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Pair correlation of atoms scattered from colliding Bose-Einstein quasicondensates
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We consider elastic scattering of atoms from elongated clouds taking into account an effective, finite duration
of the collision due to the expansion of the condensates. We also include the quasicondensate nature of the
degenerate quantum gas, due to a finite temperature of the system. We evaluate the pair-correlation function
measured experimentally in Kheruntsyan et al. [Phys. Rev. Lett. 108, 260401 (2012)] and show that the finite
duration of the collision is an important factor determining the properties of the correlations. Our analytic
calculations are in agreement with the measurements. The analytical model we provide, useful for identifying
physical processes that influence the correlations, is relevant for experiments with nonclassical pairs of atoms.
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I. INTRODUCTION

Ultracold atoms offer a promising platform for studies of
the foundations of quantum mechanics and also for applica-
tions that rely on quantum effects. The controlled generation
of correlated pairs of atoms is an important method in this
context, since such pairs play a similar role in quantum atomic
physics as pairs of photons in quantum optics. The latter have
been employed in tests of Bell’s inequalities for photons [1],
the photonic Hong-Ou-Mandel effect [2], and ghost imag-
ing [3]. In the atomic context, generation of correlated pairs of
atoms was reported [4–8], and it was shown theoretically and
experimentally that they can be employed for demonstrating,
for example, sub-Poissonian statistics of atoms [9,10], the
violation of the atomic Cauchy-Schwarz inequality [11–14],
the Hong-Ou-Mandel effect for atoms [15,16], and atomic
ghost imaging [17,18]. The nonclassicality of the spatially
separated, correlated atomic pairs has recently been employed
for demonstration of Bell correlations [19], and for three-
dimensional (3D) magnetic gradiometry [20]. Furthermore,
the entangled pairs could find applications for the violation
of Bell’s inequality for massive particles [21,22], atomic
interferometry [23], study of the quantum signatures of analog
Hawking radiation [24], and other fundamental experimental
tests of quantum mechanics such as the Einstein-Podolsky-
Rosen gedanken experiment [25].

In our paper, we focus on a particular method of generating
correlated pairs of atoms. In this scenario, the pairs are emitted
from collisions of counterpropagating ultracold degenerate
atomic Bose gases [7]. As a result of binary collisions between
the particles that constitute the counterpropagating clouds,
atomic pairs scatter out from the clouds with opposite veloc-
ities. In the spontaneous regime, where bosonic enhancement
does not influence single collision events, the direction of
velocity of outgoing particles is random. Due to the super-

position principle, the quantum state of a single atomic pair is
entangled in different momentum directions [25].

To further exploit the generated pairs of atoms, detailed
control over the produced state of atomic pairs is required.
To verify this control, some preliminary measurements are
helpful. A particularly important example is provided by
the observation of the correlation functions between pairs of
atoms. Such properties of atoms scattered from colliding ul-
tracold clouds were considered in the literature [10,26–39]. In
particular, in the previous paper [32], we described an analytic
calculation of pair-correlation functions. However, some of
the results were in insufficient agreement with experimental
results.

Since we published our work [32], we have refined and
improved both the calculations and the experiment. From the
experimental point of view, we have improved the signal to
noise ratio, and simplified the collision geometry [11]. On the
theory side, we are now able to take into account the expan-
sion of the condensate during the collision, and show that the
condensate expansion reduces the atom density and, therefore,
also the collision rate. Thus, this effect limits the duration of
collision and emission of pairs, and this finite time leads to
an energy broadening of the decay products. We show that
the broadening significantly improves the agreement between
the theory and the experiment. Also, we take into account that
when the system is highly elongated the phase of a degenerate
Bose gas fluctuates on a scale shorter than the dimension
of the cloud, resulting in a quasi-Bose-Einstein condensate.
Finally, we include into the formalism the interaction of the
scattered atoms with the mean-field potential of the colliding
clouds, a factor that is often neglected. With our analytical
treatment, we can identify the physical processes which affect
the properties of the correlation functions.

The paper is organized as follows. In Sec. II, we introduce
the experimental context (see Sec. II A) and the method used
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to describe the quasicondensate (see Sec. II B), and calculate
its most important properties. In Sec. III, we introduce the the-
oretical description of the quasicondensate collisions. Here,
we postulate the variational ansatz that describes the evolution
of the counterpropagating quasicondensates. In Sec. IV, we
present the description of the scattered atoms based on the
Bogoliubov method. There, we give analytical formulas for
the pair-correlation function. It contains two types of correla-
tions, which we shall label as “local” and “opposite” parts.1

The local correlation involves atoms with nearly parallel mo-
menta and is directly related to the single-particle correlation
function. The opposite correlation involves the creation of
pairs with nearly antiparallel momenta. In Sec. V, performing
controlled approximations, and using a Gaussian variational
ansatz, we derive formulas for the single-particle correlation
function and local part of the pair-correlation function. In
Sec. VI, proceeding in a similar way as in Sec. V, we
derive formulas for the opposite part of the pair-correlation
function. In Sec. VII, we apply the formulas obtained in
the previous sections, and provide theoretical calculations of
the normalized pair-correlation function that is measured in
the experiment. We compare the theoretical and experimental
results. We close the paper with a summary in Sec. VIII.
Technical calculations are moved to the Appendices.

