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Thermodynamics of spin-orbit-coupled bosons in two dimensions
from the complex Langevin method
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We investigate the thermal properties of interacting spin-orbit-coupled bosons with contact interactions in two
spatial dimensions. To that end, we implement the complex Langevin method, motivated by the appearance of a
sign problem, on a square lattice with periodic boundary conditions. We calculate the density equation of state
nonperturbatively in a range of spin-orbit couplings and chemical potentials. Our results show that mean-field
solutions tend to underestimate the average density, especially for stronger values of the spin-orbit coupling.
Additionally, the finite nature of the simulation volume induces the formation of pseudocondensates. These have
been observed to be destroyed by the spin-orbit interactions.
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I. INTRODUCTION

The experimental realization of ultracold atomic systems
with spin-orbit coupling (SOC), nearly a decade ago [1-3],
opened an exciting new set of directions for the exploration
of the properties of matter in extreme (yet highly control-
lable) conditions. The SOC, which couples the atomic pseu-
dospin (which itself denotes the particle species or “flavor”)
to momentum, is realized as the coupling of conventional
nonrelativistic neutral particles to a synthetic non-Abelian
background gauge field [4—6]. Such a construction has poten-
tial applications for the exploration of a variety of physical
situations (including Rashba- [7] and Dresselhaus-type [8]
couplings). Notably, these systems have been under intense
scrutiny in recent years as they may be used experimentally
to realize exotic phases of matter such as supersolids [9-11]
and superfluids with a crystalline structure, and study exotic
topological properties [12—14].

More generally, ultracold bosons subject to SOC are
known, at mean-field level, to exhibit stripe or plane wave
phases [15,16]: the ground-state wave function in the former
is composed of two plane waves propagating in opposite di-
rections, leading to an interference pattern, while on the latter
it has only one plane wave. Many recent studies have inves-
tigated mean-field properties of different types of SOC [17],
and also first-order (one loop) quantum corrections [14,18].
Recent theoretical studies of spin-orbit coupling include its
effect combined with finite angular momentum [19] and a
harmonic trap [20]. As in other systems, characterizing the
thermodynamics and phase transitions of SOC particles in a
precise fashion requires nonperturbative approaches, such as
Monte Carlo simulations, which take full account of quantum
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and thermal effects. (Notably, Ref. [17] performed a classical
Monte Carlo study, where thermal fluctuations were assumed
to be much larger than quantum ones.)

In this work, we use a lattice Monte Carlo approach to
characterize, in a nonperturbative fashion, some of the basic
thermodynamic observables of SOC bosons with quartic in-
teractions. Specifically, we use the complex Langevin method
to study such a nonrelativistic Bose gas on a space-time
lattice, determining the density equation of state, pressure,
and pseudocondensate fraction. In our lattice formulation, the
SOC interaction is compactified and appears as a constant
background non-Abelian gauge field. This allows for an easy
study of the limit of very large SOC compared to the mo-
mentum. We focus on two spatial dimensions, as that is the
smallest number of dimensions in which a finite temperature
phase transition is expected. Additionally, because we work
in the grand-canonical ensemble, it is no more expensive to
calculate with 100 particles than with 1 or 2, provided that
finite-size effects are under control.

II. MODEL AND LATTICE FORMULATION

We consider a system of (2 + 1)-dimensional nonrelativis-
tic bosons with two hyperfine (pseudospin) states, denoted
by 1 and |, in Euclidean space-time. They are subject to a
Rashba-Dresselhaus spin-orbit coupling (SOC) and density-
density contact interactions. More specifically, we will use the
Euclidean action

S = /dzxdt L, (1)

where £ = Ly + Lin,

A — keox ) + (—i10, — Ky(ry)2
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is the free part, and

Lin = (¢T¢T) + @91+ S 6le0l0) B
is the interacting part. In the above equations, ® =
[¢+ #,17, p is the chemical potential for both species, m
is the mass, A and g are the intra- and interspecies couplings,
and k. and «, characterize the spin-orbit interaction coupled
to the o, and o, Pauli matrices. Note that, by virtue of the
SOC, neither particle number is individually conserved, but
the total particle number is, such that u is a sensible chemical
potential.

