factor

Another quantity of interest for the current study is the
static structure factor. It yields information on spatial long-
range order, e.g., crystal or density wave order, hence it is par-
ticularly suited to address the spatial modulations emerging in
the vortex phase (see Sec. III below) and to infer supersolidity.

The static structure factor is defined as

Sp,p′ (q) =
∑

s

Z (p,p′ )
s (q), (18)

where Zs(q) = |〈s|ρ (p,p′ )
q |0〉|2. To access the properties of

supersolidity, we need to compute the total static structure
factor Stot(q) = S(q) + Se(q), which takes into account both
elastic and inelastic scattering. Inelastic scattering is captured
by S(q), and elastic scattering corresponds to the so-called
disconnected dynamic structure factor Se(q) = Zs=0(q) [29].

III. EXCITATION SPECTRUM AS A PROBE OF THE
PHASES OF THE TWO-LEG BOSONIC RING LADDER

We proceed in this section to present the results of our
calculations of the excitation spectrum of the double ring. As
we shall discuss below, we find that the spectrum depends on
the specific phase. Before presenting the results in each of the
relevant phases for the weakly interacting double ring lattice,
we briefly revisit the expected phase diagram.

A. Phase diagram

For the lattice ring at weak interactions, three phases
are known: the Meissner (M), vortex (V), and biased-ladder
(BL) phases. A schematic phase diagram for the infinite-
ladder limit is illustrated in Fig. 2. It is obtained by min-
imizing the mean-field energy with respect to the ansatz

|�〉 = 1√
N!

(cos(θ )β̂†
k1

+ sin(θ )β̂†
k2

)
N |0〉 [23]. This variational

ansatz is known to accurately describe the full mean-field
phase diagram, as we checked by comparing it with the
full solution of Eqs. (2) [30]. Beyond mean field, various

FIG. 3. Excitation spectrum (solid black line) and dynamical
structure factor Sββ in the lowest branch basis in the Meissner phase,
in the frequency–wave-vector plane (color map, q in units of 1/a with
a the lattice spacing and ω in units of J) for Un/J = 0.2, φ = π/2,
K/J = 3.

approaches (DMRG, bosonization, renormalization group
methods) confirm the existence and stability of the three
phases (see, e.g., [16,31]).

The Meissner phase is characterized by vanishing trans-
verse currents jl,⊥ = iK〈â†

l,1âl,2 − â†
l,2âl,1〉; the longitudinal

currents on each ring, defined as jl,p = iJ〈â†
l,pâl+1,pei�p −

â†
l+1,pâl,pe−i�p〉, are opposite and the chiral current, i.e., Jc =∑

l〈 jl,1 − jl,2〉, is saturated. The vortex phase is characterized
by a modulated density, jumps of the phase of the wave func-
tion, and nonzero, oscillating transverse currents that create a
vortex pattern. The biased-ladder phase has only longitudinal
currents as in the Meissner phase, but displays an imbalanced
population between the two rings.

B. Excitation spectrum in the Meissner phase

In the Meissner phase, the ground-state solution for the
condensate wave function is uniform in space and corresponds
to a condensate occupying the k = 0 state. The lowest branch
of the spectrum shows a single phononic mode close to k = 0.
This is the Goldstone mode associated with the spontaneous
breaking of the U(1) symmetry. Notice that even though
we solve two equations for the condensate wave functions
on each ring [see Eqs. (2) and (10)], only the global phase
is free to fluctuate while the relative phase is fixed by the
tunnel coupling among the two rings. A simplified expression
for the dispersion relation of this branch can be obtained
by performing the Bogoliubov approximation on the lower
branch of the single-particle spectrum [23]. It reads

εM
k = 1

2

√
(Un + 2ε̃k )2 − (2Unukvk )2 (19)

with ε̃k = E−(k) − E−(0) and uk, vk defined in Appendix A.
An analytical solution of the full two-band problem is pro-
vided in Appendix B.