II. QUASICONDENSATE DESCRIPTION

A. Experimental setup

The details of the experimental setup are described in
Ref. [11]. Briefly, a cigar-shaped BEC of metastable helium
atoms in the J = 1, mJ = 1 state, containing ≈105 atoms at
temperature T ≈ 200 nK, is initially trapped in a harmonic
trap:

V (r) = 1
2 m

[
ω2

r (x2 + y2) + ω2
z z2

]
, (1)

where ωr/2π = 1500 Hz and ωz/2π = 7.5 Hz. The trap is
turned off and the atoms are transferred to the mJ = 0 state
by a Raman transition (see Ref. [16]). The cloud is then split
by Bragg diffraction into two packets with velocities differing
by twice the single-photon recoil velocity v0 = 9.2 cm/s
along the axial (z) direction (see Fig. 1). Atoms interact via
binary, s-wave collisions and scatter into a spherical halo the
radius of which in velocity space is about the recoil velocity.
The scattered atoms fall onto a detector that records the
arrival times and positions of individual atoms with a quantum
efficiency of ≈25%. We use the arrival times and positions to
reconstruct 3D velocity vectors for each atom. The precision
of the measurement is limited by a finite resolution of the
detector. The resolution will be taken into account in our
comparison between the theoretical estimates and the experi-
mental results.

B. Bogoliubov method

Since the system is elongated along the z axis, we need
to include the description of the phase fluctuations of the

1In the previous papers [9,11], we used the labels “collinear” and
“back to back” instead of “local” and “opposite,” respectively.

FIG. 1. Diagram of the collision geometry. (a) After Bragg
diffraction, two cigar-shaped BECs move (in position space) at a
relative velocity of 2v0 in the vertical (z) direction. Binary collisions
scatter atoms isotropically from the BECs. (b) After expansion, the
scattered atoms occupy a spherical halo (in momentum space), while
the unscattered atoms from the BECs acquire a pancake shape and
coincide with the extreme top and bottom of the halo. We compute
correlations between scattered atoms on the halo, excluding the
region near the BECs. The figures are not to scale.

BEC. To this end, we divide the field operator into two parts
�̂ = �̂QC + δ̂ where �̂QC describes the quasicondensate and
δ̂ the scattered atoms. We describe the quasicondensate within
Bogoliubov method in the density-phase representation [40],
where

�̂QC = eiφ̂
√

n̂ = eiφ̂
√

n + δn̂ (2)

where n(r) = 〈n̂(r)〉 is the mean density given by the solution
of the Gross-Pitaevskii (GP) equation

− h̄2

2m

�√
n(r)√

n(r)
+ V (r) + g′n(r) = μ, (3)

supplemented with the normalization condition
∫

dr n(r) =
N . Here, the coupling strength g′ = 4π h̄2a′

m , where a′ denotes
the s-wave scattering length, and the potential V (r) is given
by Eq. (1). In Eq. (2), δ̂n and φ̂ are the density fluctuation
and phase operators, respectively, which in the Bogoliubov
approximation take the following forms:

δn̂(r) =
√

n(r)
∑

ν

[ f −
ν (r)âν + H.c.], (4a)

φ̂(r) = 1√
4n(r)

∑
ν

[−i f +
ν (r)âν + H.c.], (4b)

where “H.c.” stands for the Hermitian conjugate. Here, âν

are the quasiparticle annihilation operators and f ±
ν are mode

functions obtained via solution of the Bogoliubov–de Gennes
equation. In the case of highly elongated condensates, it turns
out that, to a very good approximation, the phase operator
φ̂(r) depends only on the longitudinal z coordinate [41]. In the
regime where the thermal fluctuations dominate, the modes
responsible for phase fluctuation are highly populated, and
we can approximate the creation and annihilation operators
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by c numbers [42], i.e., âν → αν . This is done together with
replacing the quantum average over the thermal state by an
average over a thermal probability distribution, i.e.,

〈...〉 → 〈...〉cl =
∏
ν

∫
d2αν P(αν ) . . . ,

where

P(αν ) = εν

kBT π
exp

(
−εν |αν |2

kBT

)
. (5)

As a result, we can replace the operator �̂QC with a function
ψQC:

�̂ = ψQC(r) + δ̂(r), (6)

where

ψQC(r) =
√

n + δn(r)eiφ(r). (7)

Here, the functions δn and φ are calculated from Eq. (4),
with the operators replaced by c numbers drawn from the
distribution given in Eq. (5).