In order to perform our lattice studies, we discretize the
system in a hypercubic lattice of size N> x N, and spacings a
and a, in the spatial and temporal directions, respectively. The
temperature is given by T = f~! = 1/a,N,. We assume pe-
riodic boundary conditions in all directions: this is necessary
in the temporal direction for bosonic fields. The SOC enters
the action in the same way as a background SU(2) gauge
field, similar to a minimal coupling. On the lattice, the SOC
is treated as a background non-Abelian gauge field and it is
discretized in the same way [21,22]. The discretized version
of the action, with the fields and couplings being rescaled by
appropriate powers of the lattice spacing, is given by

S = sZ{

q)(x T) E q)(x T— a,))g !

! f t
om qD(z,r)[qu)(fﬂj,r) +v; cD(?c—aj‘,r) - 2<1>(;”)]
A + g t 2 A — t 2
t— S ((D(x r)®(f~7707)) t— 8 (qD(x 1:) ~¢(E~T7“r)) ’
“4)

where ] represents a unit vector in the jth direction, v =
e % and & = a,/a is the lattice spacing anisotropy factor.
The chemical potential has been introduced using the standard
lattice formulation [23]. The contact interactions have been
regularized in the same way as the number density operator.
This formulation displays explicitly the global SU(2) flavor
symmetry of the contact interactions when A = g, and the
conservation of the total particle number by all interactions
due to the global U(1) symmetry.

In this work, we study the interplay between the self-
coupling A and the spin-orbit couplings «, and «,. The choice
of A > gleads to, at mean-field level, a ground state described
by a single plane wave [17], where we focus our studies for
this work. We choose g = 0 for simplicity.! The coupling g
between different pseudospins is left for a future publication.

Exact solution in the quadratic case

When the quartic terms are not present, the action (here-
after referred to as Spee) can be written in momentum

'Rotational properties of a similar system, but in three dimensions,
have been studied in [19].

space as
Siee = @5  M(P, @, 11, )P0, (5)
pw
with
M= T—|—v +v, +v + vy vf—v;—i(v;r—vy)
vt — vy +iu)f —v) T—|—v;'+v;+v;'+v;’

(6)

where Uj[ =£ sinz[(pj *k;)/2]/m and T = (1 — eflel®n),
The lattice momenta and Matsubara frequencies are given by
pj = 2mk;/Ny, w1th ki =0,. -1, and v, = 27q/N,,
with g = O LNy —1, respectlvely The tildes represent
Fourier transforms. The matrix M can be diagonalized via a

change to the helicity basis:
¢¢}
, 7
[ b, (7

o]

with eigenvalues

(F —v))+i —v))
¢2[<v+-v Pt(vf —v; )?]

(v —v ) +i(vy —v))
2@ —v )+ () vy ]

S-S

Ae(Pr o, 1, ©) =T + v + v +vf +v

+ \/(v;r —v )P+ vy (8)

leading to the grand thermodynamic potential 2 via

BQierec (i, K) = — In Zyee

= Y (B o, u, &)+ Ind (B o, 0]
p.o

€))

It is clear from the above equation that, since p, and p, run
over the same interval, the free energy is symmetric under
ky <> ky. Moreover, the partition function on the lattice is
an even, periodic function of the spin-orbit couplings, with
period 7 (in lattice units). This periodicity is a lattice artifact
that disappears in the continuum limit.