Figure 3 shows the dynamical structure factor as ob-
tained by the numerical diagonalization of the Bogoliubov–
de Gennes equations. The poles of the dynamical structure
factor in the frequency–wave-vector plane are in excellent
agreement with Eq. (19), also shown in the figure.
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FIG. 4. Upper panels: dispersion relations ε(q) (in units of J) as
a function of wave vector q (in units of 1/a) in the Meissner phase
for (a) φ = π/4, K/J = 0.1 and (b) φ = π/4, K/J = 1 for various
values of the interaction strength indicated in panel (d) (lines with
symbols). Bottom panels: corresponding group velocity (in units of
Ja) as a function of wave-vector q (in units of 1/a) for (c) φ = π/4,
K/J = 0.1 and (d) φ = π/4, K/J = 1. The solid lines with symbols
correspond to the Meissner excitation spectrum taking into account
both the lower and upper branch of the noninteracting problem
[see Eq. (B2)], while the dashed lines with symbols correspond to
the lowest band approximation [see Eq. (19)].

The dispersion relation εk obtained from the full solution
[Eq. (B2)] and the corresponding group velocity vg = ∂εk/∂k
is shown in Fig. 4 for various values of the interaction
strength. The main effect of the coupling at strong interactions
is to change the sound velocity, to decrease the region where
the spectrum is linear and modify the shape of the disper-
sion at finite momenta, where the group velocity displays a
minimum.

C. Excitation spectrum in the biased-ladder phase

In the biased-ladder phase, as well as in the vortex phase,
the single-particle dispersion relation has two minima at k =
k1, k2. In the biased-ladder phase, only one of the two minima
is macroscopically populated. The excitation spectrum (see
Fig. 5) shows a phononic Goldstone mode and a rotonic struc-
ture [23]. A similar behavior is found in spin-orbit coupled
Bose gases [32]. At fixed flux φ, when decreasing the coupling
K between the ring, the vortex phase is accessed through
a softening of the roton minimum. The system enters the
vortex phase when the roton minimum decreases down to a
critical (nonzero) value, thus indicating a first-order transition,
similarly to what was predicted for dipolar gases [33].

π 2π
q

0

0.2

0.4

0.6

0.8

1

ω

3π/2

ω

π 2π
q

0

0.5

1

1.5

2

3π/2 2π

FIG. 5. Dynamical structure factor in the frequency–wave-vector
plane (ω in units of J and q in units of 1/a) for the biased-ladder
phase, (a) for the case Un/J = 0.01 and K/J = 1.15, (b) for the
case Un/J = 0.05 and K/J = 1.4. The insets show a zoom of the
same figures at small frequency and for qa 
 2π . In all panels,
Ns = 100, φ = π/2.

D. Excitation spectrum in the vortex phase

At the mean-field level, the vortex phase is character-
ized by a macroscopic occupation of a superposition state
involving two single-particle momentum modes k = k1, k2

corresponding to the minima of the single-particle dispersion
relation [23]. This gives rise to a spatial modulation in the den-
sity profile with wave vector kv = k1 − k2. This is not a finite-
size effect: in the noninteracting limit, one can easily check
that the amplitude of the modulation does not depend on the
system size (see, e.g., [30]), and we have numerically checked
that this is also the case in the presence of interactions.

The numerical result for the dynamical structure factor
Sβ,β (q, ω) in the vortex phase is shown in Fig. 6. We find
various minima of the dispersion relation for q = 0 and
q = k2 − k1 as well as at the points q = 2π and q = 2π
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(c)1.5

ω

0
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1

FIG. 6. Dynamical structure factor Sββ (q, ω) in the frequency–
wave-vector plane (ω in units of J and q in units of 1/a) in the
vortex phase for K/J = 0.8 in linear (a) and logarithmic (b) scale;
(c) dynamical structure factor Sββ (q, ω) for K/J = 0. The other
parameters for all the panels are φ = π/2, Un/J = 0.2, Ns = 80.
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− (k2 − k1). Two linear dispersion branches are found around
each of these minima, characterized by two different sound
velocities. These branches correspond to the two Goldstone
modes associated with the breaking of U(1) and spatial trans-
lational symmetry, and hence they may be viewed as phase
modes and crystal modes [34–36].