We solve the GP equation (3) using the Gaussian varia-
tional ansatz of the form

n(r) = N

π3/2σ 2
r σz

exp

(
−x2 + y2

σ 2
r

− z2

σ 2
z

)
. (8)

The solution, described in detail in Ref. [39], is

σr = ahor

(
1 +

√
2

π

Na′

σz

)1/4

,

(
σrσz

a2
hoz

)2

=
√

2

π

Na′

σz
,

where ahor = √
h̄/mωr and ahoz = √

h̄/mωz. Substituting the
experimental values to the above equations, we obtain

σr 	 1.7 μm, σz 	 0.3 mm, σr/ahor 	 1.3.

Here, we have also used the experimentally determined
value for the metastable helium s-wave scattering length, i.e.,
a′ = 7.51 nm [43].

Due to the strong elongation of the cloud and the low
temperature, only the longitudinal modes are excited. There-
fore, we can approximately treat the system as quasi-one-
dimensional, and define the one-dimensional density

n1D(z) =
∫

dxdy n(r) (9)

and one-dimensional interaction constant

g1D = g′
∫

dr n2(r)

[
∫

drn(r)]2
. (10)

Substituting n(r) given by Eq. (8) into Eqs. (9) and (10),
we obtain n1D 	 2×108 atoms/m and g1Dn1D/h̄ 	 2π ×
2500 Hz, where n1D(z) = n1D exp(−z2/σ 2

z ). Using these val-
ues, we find γ = mg1D/h̄2n1D, which is approximately equal
to 2.5×10−5, i.e., much smaller than unity. This places us
in the weakly interacting regime, and justifies the use of the

Bogoliubov method [40]. The thermal density fluctuations and
coherence length of a uniform system take the form√〈

δn2
1D

〉
n1D

	 γ 1/4

√
kBT

g1Dn1D
, lφ = h̄2n1D

mkBT
. (11)

We estimate the density fluctuations and coherence length
of our system using the above formula, and obtain√

〈δn2
1D〉/n1D 	 0.09 and lφ 	 120 μm. Since the ratio√

〈δn2
1D〉/n1D is significantly smaller than unity, we neglect

the density fluctuations in the further analysis. We emphasize
that lφ is smaller than the longitudinal size of the cloud but
much larger than the transverse size of the cloud 2σr . We
additionally calculate the zero-temperature correlation length
of the one-dimensional homogeneous system [44]:

l (0)
φ = h̄√

mg1Dn1D
e2π/

√
γ .

In our case l (0)
φ ≈ 10539 m (due to the exponent). The fact that

l (0)
φ 
 lφ justifies the use of classical field approximation as

the thermal fluctuations dominate the quantum ones.

III. QUASICONDENSATE COLLISION

Anticipating that the number of scattered atoms is much
smaller than the number of atoms from the quasicondensates
(see Sec. VII), we neglect the impact of the scattered atoms on
the colliding quasicondensates. In such a case the evolution of
the classical field ψQC(r, t ) is given by the Gross-Pitaevskii
equation:

ih̄∂tψQC(r, t ) =
(

− h̄2

2m
� + g|ψQC(r, t )|2

)
ψQC(r, t ). (12)

Here, the interaction strength is given by g = 4π h̄2a/m and
a = 5.3 nm is the scattering length between two atoms in the
mJ = 0 state. The initial state is

ψQC(r, 0) 	 1√
2
ψQC(r)(eiQz + e−iQz ) (13)

and describes a coherent splitting of a single cloud into two
components; the function ψQC(r) is given by Eq. (7) and
Q = mv0/h̄. It is convenient to factor out the rapidly oscil-
lating phases in time and position, and rewrite the quasicon-
densate wave function in the following form:

ψQC(r, t ) = ψ+Q(r, t ) exp

(
iQz − i

h̄Q2

2m
t

)
+ψ−Q(r, t ) exp

(
−iQz − i

h̄Q2

2m
t

)
(14)

where ψ±Q are quasicondensate components moving with
mean velocities ±v0ez. In our situation, the momentum width
of each of the components is much smaller than Q. Therefore,
a measurement of the momentum density from ψQC would
result in the observation of two separated components. In
such a case, the slowly-varying-envelope approximation can
be applied [45]. In Appendix A, we show that Eq. (12) can be
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approximated and decomposed to take the form

i∂tψ±Q =
(

∓ h̄2

m
Q∂z − h̄2

2m
�

)
ψ±Q

+ g(|ψ±Q|2 + 2|ψ∓Q|2)ψ±Q. (15)

As we shall see below, the time in which the density drops
substantially is much smaller than the time needed for the
wave packets to cross each other. Therefore, during the time
important for the collision, the motion along the z direction is
practically frozen. This allows us to neglect the terms contain-
ing derivatives Q∂z. As the normalization of each of the wave
packets is the same and initially ψ±Q(r, 0) = 1√

2
ψQC(r) the

above equations turn into a single one:

i∂tψ (r, t ) =
(

− h̄2

2m
� + 3

2
g|ψ (r, t )|2

)
ψ (r, t ), (16)

where the wave function
1√
2
ψ = ψ+Q = ψ−Q, (17)

with the normalization condition
∫

dr |ψ (r, t )|2 = N and ini-
tial condition ψ (r, 0) = ψQC(r). We notice that Eq. (16)
describes the ballistic expansion of the wave packet.