The average density of the noninteracting case can be
obtained by differentiation with respect to Su:

19InZ
= Vi " B TG W

where
X(P, 1) = e (1 + a5 = T). (11)

It can be shown that the sum over the Matsubara frequencies
can be carried out, which yields

1 1
TV (3 0™ —1° 12
v ; X P — 1 (12)

In the & — O limit,

(X, (P, i)V — ePlesti=ul, (13)
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where, in the continuum limit,
2 22
_1pI” + ||

Ei(ﬁ”?) 2m

4 1K | \/COSZ(QK)COS2(9}7) + sin®(6,) sin®(6,),
m

14
with 6, = tan~!(p,/p,) and 6, = tan~'(k, /k).
The continuum eigenvalues are given by
hi = —i0 — o+ €x(P ). (15)

Notice that, for w = |K| = 0, A+ vanishes at zero momentum
and p = 0, signaling the well-known instability associated
with Bose-Einstein condensation. For |¢| # 0, the instability
shifts to u # 0 and exists for both |p| = 0 and |p| # 0. The
continuum eigenvalues have been studied in three dimensions
in the Hamiltonian formulation for isotropic spin-orbit cou-
pling in Ref. [24]. Additionally, one can see that Ny = (plgoi
are conserved and that Ny +N_ = Ny + N,.

Using trigonometric identities it is possible to show
that v;“ + v = &[1 — cos(p;) cos(k;)]/m — (p% + Kiz)/2m
and v;" —v; =& sin(p;)sin(k;)/m — pik;/m. The arrows
represent the behavior in the naive continuum limit. It is then
clear that k; = %7 /2 makes the p? term vanish on the lattice,
corresponding to the limit where |«;| >> |p;| in the continuum,
such that the p% term can be ignored. When [K| > |p|, such
that the | 5|? term is negligible, the single particle Hamiltonian
becomes an anisotropic Weyl Hamiltonian with ¥y = & /m
playing the role of the (anisotropic) speed of light and an
effective chemical potential of —m|%y|?/2. A similar case has
been discussed, in the context of ultracold fermionic atoms,
in Ref. [25].

III. MANY-BODY METHOD

The first-order time derivative in the action is a non-
Hermitian operator, making ¢~ a complex weight for the
path integral; this is known as phase (or sign) problem.
This prevents the use of traditional Monte Carlo methods,
since they use e~ as a probability weight. One alternative
in this scenario is the complex Langevin technique, which
has been used to study theories with sign problems such as
those with repulsive interactions [26] as well as polarized
[27,28] and mass-imbalanced fermions [29] (see Ref. [30] for
a review), finite density QCD with staggered quarks [31-34],
random matrix models [35,36], rotating bosons [37,38], and
superstring-inspired matrix models [39], among others.

The complex Langevin method is an extension of stochas-
tic quantization [40]. The latter method consists of evolving
the fields along a fictitious time dimension, 6, according to
the Langevin equation

dps(x, T) 88
= - s(x, T), 16
Y2 8¢s(x’f)+n.(x T) (16)
where n,(x, 7) is a Gaussian white noise field satisfying
(ns(x, 7)), =0, (17)

(ns(x, Dy (X, 7))y = 28(x —x)8(r — TNdsy,  (18)

with (-), indicating an ensemble average over the noise field.
Quantum expectation values are obtained as

(0) = lim (O($1(8), $1.(O)))y, (19)

where O is some observable. In practice, the Langevin equa-
tions are solved numerically with a step size &£ > 0, chosen
adaptively [41]. We follow a Euler-like discretization scheme
in this work. This generates a sequence of field configurations.
Ensemble averages are performed as simple averages of the
observables calculated using the configurations generated af-
ter the system reaches its steady state.

In order to deal with theories that have a complex action,
each of the fields has to be complexified [42—48]. For complex
fields, both the real and imaginary parts become complex and
obey the Langevin equation (16). We choose the noise to
remain real [49]. Expectation values are calculated in the same
way as in the case with real action. Note that real observables
do become complex in this method, but their imaginary parts
should be statistically compatible with zero.