An analysis of the dynamical structure factor in log scale
[see Fig. 6(b)] shows a folding of the Brillouin zone for the ex-
citations, corresponding to the underlying ground-state vortex
superlattice felt by the Bogoliubov excitations. Specifically,

for the parameters chosen in the calculation of Fig. 6 we have
that the ground-state density profile has a modulation with
wave vector k1 − k2, leading to a 2π

k1−k2
-times folding of the

excitation spectrum, i.e., 5-times in the case of Fig. 6.
The overall features of the excitation spectrum can be

understood by comparing it with the one in the K = 0 case.
In this regime, the rings are independent and the excitation
spectrum is given by two branches, obtained by solving the
Bogoliubov equations for each ring separately:

ε
V (1)
k = − 1

2 (εk+k1 − εk−k1 ±
√

(εk+k1 + εk−k1 )2 + 4U |ψ0|2(εk+k1 + εk−k1 )),

ε
V (2)
k = − 1

2 (εk+k2 − εk−k2 ±
√

(εk+k2 + εk−k2 )2 + 4U |ψ0|2(εk+k2 + εk−k2 )), (20)

where εk = 2J[1 − cos(k)].
Exploiting a low-energy model (see Appendix C), we can

then understand qualitatively the behavior of the excitation
spectrum at small but finite K . In this regime, the excitations
can tunnel from one ring to the other with k-dependent
interaction parameters Ũ and ˜̃U (see Appendix C). These
scattering events break the degeneracy of the sound veloci-
ties around each minimum. In Fig. 7 we show the various
dynamical structure factors Sp,p′ (q, ω) in the ring basis. All
the excitation branches observed in Sββ (q, ω) are visible, with
variable spectral weight depending on the choice of p, p′. The
off-diagonal dynamical structure factors show the symmetry
relation S12(q, ω) = S21(q,−ω).

E. Experimental probe of the dynamical structure factor

In ultracold atomic gases, the dynamical structure fac-
tor can be measured using two-photon optical Bragg spec-
troscopy [37], according to the following scheme: two laser
beams are impinged upon the condensate, the difference in the

0
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2.5

ω

π 2π
q
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0.6

0.8

1

FIG. 7. Dynamical structure factor Sp,p′ (q, ω) in the frequency–
wave-vector plane (ω in units of J and q in units of 1/a) in
the ring basis with p, p′ = 1, 2 in the vortex phase: (a) S1,1(q, ω),
(b) S1,2(q, ω), (c) S2,1(q, ω), and (d) S2,2(q, ω). For all panels we
have taken φ = π/2, Ns = 80, K/J = 0.8, and Un/J = 0.2.

wave vectors of the beams defines the momentum transfer h̄q,
and the frequency difference defines the energy transfer h̄ω to
the fluid. Both values of q and ω can be tuned by changing
the angle between the two beams and varying the frequency
difference of the two laser beams. Several experiments have
reported the observation of the dynamical structure factor with
ultracold atoms (see, e.g., Refs. [9,38–40]).

A way of probing the excitation spectrum of the dou-
ble ring studied in this work is to use angular momentum
spectroscopy [41]: in this case, one needs two laser beams
denoted by 1,2 in high-order Laguerre-Gauss modes with
optical angular momenta l1,2 and frequencies ω1,2. Their cor-
responding electric fields read E1,2(r) = fl1,l2 (r)e−il1,2θ−iω1,2t ,
where the radial mode functions fl (r) ∝ (r/r0)|l|er2/2r2

0 need
to be chosen in order to match the shape of the double ring
to probe.

IV. SUPERSOLIDITY

Supersolidity is characterized by both superfluidity and
spatial long-range order. In the presence of a Bose-Einstein
condensate, superfluidity is ensured by the phase coherence
of the condensate. First-order coherence is quantified by the
spatial decay of the one-body density matrix. Spatial order
can be probed through the study of the static structure factor.
In this section, we will use the excitation eigenmodes obtained
from the Bogoliubov–de Gennes equations to evaluate both
quantities and conclude about supersolidity of the double ring
ladder.

A. Coherence properties: One-body density matrix

To study the coherence properties of the system, we
consider the one-body density matrix ρ

(1)
α,α′ ( j, l ) = 〈â†

j,α âl,α′ 〉,
which in the Bogoliubov approximation reads [42,43]

ρ
(1)
p,p′ ( j, l ) =

√
ρ

(0)
j,pρ

(0)
l,p′ exp

⎛
⎝−1

2

∑
s

∣∣∣∣∣ Q(p)
s, j

|� (0)
j,p|

− Q(p′ )
s,l

|� (0)
l,p′ |

∣∣∣∣∣
2
⎞
⎠,

(21)

where the function in the exponential relates to the fluctua-
tion of the phase of the condensate, and ρ