We have found above that the quasicondensate coherence
length is much larger than the transverse size of the cloud.
Therefore, we expect that the expansion of the cloud in the
transverse directions is practically not affected by its quasi-
condensate nature. Thus, it is instructive to consider ballistic
expansion of the condensate, i.e., the solution ψc(r, t ) of the
above Eq. (16) with the initial condition ψc(r, 0) = √

n(r).
We approach the problem with an approximate variational
Gaussian ansatz, described in Ref. [39], and obtain

ψc(r, t ) 	
√

N

π3/2σz(t )σ 2
r (t )

exp

(
− z2

2σ 2
z (t )

− ibz(t )z2

)

× exp

[
−x2 + y2

2σ 2
r (t )

(
1 − iω̃t

σ 2
r

ã2
hor

)
− iϕ(t )

]
, (18)

where

σ 2
r (t ) = σ 2

r (1 + ω̃2t2),
ω̃2

ω2
r

=
1 +

√
2
π

3
2

Na
σz

1 +
√

2
π

Na′
σz

,

ϕ(t ) =
(

7

4

σ 2
r

ã2
hor

− 3

4

ã2
hor

σ 2
r

)
arctan(ω̃t ),

and ãhor = √
h̄/mω̃. With the parameters of the experiment,

we obtain ω̃ 	 1.02ωr . This gives us the characteristic time
of expansion τex = 1/ω̃ = 104 μs. This time allows us to es-
timate the change of the phase caused by thermal fluctuations.
To this end, we consider a one-dimensional uniform system
and calculate �φ ≡

√
〈[φ(z = 0, τex) − φ(z = 0, 0)]2〉; the

details of the evaluation are presented in Appendix B. There,
we find that �φ 	 0.14, and since it is significantly smaller
than unity we expect that the change of phase during the
collision, caused by thermal fluctuations, is negligible. Thus,
we assume that

ψQC(r, t ) 	 ψc(r, t )eiφ(z), (19)

where ψQC(r, t ) and ψc(r, t ) are the solutions of Eq. (16) with
the two initial conditions: ψQC(r, 0) = ψQC(r) = √

n(r)eiφ(z)

and ψc(r, 0) = √
n(r).

Additionally, we find the expansion time τex to be much
smaller than the time needed for the quasicondensates to
cross each other, 2σz/v0 	 6 ms. This justifies the use of the
approximation which leads to Eq. (16).

We now make one more approximation. From the formulas
presented in Ref. [39], we find that the phase gradient bz(τc)σz

is much smaller than ∂zφ(z) and thus can be neglected. Addi-
tionally, we find that σz(τex) 	 σz. As a result, in what follows,
we use ψc(r, t ) given by Eq. (18) with σz(t )	σz and bz(t )	0.
For simplicity of the notation, we express the variational
ansatz, given by Eq. (18), decoupling its z dependence:

ψc(r, t ) = ψρ (r⊥, t ) exp

(
− z2

2σ 2
z

)
,

ψρ (r⊥, t ) = √
n0

σr

σr (t )
exp [−iϕ(t )]

× exp

[
−x2 + y2

2σ 2
r (t )

(
1 − iω̃t

σ 2
r

ã2
hor

)]
, (20)

where r⊥ = xex + yey and n0 = N/(π3/2σzσ
2
r ).

IV. THE SCATTERED ATOMS

We now turn our attention to the description of the scatter-
ing process. As in the experiment, we consider the scattered
atoms with velocities restricted to π

3 < θ < 2π
3 , where θ is

the angle between the velocity of the atoms and the z axis.
Thus, the average distance traveled by the scattered atoms
within the cloud is approximately given by 2σr 	 3.4 μm.
This distance is much smaller than the mean free path equal to
1/(8πa2n0) 	 66 μm. As a result, the system is in the colli-
sionless regime and the use of the Bogoliubov approximation
to treat the scattered atoms is adequate. The field operator δ̂,
describing the scattered atoms, undergoes the time evolution
given by

ih̄∂t δ̂(r, t ) = H0(r, t )δ̂(r, t ) + B(r, t )δ̂†(r, t ), (21)

where

H0(r, t ) = − h̄2

2m
� + 2g|ψQC(r, t )|2, (22)

B(r, t ) = gψ2
QC(r, t ). (23)

We assume that the initial state of the noncondensed particles
is vacuum [46], i.e.,

δ̂(r, 0)|0〉 = 0. (24)

Since the scattered atoms for chosen θ do not overlap with the
quasicondensates, the pair-correlation function is given by the
formula

G(2)(r1, r2, t f ) = 〈〈δ̂†(r1, t f )δ̂†(r2, t f )δ̂(r2, t f )δ̂(r1, t f )〉〉cl,

(25)

where we deal with quantum average over degrees of freedom
described by the δ̂ operator and the classical average over
quasicondensate modes. In the above, t f 	 0.3 s is the time
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it takes the atoms to reach the detector located 46 cm below
the trapped cloud.