In the complex Langevin method the fields obey a
(Langevin-)time-dependent real probability distribution P de-
fined on a complexification M, of the original manifold M. It
can be shown that if the observables and action are holomor-
phic functions with sufficiently fast decay in the imaginary
directions of M., limy_.o P o e~5, which is the weight on
the path integral (for a more detailed description, see [48,49]).
Effects of slow decay in the imaginary directions have been
studied in [50,51].

The average density was calculated as

10lnZ 1
W= ¥ 3B = ;;mx,f)

eEn

= 7 Z((DIX,T)Q(X,T—L{[)>, (20)

X, T

where the angular brackets on the right-hand side indicate
an average over configurations generated by the Langevin
process. Mean-field results can be obtained by solving the
Langevin equation without noise, which finds the minimum
of the action.

We have performed our simulations on a periodic lattice of
volume 20? x 64, a spacing anisotropy of £ = 1/8, and mass
m = 1. These parameters lead to a thermal wavelength of ~7
in lattice units, which is consistent with the continuum limit
window 1 <« Ar/a <« N,. This also guarantees that effects
due to the choice of boundary conditions should be small. The
Langevin step size was chosen adaptively, with an average of
0O(10~*). We have estimated the autocorrelation time via the
method proposed in [52]. The error bars shown in our plots
represent statistical errors.

IV. RESULTS

A. Quadratic case

We have studied the case of noninteracting (A = 0) exactly
on the lattice. The average particle number density can be seen
in Fig. 1. One can see that the density has its minimum when
the system becomes Weyl-like, i.e., when the p2 term in the
Hamiltonian is much smaller than ¢ - p and can be neglected.
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FIG. 1. Average particle number density, in units of the spatial
lattice spacing a, as a function of the spin-orbit couplings at A = 0.
The simulations were performed at S = —0.8.

At B > 0 and «, = k, = 0 the condensation of bosons in
the ground state makes the simulation unstable. This conden-
sation is sharper at 7 = 0 and softer at 7 > 0, which is our
case. For nonzero spin-orbit couplings, however, the chemical
potential where such condensation happens is pushed to larger
values due to the x? term behaving as an effective chemical
potential. To better visualize this, we have calculated the
average density as a function of «, and «, by including
only their effect on the chemical potential, i.e., the terms
proportional to cos(k;), and ignoring the sin(k;) terms (G - p
in the continuum). The result is shown in Fig. 2. The figure
further shows that the & - p term in the continuum action has
a nontrivial effect on the average density.

B. Interacting case I—isotropic SOC

As an initial check on the ability of the complex Langevin
method to give correct results, we have looked at the imag-
inary part of the density. Despite the sign problem in the
Euclidean formulation, the density is expected to be (statis-
tically compatible with) zero. This can be verified in Fig. 3.

0.50”0 0.005 0.01 0.015 0.02 0.025
< 0.257
0.00m
0.007 0.257 0.507
aky

FIG. 2. Average particle number density, in units of the spatial
lattice spacing a, as a function of the spin-orbit couplings at A = 0
and ignoring the sin(x;) terms. The simulations were performed at

Bu = —0.38.
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FIG. 3. Imaginary part of the average density, in units of the
spatial lattice spacing a, as a function of Bu for different values of
the spin-orbit coupling. We have considered an interaction between

particles of the same pseudospin, with coupling A/a = 0.5. Points
have been slightly shifted horizontally for clarity.

Throughout this section we have used «, = «, = «. Complex-
valued densities would indicate a failure of the simulations.

The repulsive quartic couplings, similar to the spin-orbit
couplings, have the effect of keeping the system stable at small
but positive chemical potentials. This can be seen in Fig. 4,
where we show the average density as a function of Bu for
different values of (isotropic) SOC at A/a = 0.5. As in the
case of A =0, indicated by the long-dashed, short-dashed,
dotted, and dash-dotted lines for each «, we observe smaller
densities as the spin-orbit coupling increases.