(0)
l,p stands for the
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0.95

1
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g
(1

) (
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l

K/J = 0.2
K/J = 0.4
K/J = 0.8

FIG. 8. Averaged first-order correlation function g(1)
(1,1)(l ) (di-

mensionless) as a function of the site index l (dimensionless) for the
inner ring in the vortex phase for increasing values K/J from top to
bottom, as indicated in the figure. The other parameters are φ = π/2,
Ns = 80, and Un/J = 0.2.

mean-field ground-state density profile of each ring. Since
in the vortex phase the system is inhomogeneous, the one-
body density matrix does not depend only on the coor-
dinate difference j − l . Therefore, to estimate the coher-
ence we study the averaged first-order correlation function
defined as

g(1)
(p,p′ )(l ) =

∑
j

ρ
(1)
(p,p′ )( j, j + l )/

√
ρ j,pρ j+l,p′ . (22)

Figure 8 shows the g(1) correlations in the vortex phase
along the inner ring. As the coupling K/J between the
rings increases, we notice that the correlations in the ring
decrease. However, even for large values of K/J , the co-
herence in the vortex phase stays high even at large dis-
tances. This corresponds to a large condensate fraction,
thereby implying Bose-Einstein condensation (BEC) and
superfluidity.

B. Spatial order: Static structure factor

To probe the spatial crystalline order expected in the vortex
phase, we compute the total static structure factor Stot(k) (see
Sec. II C), corresponding to the sum of the elastic contribution
coming from the density profile, and the inelastic contribution
coming from the density fluctuations. The resulting static
structure factor is illustrated in Fig. 9. We clearly see a peak at
wave vectors k = k2 − k1 and k = 2π − (k2 − k1), revealing
the crystalline order associated with the spatial modulations of
the condensate density profile. Putting together this result with
the results of Sec. IV A above, we conclude that the bosons
in the vortex phase of the ring ladder display supersolid
features.

0.1

0.2

S1,1(q) S1,2(q)

0.1

π 2πq

S2,1(q)

π 2πq

S2,2(q)

FIG. 9. Total static structure factors Sp,p′ (q) (dimensionless) as
a function of wave vector q (in units of 1/a) with p, p′ = 1, 2 as
indicated in the panels, for φ = π/2, Ns = 150, K/J = 0.8, and
Un/J = 0.2.

V. SMALL-RING LIMIT AND NATURE
OF THE EXCITATIONS

We report in this section a study of the nature of the
excitations in the different phases of the system, highlighting
in particular the peculiar aspects related to the finite size of the
ring. For this purpose, we calculate the density fluctuations
δnν

l,p defined as 〈s|ρl,p|0〉, which can be obtained from the

Bogoliubov eigenmodes h(p)
ν,l and Q(p)

ν,l according to

δnν
l,p = 2 Re

[
�

(0)
l,p

(
h(p)

ν,l

)∗ − (
�

(0)
l,p

)∗
Q(p)

ν,l

]
. (23)

Our results for the density fluctuations of the chosen low-
energy modes are shown in Fig. 10. Among the various types
of excitation modes, in addition to the phononic Goldstone

−0.1
0

0.1

−0.1
0

0.1

−0.1
0

0.1

δn
( ν

=
1
)

l,
p

δn
( ν

=
2
)

l,
p

δn
( ν

=
3
)

l,
p

l l l

δnl,1
δnl,2

δnl,1
δnl,2

l

δnl,1
δnl,2

FIG. 10. Excitation eigenmodes δnl,p (dimensionless) as a func-
tion of the position l along each ring (dimensionless, blue lines with
squares p = 1, red lines with circles p = 2) for the first three excited
Bogoliubov modes. (a) Josephson out-of-phase mode and two in-
phase phonon modes in the Meissner phase for Ns = 10, K/J = 0.1,
φ = 0.1, Un/J = 0.1; (b) in-phase phonon modes in the Meissner
phase for Ns = 10, K/J = 0.8, φ = 0.1, Un/J = 0.2; (c) out-of-
phase mode in the vortex phase for Ns = 10, K/J = 0.01, φ = π/4,
Un/J = 0.2; (d) in-phase modes in the biased-ladder phase with
Ns = 20, K/J = 1, and φ = π/2.
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FIG. 11. Sketch of the phase diagram in the (φ, K ) plane, with
φ dimensionless and K in units of J , at fixed interaction strength
Un/J = 0.2 and Ns = 10 as deduced from the analysis of the ex-
citation eigenmodes, summarizing the cases illustrated in Fig. 10.
The colored regions marked by letters indicate (a) Meissner phase
with the lowest mode of Josephson type, (b) Meissner phase with the
lowest mode of charge type, (c) Vortex phase with the lowest mode
of spin type, and (d) biased-ladder phase with the lowest mode of
charge type.