As the equation of motion for the field operator δ̂, given
by Eq. (21), is linear, and the quantum state is the vacuum,
the Wick theorem can be applied. As a result, the quantum
average can be evaluated and it reads

〈δ̂†(r1, t f )δ̂†(r2, t f )δ̂(r2, t f )δ̂(r1, t f )〉
= G(1)(r1, r1, t f )G(1)(r2, r2, t f ) + |G(1)(r1, r2, t f )|2

+|M(r1, r2, t f )|2, (26)

where

M(r1, r2, t f ) ≡ 〈δ̂(r1, t f )δ̂(r2, t f )〉 (27)

is called the anomalous density and

G(1)(r1, r2, t f ) ≡ 〈δ̂†(r1, t f )δ̂(r2, t f )〉 (28)

is a single-particle correlation function of the scattered atoms
in a single realization of the quasicondensate field.

In Eq. (26), two terms are responsible for the cor-
relations: |M(r1, r2, t f )|2 and |G(1)(r1, r2, t f )|2. The term
G(1)(r1, r1, t f )G(1)(r2, r2, t f ) is a product of single-particle
densities and represents uncorrelated particles. In the next
sections, we show that the terms |M(r1, r2, t f )|2 and
|G(1)(r1, r2, t f )|2 represent the correlation of particles with
opposite and collinear velocities, respectively. The appearance
of correlations of particles with opposite velocities (which we
shall call the “opposite” correlation) is due to the fact that
particles are scattered in pairs of opposite momenta. On the
other hand, the correlation of particles with collinear veloci-
ties (which we shall call the “local” correlation) is a bosonic
bunching effect [36]. Therefore, we introduce notation
G(2)

op = |M|2 and G(2)
loc = |G(1)|2.

The scattering of atoms consists of two regimes. The first is
the “spontaneous regime.” Here, the atoms scatter into initially
empty modes. The second is the “stimulated regime” where
the atoms scatter into occupied modes. Here, the bosonic stim-
ulation process comes into play and the scattering of atoms
is greatly amplified. In the described experiment there are no
signs of stimulated processes. Additionally, in Appendix F, we
show the system is in the spontaneous regime. In such a case,
the Heisenberg equation of motion, Eq. (21), can be solved
within the first order of the perturbation theory [39]. Then, the
formula for the anomalous density reads

M(r1, r2, t f ) = 1

ih̄

∫ t f

0
dt

∫
dr K (r1, t f ; r, t )

× K (r2, t f ; r, t )B(r, t ), (29)

where K (r1, t1; r2, t2) is the single-body propagator of the
Hamiltonian from Eq. (22). Additionally, one obtains a simple
relation between the one-body correlation function and the
anomalous density:

G(1)(r1, r2, t f ) =
∫

dr M∗(r1, r, t f )M(r, r2, t f ). (30)

The above equation shows that the properties of the scattered
atoms are described by the anomalous density M given by
Eq. (29).

It turns out that it is easier to calculate the anomalous
density in momentum space. The connection between both is

given by the standard free propagator formula

M(R,�R, t f ) = 1

(2π )3

∫
dK d�k ei2KR

× ei �K�R
2 −i h̄

m (K2+ �K2

4 )t f M(K,�K), (31)

where R = (r1 − r2)/2 and �R = r1 + r2.
In Ref. [39], we analyzed the scattering of atoms from two

colliding condensates (here we deal with quasicondensates).
There, we employed a semiclassical approximation for the
propagator K . The approximations used in construction of the
propagator were the following. From Eq. (14), we find that the
density |ψQC|2 present in the Hamiltonian H0, which is given
by Eq. (22), takes the form |ψQC|2 = |ψ+Q|2 + |ψ−Q|2 +
ψ∗

+Qψ−Qe−2iQz + ψ∗
−Qψ+Qe2iQz. The wave functions of the

scattered atoms can be approximated by plane waves eikr

where |k| 	 Q. It seems intuitive that such a wave function
“averages” the space on the length of 2π/Q, thus averaging
to zero the fringes e±2iQz. In Ref. [39], we show, using
the perturbation theory, that this indeed is true. As a result,
we arrive at |ψQC|2 	 |ψ+Q|2 + |ψ−Q|2 and the Hamiltonian