The mean-field average density is also shown in the figure.
For each flavor, it is given by

26515 — 1 — & /m[cos(ky) + cos(ky) — 2]}
<ns) = S)L

and is zero when the right-hand side is negative. For the
larger values of « shown in the figure, the mean-field den-
sity becomes positive at much higher values of Bu. The

21
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FIG. 4. Average total density, in units of the spatial lattice spac-
ing a, for different values of ak as a function of Bu at A/a =
0.5. We also show the noninteracting results for SOC of ¥ =0
(short dashes), ax = 0.17 /2 (long dashes), ak = 0.4 /2 (dotted),
and ax = 0.6r /2 (dash-dotted). The continuous lines indicate the
mean-field result at k = 0 (darker) and ax = 0.17 /2 (lighter).
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FIG. 5. Average total density, in units of the spatial lattice spac-
ing a, as a function of ax at X/a = 0.5. The solid line indicates
the mean-field result at B = 0.4, while the dashed line and dotted
lines show the noninteracting results for 8 = —0.4 and B = 0.0,
respectively.

mean-field average density for ak = 0.47 /2 and 0.6z /2 is
very small for the chemical potentials considered and not
shown on the figure. It is clear that the average density is
not well described by the mean-field result for u < 0 and/or
k > 0.

In order to have a better look at the effect of the SOC
over the bosonic system, we show in Fig. 5 how the average
density changes as we vary «. For comparison, we also show
the mean-field density at S = 0.4 and noninteracting results
at B = —0.4 and B = 0.0. In all cases, an increase in the
spin-orbit coupling has led to decreasing average densities as
the system gets closer to the Weyl-like state.

We have also calculated the pressure difference from a
reference value via the Gibbs-Duhem relation

"
P(u) = P(uo) = / (n(u")dp'. (22)

Ho
The numerical integration has been carried out using the
trapezoid rule, with Sup = —1.6 as areference point. We have
estimated the errors via bootstrapping with 1000 samples. The
results are shown in Fig. 6. The pressure difference in the plot

6.0

arx = 0.0 / —
N ak =0.17/2 —— =
=) 5.0 Fap = 0.4m/2
n ak = 0.6m/2
140 £
A L %
L 30 .
= e
2 o
T 20 s
Q. . X *
25 1.0 X
*
L
0.0 lexx
-1.6 -1.2 -0.8 -0.4 0.0 0.4

B

FIG. 6. Pressure difference as a function of Su for different
spin-orbit couplings ax. We have used the pressure at By = —1.6
as reference for each SOC, and plotted in units of (8A2)~!.
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FIG. 7. Pseudocondensate fraction as function of the spin-orbit
coupling ak for different chemical potentials Su. The figure shows
how the off-diagonal long-range order is destroyed by increasing the
SOC.

is shown in units of 1/8A%. One can see that the pressure,
as a function of u and k, behaves similar to the density,
which should be expected from the Gibbs-Duhem relation.
As the chemical potential increases, we see an accompanying
increase in the pressure, given the larger number of particles
within the box. Figure 6 shows that the SOC decreases the
density and a similar effect is observed in the pressure, al-
though with lesser intensity.

The confined nature of the simulation volume can induce
the formation of (pseudo)condensates at finite temperature.
These condensates manifest themselves as off-diagonal long-
range order in the correlation function between similar spins.
The correlation function is, in general, given by

G (% = 51) = ()., bv6.0))- (23)
We show, in Fig. 7, the condensate fraction,

R — Gss’(aNx/z)
T Gy(0)

between two pseudospin “up” fields, as a function of « and
different values of Su. A similar result is obtained for two
“down” spins. At k¥ =0 we observe a finite condensate
fraction, which tends to zero as « increases, and is larger
for higher values of Su. Beyond akx > 0.1z, our results for
R are compatible with zero and thus excluded from the plot.
The correlations between fields of different spins have been
measured to be statistically compatible with zero for all values
of ¥ and u considered.