modes propagating along each ring, we identify the Josephson
mode, typical of a finite ring system, which is characterized
by spatially homogeneous density fluctuations and out-of-
phase oscillations of the relative populations among the two
rings, as in the small-amplitude dynamics of the Josephson
effect [44,45].

We see in Fig. 10 that a uniform Josephson mode occurs
at low energy in the Meissner phase for low enough coupling
among the rings, whereas higher excited mode are of phonons
of charge (i.e., in-phase) type. Close to the phase boundary,
in the vortex phase we find that the lowest excitation is a spin
(i.e., out-of-phase) oscillation. In the nearby Meissner phase,
the lowest excitation becomes phonon excitation of charge
type, as well as in the biased-ladder phase.

The Josephson modes are found in the Meissner phase
for weak tunnel coupling K/J and weak flux φ. To estimate
the parameter regime where phonon or Josephson modes are
present in the ring, we provide here some estimates based
on energy scales. In the Meissner phase, close to k → 0 the
spectrum has a linear behavior,

εM
k ≈ Ephk, (24)

where

Eph= 2πJ2

KNs

√
U

J

[
K2

J2
cos(φ/2) +

(
U

J
− 2K

J

)
sin(φ/2)2

]
.

(25)

When comparing it to the energy of the Josephson mode,
which scales as the band gap between the upper and lower
branch of the excitation spectrum Egap ≈ K , we predict that
the region where Josephson modes are allowed, i.e., when
Egap < Eph, appears at very low K and φ (see Fig. 11). This is
in agreement with the numerical solution of the Bogoliubov
equations. Moreover, we obtain that the Josephson region
shrinks upon increasing the number of sites in the ring,
thereby showing that the Josephson modes are a finite-size
effect.

VI. CONCLUSIONS

In conclusion, in this work we have performed a detailed
study of the excitation spectrum of a weakly interacting Bose
gas in a two-leg bosonic ring ladder subjected to two artificial
gauge fields. For all three phases expected at weak inter-
actions, i.e., the Meissner, vortex, and biased-ladder phase,
we have solved the Bogoliubov–de Gennes equations for the
ring ladder and calculated the dynamical structure factor.
For a cigar-shaped gas and for a one-dimensional gas in a
linear atomic waveguide, the dynamical structure factor has
already been experimentally measured. Here we propose that
it is accessed in the ring geometry by angular momentum
spectroscopy.

Our main predictions are a single-phonon-like dispersion
at long wavelength in the Meissner phase, a roton mini-
mum emerging in the biased-ladder phase, and two phononic
branches in the vortex phase. Furthermore, we find evidence
of the underlying spatially modulated structure of the vortex
phase in the spectrum by a folding of the Brillouin zone of the
excitations.

Using the Bogoliubov excitation eigenmodes, we have also
calculated the first-order correlation function, monitoring the
coherence of the gas, and we found that it remains high
all over the rings. This feature, together with the diagonal
long-range order in the vortex phase, is a hallmark of the
supersolid nature of the fluid. The emergence of supersolidity
in this system is quite remarkable as, contrary to the spin-orbit
coupled Bose gas, the visibility of the fringes can be tuned
thanks to the absence of interspecies contact interactions in
the current model. Finally, we have shown the emergence
of Josephson excitations in a finite ring, corresponding to
population imbalance oscillations among the two rings.