H0(r, t ) 	 − h̄2

2m � + 2g(|ψ+Q|2 + |ψ−Q|2).
Now, we construct the propagator from the time-dependent

solutions ϕk(r, t ) of the single-particle Schrödinger equation
ih̄∂tϕk = H0ϕk. The next observation is the following. During
the time needed for the scattered atom to leave the cloud, the
change of the densities |ψ±Q|2 is negligible. This allows us
to simplify the problem and construct the propagator from
the solutions ϕk(r, t ) of the time-independent Schrödinger
equation H0ψk(r, t ) = h̄2k2

2m ψk(r, t ). Here, we employ the
semiclassical method and find an approximate solution of
the Schrödinger equation presented in Appendix C. After
constructing the propagator K from such solutions (which is
a simple procedure), we insert it into Eq. (29) and arrive at
(see Ref. [39])

M(K,�K) = 1

ih̄(2π )3

∫ ∞

0
dt

∫
dr

× e−i�Kr+i h̄
m (K2+ �K2

4 )t B̃(eK, r, t ), (32)

where

B̃(eK, r, t ) = B(r, t ) exp [−i�(r, eK, t )], (33a)

�(r, eK, t ) = m

h̄2Q

∫ ∞

−∞
dsVen(r + seK, t ), (33b)

Ven(r, t ) = 2g[|ψ+Q(r, t )|2 + |ψ−Q(r, t )|2], (33c)

and eK = K
K . Here, ψ±Q are the two counterpropagating com-

ponents of the quasicondensate. We notice the impact of
the mean-field interaction 2g|ψ |2, which is present in the
Hamiltonian H0 in Eq. (22), is represented by the potential
Ven, and enters the formulas through the phase � given by
Eq. (33b). If we omitted the mean-field interaction in H0,
the phase � would be zero. Inserting Eqs. (17) and (19) into
Eq. (33c), we finally arrive at

Ven(r, t ) = 2g|ψc(r, t )|2. (34)

We now focus on the expression for B(r, t ). According to
Eq. (23), we have B(r, t ) = gψ2

QC(r, t ). Inserting ψQC, given
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by Eq. (14), we arrive at an expression with three terms.
However, among them there is only one responsible for the
scattering of atoms from collision between ±Q components.
As we are interested only in this process, we neglect the rest,
arriving at

B(r, t ) 	 2gψ+Qψ−Q(r, t ) exp

(
− i

h̄Q2

m
t

)
= gψ2

c (r, t ) exp

(
2iφ(z) − i

h̄Q2

m
t

)
, (35)

where we used Eqs. (17) and (19).

V. THE G(1) AND G(2)
loc FUNCTIONS

We have

G(2)
loc(r1, r2, t f ) = 〈|G(1)(r1, r2, t f )|2〉cl. (36)

In order to calculate G(1), it is convenient to use the source
function f description introduced in Ref. [39]. In classical
physics, one can describe the single-particle properties of
the source of particles by using a function f (r, v, t ) which
describes the density of particles emitted by the source at
time t and position r with velocity v. For example, the rate of
particle emission is given by dNsc/dt = ∫

dr
∫

dv f (r, v, t ).
It can be easily shown using kinematics that the density of
scattered particles in the (r, v) space at time t f denoted as
�(r, v, t f ) is given by

�(r, k, t f ) =
∫ t f

0
dt f

(
r − h̄k

m
(t f − t ), k, t

)
. (37)

In Ref. [39], we found that it is convenient to define an
analogous quantity in the quantum problem to describe the
properties of scattered atoms. In order to do it, we need to
have a semiclassical phase-space density of scattered atoms.
The easiest choice of such density is the Wigner function. It
is directly related to the single-particle correlation function
through the formula

W (r, k, t f ) =
∫

dr
(2π )3

eik�r G(1)

(
r + �r

2
, r − �r

2
, t f

)
.

(38)

Now, we define f (r, k, t ) as (one of the) functions satisfying

W (r, k, t f ) =
∫ t f

0
dt f

(
r − h̄k

m
(t f − t ), k, t

)
. (39)

Now, from Eqs. (30)–(32), (38), and (39), we find that (for
more details see Ref. [39])

f (r, k, t ) = 2

(2π )3h̄2

∫ t

−t
d�t e−i 2h̄k2

m �t

× B∗
p(r, k, t,−�t )Bp(r, k, t,�t ), (40)

where

Bp(r, k, t,�t ) =
∫

d�r Kf (�r,�t )

× B̃

(
ek, r + �r + h̄k�t

m
, t − �t

)
, (41)

and Kf denotes the free propagator.

The next step is to obtain an analytic formula for f . This
is done by introducing a number of approximations detailed
in Appendix D. Here, we just summarize the main results.
In Eq. (40), we notice the term B∗

pBp, and a detailed analysis
shows that the phase � cancels. Additionally, we find that the
same happens with the phase φ(z). As a result, the function
G(1), and consequently G(2)

loc as well, does not depend on the
realization of the thermal noise. This enables us to neglect
the average 〈. . .〉cl while considering these averages. Thus, we
have

G(2)
loc(r1, r2, t f ) = |G(1)(r1, r2, t f )|2. (42)

Finally, we use ψc given by Eq. (20) in order to obtain

f (r, k, t ) = D1

(1 + ω̃2t2)3/2 sin θ
e
−2 z2

σ2
z

−2 x2+y2

σ2
r (t )

× exp

[
−2

(
δkσr (t )

sin θ
− x

σr (t )
ω̃t

σ 2
r

ã2
hor

)2
]
, (43)

where D1 =
√

πmg2n2
0σr

4
√

2π3 h̄3Q
, ek = (sin θ, 0, cos θ ), and δk = k−Q.