The above results indicate a destructive interplay between
the spin-orbit coupling and condensation in finite systems
in two spatial dimensions. A similar phenomenon has been
observed in three dimensions with an interspecies coupling in
[18] and isotropic s-wave coupling [53].

; (24)

C. Interacting case II—anisotropic SOC

We have investigated the effects of anisotropic spin-orbit
coupling, i.e., K, # K, on the density equation of state by us-
ing Ky = Nsockx, With 0 < 10 < 1. Because of the symmetry
ky <> Ky in the partition function there is no need to consider
Nsoc > L.
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FIG. 8. Average number density, in units of the spatial lattice
spacing a, as function of the absolute value of the spin-orbit-coupling
vector for B = —0.2. The lines display the results for the noninter-
acting case of A = 0: short dashes show 7, = 1.0, long dashes stand
for ny. = 0.5, and the dotted line represents 7y, = 0.0.

In Fig. 8 we plot the average density as function of |¢|. The
x axis has been normalized so that the maximum value of |¥| is
the same for all anisotropies. We observe a slower decay of (n)
as a function of |¥| for 1y, < 1. We remind the reader that the
mean-field densities for negative chemical potentials are zero.
At 150 = 0.0 there is a periodic behavior of period 27 /N,
on the average density for both noninteracting and interacting
cases. In the former, we have verified it to be a property of
the partition function as a whole, and not of the eigenvalues.
Some remnant of this periodicity can be seen at 15, = 0.5 for
small values of |¥|.

The density equation of state for different SOC
anisotropies is shown in Fig. 9 for both interacting
(points) and noninteracting (lines) cases. We have used
aky = 0.257 /2. Mean-field results are very small in
comparison to those in the figure and therefore omitted.
The figure shows that the distinction between the interacting

and noninteracting equation of states becomes more
0.40 \ :
Nsoe = 1.00 —+— [
0.35 +Nsoc = 0.50 |
Nsoe = 0.00 |
0.30 !
0.25 ;,
< 0.20 }
0.15 j Xy
0.10 —a
/x— /f’% +
0.05 e EES

-1.60  -1.20  -0.80  -0.40 0.00 0.40

ﬂ 1%

FIG. 9. Density equation of state, in units of the spatial lattice
spacing a, for anisotropic spin-orbit couplings at ak, = 0.257 /2 and
A/a = 0.5. Also shown are the noninteracting results for 7y, = 1.0
(short dashed line), ns. = 0.5 (long dashed line), and 7y = 0.0
(dotted line). Mean-field results are very small and were omitted.

0.20 . :
1 Tlsoc = 00 —+—
i Tlsoc = 0.5 ———
0.15 }F Nsoe = 1.0
0.10
—
& ;
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0.00 x 5
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alRl/TH 2

FIG. 10. Plot of the pseudocondensate fraction as function of the
absolute value of the spin-orbit-coupling magnitude, for different
SOC anisotropies at S = 0.4. The off-diagonal long-range order
survives longer for smaller values of 7.

pronounced as 7y, decreases, and is stronger for larger
chemical potentials.

As with the isotropic spin-orbit case, we have investigated
the condensate fractions for g, < 1. Figure 10 shows the re-
sults for R4y as a function of |¥|. Similar to the 5. = 1 case,
R, displayed a similar behavior. We observe a slower decay
of both of the (pseudo)condensate fractions for larger SOC
anisotropies. This effect has been seen in three dimensions in
[54].

V. SUMMARY AND OUTLOOK

We have investigated the effects of an artificial spin-orbit
coupling on the density equation of state for a bosonic system
of two pseudospins, as well as contact interactions between
similar boson species using nonperturbative numerical meth-
ods. The action is complex in Euclidean space-time due to the
first-order time derivative, and therefore our method of choice
for the simulations was the complex Langevin technique.