It would be interesting to study the excitation spectrum at
larger interaction strengths, where the nature of the ground
state changes on a fragmented condensate [46] or a frag-
mented Fermi sphere [47] at intermediate and large interac-
tions, respectively. Also, it would be interesting to confirm
the supersolid nature beyond the mean-field and Bogoliubov
approximations, where the spatial modulations in the den-
sity profile are expected to be washed out by the quantum
fluctuations, but spatial order should persist in the density-
density correlations and in the static structure factor [19,20].
The knowledge of the excitation spectrum is also useful for
atomtronics applications [48], e.g., for the study of transport
in the linear-response regime, when two leads are attached to
the ring [49–51].
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APPENDIX A: NONINTERACTING REGIME

We first proceed by analyzing the noninteracting problem.
The diagonalization of H0 yields the following two-band
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Hamiltonian:

Ĥ0 =
∑

k

α̂
†
k α̂kE+(k) + β̂

†
k β̂kE−(k), (A1)

where (
âk,1

âk,2

)
=

(
vk uk

−uk vk

)(
α̂k

β̂k

)
, (A2)

where functions uk and vk depend on the parameter φ and
K/J , and they are given here for simplicity in the case � = 0
treated in this work,

vk =
√

1

2

(
1 + sin(φ/2) sin(k)√

(K/2J )2 +sin2(φ/2) sin2(k)

)
, (A3)

uk =
√

1

2

(
1 − sin(φ/2) sin(k)√

(K/2J )2 +sin2(φ/2) sin2(k)

)
. (A4)

The momentum in units of inverse lattice spacing takes dis-
crete values given by k = 2πn

Ns
, with n = 0, 1, 2, . . . , Ns − 1,

and the dispersion relation E± reads

E±(k) = −2J cos(φ/2) cos(k)

±
√

K2 + (2J )2 sin(φ/2)2 sin(k)2. (A5)

APPENDIX B: EXCITATION SPECTRUM
IN THE MEISSNER PHASE

In the Meissner phase, the mean-field solution is uniform in
space so that �l,p = √

N/2Ns = √
n. The equation of motion

for the Bogoliubov modes is expanded in plane-wave solu-
tions h(p)

ν,l = h(p)
q eiql , Q(p)

ν,l = Q(p)
q eiql , where ν is identified as

the plane-wave momentum q longitudinal to the rings. It reads

ε(q)

⎛
⎜⎜⎜⎜⎝

h(1)
q

Q(1)
q

h(2)
q

Q(2)
q

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ε+(q) + Un −Un −K 0

Un −ε−(q) − Un 0 K

−K 0 ε−(q) + Un −Un

0 K Un −ε+(q) + Un

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

h(1)
q

Q(1)
q

h(2)
q

Q(2)
q

⎞
⎟⎟⎟⎟⎠, (B1)

where ε±(q) = −2J[cos(k ± φ/2) − cos(φ/2)] + K .
This matrix is diagonalizable and the positive eigenvalues read

ε(q) = 1√
2
{ε2

+ + ε2
− + 2(ε+ + ε−)Un + 2K2

±
√

(ε2+ − ε2−)2 + 4Un(ε3+ + ε3− − ε2−ε+ + ε2+ε−) + 4K2[(ε+ + ε−)2 + 4Un(ε+ + ε− + Un)]}1/2. (B2)

For a similar derivation, see Ref. [52].

APPENDIX C: BOGOLIUBOV EXCITATION SPECTRUM
FOR THE LOWEST SINGLE-PARTICLE BRANCH

In this part, using the following ansatz:

|�〉 = 1√
N!

(
β̂

†
k1

e−iψ1 + β̂
†
k2

e−iψ2
)N |0〉 (C1)

for the ground state, we study the excitation spectrum of
the vortex phase by analyzing the Bogoliubov excitations on
top of the lowest single-particle excitation branch β. The
contributions from the upper branch, which corresponds to
particles created by the operators α̂k , are negligible when the
interaction strength is much smaller than the gap among the
lower and upper branch of the single-particle spectrum.

To perform the Bogoliubov analysis, we start from the
original Hamiltonian (1) and compute the interacting part of
the Hamiltonian in the free-particle diagonal basis {β†

k , βk}
(see [17]). We obtain

Ĥint = U

2Ns

∑
q,k,r

K (k − q, r + q, k, r)β̂†
k−qβ̂

†
r+qβ̂kβ̂r, (C2)

where the kernel K is given by K (q1, q2, q3, q4) =
uq1 uq2 uq3 uq4 + vq1vq2vq3vq4 .