One might wonder if the above function can be derived within
a classical model, where one considers a collision of two
clouds of atoms. It turns out that it is indeed the case, when
one takes the Wigner function as the phase-space distribution
of the colliding clouds [39].

Having the source function f , we now derive an approx-
imate expression for the single-particle correlation function.
We start with the inverted relation to that, which is given by
Eq. (38) and reads

G(1)

(
r + �r

2
, r − �r

2
, t f

)
=

∫
dk e−ik�rW (r, k; t f ).

We insert into that equation the function W from Eq. (39), and
we obtain

G̃(1)(r,�r, t f )=
∫ t f

0
dt

∫
dk e−ik�r f

(
r − h̄k

m
(t f − t ), k, t

)
,

where we denoted G(1)(r + �r
2 , r − �r

2 , t f ) by G̃(1)(r,�r, t f ).
Moreover, introducing new variables r′ = r − h̄

m k(t f − t ),
k0 = mr

h̄t f
, and �k0 = m�r

h̄t f
, we obtain

G̃(1)(r,�r, t f ) =
∫ t f

0
dt

∫
dr′

(
m

h̄(t f − t )

)3

× e
−i 1

1− t
t f

( h̄
m k0t f −r′)�k0

f

(
r′,

k0 − mr′
h̄t f

1 − t
t f

, t

)
.

(44)

Using Eq. (43) and the one above, we find that, if σr � σz,
mσz

h̄t f
� 1

σr
, and ω̃t f 
 1, the above can be approximated as

G̃(1)

(
h̄k0

m
t f ,

h̄�k0

m
t f , t f

)
	

(
m

h̄t f

)3

exp

(
−i

h̄

m
k0�k0t f

)
×

∫ t f

0
dt

∫
dr′ exp

[
i�k0

(
r′ − h̄

m
k0t

)]
f (r′, k0, t ).

(45)

033616-6



PAIR CORRELATION OF ATOMS SCATTERED FROM … PHYSICAL REVIEW A 101, 033616 (2020)

With the experimental parameters, we verify that the con-
ditions are satisfied, and this formula can be applied to our
system.

Now, we proceed to the analysis of the density of scattered
particles. From Eq. (45), we obtain

�(k) =
〈
G̃(1)

(
h̄k
m

t f , 0, t f

)〉
cl

= G̃(1)

(
h̄k
m

t f , 0, t f

)

	
(

m

h̄t f

)3 ∫ ∞

0
dt

∫
dr f (r, k, t ).

Inserting f from Eq. (43) into the above, we obtain

�(k) =
(

m

h̄t f

)3 1

sin θ
h

(
δk

sin θ

)
, (46)

where h is given by

h(δk) = D2

∫ ∞

0

dt̃√(
1 + t̃2 σ 4

r

ã4
hor

)
(1 + t̃2)

× exp

⎛⎝−2
δk2σ 2

r (1 + t̃2)(
1 + t̃2 σ 4

r

ã4
hor

)
⎞⎠, (47)

D2 = D1( π
2 )3/2σ 2

r σz/ω̃ = π
Q n2

0a2σ 3
r ã2

horσz, and t̃ = ω̃t .
We additionally calculate the number of scattered atoms

into the region where they are measured, i.e.,

Nsc =
(

h̄t f

m

)3 ∫ ∞

0
k2dk

∫ 2π/3

π/3
sin θdθ

∫ 2π

0
dφ ρ(k),

where k = k(sin θ cos φ, sin θ sin φ, cos θ ). Upon inserting
Eqs. (46) and (47) into the above and approximating∫ ∞

0 k2dk = Q2
∫ ∞
−∞ dδk, we arrive at

Nsc = π7/2

√
2

Qn2
0a2σ 2

r ã2
horσz. (48)

Now, we focus on the normalized two-body correlation
function measured in the experiment, and defined as

g(2)
loc(�r⊥,�z) − 1

=
∫

d�̃r w(�r − �̃r)
∫

V dr G(2)
loc(r1, r2, t f )∫

d�̃r w(�r − �̃r)
∫

V dr G(1)(r1, r1, t f )G(1)(r2, r2, t f )
,

(49)

where r1 = r + �̃r/2, r2 = r − �̃r/2, and V denotes a
volume where the spherical angles r = r(sin θ cos φ,

sin θ sin φ, cos θ ) are bounded by π
3 < θ < 2π

3 . The function
w(r) is given by

w(r) = 1

(2π )3/2σzdσ
2
rd

e
− x2+y2

2σ2
rd

− z2

2σ2
zd (50)

and describes the detector resolution for two-particle de-
tection. The transverse resolution is known to be σrd =
350 μm [47]. The vertical resolution σzd has never been pre-
cisely measured, but from Ref. [4] we can place an upper limit
σzd < 60 μm. Due to the cylindrical symmetry of the system,
g(2)

loc depends only on �r⊥ = |�r⊥| and �z. Therefore, we
denote it as g(2)

loc(�r⊥,�z).