Due to how the spin-orbit term enters the lattice formu-
lation, it was possible to investigate how the equation of
state changes in the range 0 < «,, k, < 0o. In particular, the
Hamiltonian becomes Weyl-like when the spin-orbit coupling
is much larger than the momentum.

We have obtained the density and pressure equations of
state for different values of the spin-orbit coupling in the
isotropic case, where k. = k, = k. The average number den-
sity has been seen to be a decreasing function of «, having
its minimum value when akx = m /2 (which corresponds to
k — oo in the continuum). A comparison with mean-field
results has shown that quantum effects play a bigger role for
larger values of x and positive chemical potentials. For u < 0
the mean-field average density is zero, in clear contrast with
the simulations, which include all quantum effects.

We have also investigated the case of anisotropic spin-orbit
coupling, with k, = nocky. A periodic behavior of the number
density as a function of the spin-orbit coupling, induced by
the finite volume, has been observed in both interacting and
noninteracting cases when the SOC anisotropy 7s,c = 0. As
Nsoc 1S increased from zero towards 1, the aforementioned
decaying behavior of the density is recovered.
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For both isotropic and anisotropic spin-orbit couplings,
we have carried out comparisons between the interacting and
noninteracting equations of state. The distinction between
them is smallest for large SOC, and becomes more apparent
as |K| — 0. Moreover, the finite volume of the simulations
allows for the formation of a pseudocondensate, which is
depleted by the spin-orbit coupling.

Our investigations have shown that physical pictures based
on mean-field results break down in this system. Comparisons
with results in three spatial dimensions show similar behavior,
despite the differences to that case, in particular how each of
them renormalizes.

The effects of spin-orbit coupling over the bosons is very
noticeable in the density equation of state: as the SOC in-
creases, the gas becomes more dilute. We have also observed
that, even at chemical potentials large enough to support the
formation of a pseudocondensate, the presence of the spin-
orbit interaction increases the average interparticle distance,
such that the pseudocondensates cannot form.

Possible future studies include nonperturbative investiga-
tions of the interplay between the spin-orbit coupling and
rotation, as well as different types of SOC [55]. Moreover,
the determination of physical quantities such as the scattering
length or binding energy, which help with connecting with
experimental results, can be done via Liischer’s method [56]
or the second virial coefficient [57].
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APPENDIX: DISCRETIZATION OF THE ACTION

Since the spin-orbit interaction in this case enters the
action in the same way as a background gauge field, we shall
consider the lattice discretization of a SU(2) gauge theory and
then specialize for the SOC. Moreover, we will consider one-
dimensional fields, as the generalization to higher dimensions
is straightforward. This derivation follows those in [21,22].

The kinetic term for a two component field in the contin-
uum reads

K = ®T(x)(—id;)’ @ (x), (A1)

where 7 represents a unit vector in the x direction and a is the
lattice spacing. Upon discretization, it becomes

(D)]: q)x+a? + CDI q)x—af B 2q)i D,
> .

Klat = -

(A2)
a

After applying a local gauge transformation, 2, € SU(2), the
fields become

q)x:i:a? - Qx:tu?q)xﬂ:u?’
ol - ol (A3)
and the gauge-transformed kinetic term is now

CD)]: QI Qx+a? cDx—&-af + d)i QI Qx—a? q>x—a? - 2<D)]: D,
3 .

Koy = —

a

(A4)

In order to preserve gauge invariance, the derivative must
be modified such that

dlo - dlU @

x+ai x x0T x4ai?

R X AR

Qi ®X—al X x—ai,i x—at’ (AS)

where the new field U transforms as

Uy — QU0

xtai® (A6)
By having U, ; = expliaA, ;], where A ; is the discretized
version of the continuum gauge field A;(x) € su(2), we have
the connection between continuum and lattice versions of the
covariant derivatives. Finally, choosing A;(x) = «;o; gives the

spin-orbit coupling of Eqgs. (2) and (4).
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