Here we see that the restriction to the lowest branch yields
a one-dimensional Bose gas with effective nonzero range

interaction potential. We then proceed by performing the
Bogoliubov approximation: we assume that the states k1 and
k2 are macroscopically occupied and so we approximate the
operators in those states by C-numbers:

βk1 =
√

N0/2eiψ1 , (C3)

βk2 =
√

N0/2eiψ2 , (C4)

where N0 is the number of condensed particles in the whole
system. We then rewrite the Hamiltonian keeping up all terms
up to quadratic order in operators β̂k �=k1,k2 , β̂

†
k �=k1,k2

. To con-
serve the particle number within the Bogoliubov approxima-
tion, we write the number of condensed particles as a function
of the total particle number using the relation N0 = N −∑

k �=(k1,k2 ) β̂
†
k β̂k . This procedure yields the following quadratic

Hamiltonian:

Ĥ = E (0) + ĤBog, (C5)

where H (0) is the mean-field energy in the vortex phase given
by

E (0) = NE−(k1) + UNn

4

[
1 + 2u2

k1
v2

k1

]
,

ĤBog =
∑

k �=(k1,k2 )

ε̃kβ̂
†
k β̂k +

∑
k

β̂
†
2k1+kβ̂

†
−kU1,k + H.c.
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FIG. 12. Scheme depicting the main collision channels for the
effective interactions among particles belonging to the lower branch
of the single-particle excitation spectrum.

+
∑

k

β̂
†
2k2+kβ̂

†
−kU2,k + H.c. +

∑
k

β̂
†
k1+k2+kβ̂

†
−kU12,k

+ H.c. +
∑

k

β̂
†
k1−k2+kβ̂k (Ũ12,k + c.c.)

+
∑

k

β̂
†
k2−k1+kβ̂k ( ˜̃U12,k + c.c.) (C6)

and the coefficients ε̃k and Uk correspond to the Feynman
diagrams of Fig. 12 and read

ε̃k = E−(k) − E−(k1) − UN

2Ns

(
1 + 2u2

k1
v2

k1

)
+ UN

Ns

(
u2

k1
u2

k + v2
k1
v2

k

) + UN

Ns

(
u2

k2
u2

k + v2
k2
v2

k

)
, (C7)

U1,k = UN

4Ns
K (k1, k1, 2k1 + k,−k), (C8)

U2,k = UN

4Ns
K (k2, k2, 2k2 + k,−k), (C9)

U12,k = UN

4Ns
2K (k1 + k2 + k,−k, k1, k2), (C10)

Ũ12,k = 2UN

Ns
K (k1, k2, k1 − k2 + k, k), (C11)

˜̃U12,k = 2UN

Ns
K (k1, k2, k2 − k1 + k, k). (C12)

APPENDIX D: DYNAMICAL STRUCTURE FACTOR OF
THE NONINTERACTING CASE AND FULL EXPRESSION

IN THE BOGOLIUBOV APPROXIMATION

By taking the ground state as |0〉 = 1√
2
(|k1〉 + |k2〉), the

dynamical structure factor readily reads

Sβ,β (q,w) = 1
2 [δ(ω − ωq+k1 ) + δ(ω − ωq+k2 )] (D1)

with ωk = E−(k) − E−(k1). We see that it consists of two
bands that correspond only for k1 = k2 = 0 (Meissner phase)
or k1 = −k2 = −π .

Using Eq. (7) and Eq. (16), the dynamical structure factor
in the Bogoliubov approximation reads

Sβ,β (q, ω)

=
∑
s �=0

∣∣∣∣∑
k

uk+quk
((

h̃(1)
s,k+q

)∗
�̃

(0)
k,1 − (

�̃
(0)
k+q,1Q̃(1)

s,−k

)∗)

+ vk+qvk
((

h̃(2)
s,k+q

)∗
�̃

(0)
k,2 − (

�̃
(0)
k+q,2Q̃(2)

s,−k

)∗)
+ uk+qvk

((
h̃(1)

s,k+q

)∗
�̃

(0)
k,2 − (

�̃
(0)
k+q,1Q̃(2)

s,−k

)∗)
+ vk+quk

((
h̃(2)

s,k+q

)∗
�̃

(0)
k,1 − (

�̃
(0)
k+q,2Q̃(1)

s,−k

)∗)|2δ(ω − ωs),

(D2)

where h̃s,k , Q̃s,k , and �̃
(0)
k,α

are the Fourier transforms of

h(α)
ν,l , Q(α)

ν,α of the excitation and of the condensate wave func-

tion �
(0)
l,α , respectively.
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