VI. THE G(2)
op FUNCTION

In this section, we consider

G(2)
op (�R, t f ) =

∫
dR G(2)

op (R,�R, t f )

=
∫

dR 〈|M(R,�R, t f )|2〉cl, (51)

where

G(2)
op (R,�R, t f ) = 〈|M(R,�R, t f )|2〉cl, (52)

with M given by Eq. (31).
However, at the first step, we consider the function

M(K,�K) given by Eq. (32). It can be decomposed into the
following form:

M(K,�K) 	 Mρ (K,�K⊥)Mz(�Kz ). (53)

The detailed analysis of this function is performed in
Appendix E1. The crucial step that leads to the above de-
composition is that ψc given by Eq. (20) is of the Gaussian
form and is decomposed into (r⊥, t ) and z parts. The second
step is that the phase �(r, eK, t ) can be effectively approxi-
mated by its average over z, i.e., �(r, eK, t ) → �̃(r⊥, eK, t ).
Finally, we show that the term exp (−ih̄�K2

z t/4m), present in
Eq. (32), may be neglected. From Eqs. (20), (33a), and (35),
we notice (see Appendix E1 for more details) that these facts
lead directly to a decomposition given by Eq. (53).

Inserting this decomposition into Eq. (31), we arrive at

M(R,�R, t f ) = Mρ (R,�R⊥, t f )Mz(�Z, t f ), (54)

where

Mz(�Z, t f ) =
∫

d�Kz exp

(
i�Kz

�Z

2
− i

h̄�K2
z

4m
t f

)
× Mz(�Kz ), (55)

Mρ (R,�R⊥, t f ) = 1

(2π )3

∫
dK d�K⊥ ei2kR

× ei �K⊥�R⊥
2 −i h̄

m (K2+ �K2⊥
4 )t f Mρ (K,�K⊥),

(56)

Mz(�Kz ) =
∫

dz exp

(
−i�Kzz + 2iφ(z) − z2

σ 2
z

)
, (57)

and Mρ (R,�R⊥, t f ) is given by Eq. (E6) from Appendix E1.
While calculating G(2)

op (R,�R, t f ), given by Eq. (52), we
use the averaging 〈. . .〉cl. From the definition of Mz(�Kz ), we
notice the presence of the phase φ(z), which depends on the
realization. On the other hand, φ(z) is not present in Mρ . Thus,
the averaging 〈|M(R,�R, t f )|2〉cl influences only the Mz part.
Because of that, we define

G(2)
z (�Z, t f ) = 〈|Mz(�Z, t f )|2〉cl. (58)

In Appendix E2, we show that

G(2)
z (�Z, t f ) =

∫
dKz G(2)

z

(
�Z − h̄t f

m
Kz, 0

)
ρ(Kz ), (59)

where ρ(Kz ) = 2π lφ
1+(Kzlφ/2)2 is the velocity distribution di-

rectly related to the quasicondensate velocity distribution and
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G(2)
z (�Z, 0) = exp (−�Z2

2σ 2
z

) is the initial correlation function.
The above formula has a clear meaning. We start from the ini-
tial correlation function G(2)

z (�Z, 0), which is proportional to
the density of the quasicondensate in the z direction. At each
point of the quasicondensate, we deal with the momentum dis-
tribution ρ(Kz ). Equation (59) describes how the correlation
function changes due to the movement of particles with the
initial distribution ρ(Kz ). The characteristic velocity of this
distribution is vφ = h̄/mlφ . Thus, for time t f for which the
distance vφt f is much smaller than σz, the correlation function
will not broaden much and should be given approximately
by the initial distribution. In our case, vφt f /σz 	 0.14, which
leads to a small broadening of the initial distribution, i.e., the
Gaussian function fitted to the distribution

G(2)
z (�Z, t f ) 	 (2π )2 σz

σ̃z
exp

(
−�Z2

2σ̃ 2
z

)
(60)

yields σ̃z 	 1.17σz. Thus, we notice the practically neg-
ligible impact of the presence of the quasicondensate on
G(2)

op (�R, t f ).
For noninteracting particles and after sufficiently long ex-

pansion time, the cloud has the shape given by its velocity
distribution. As a consequence, all the spatial correlations
will be given by its momentum counterparts. Due to a large
free-fall time, we might expect that this situation occurs also
in our system, i.e., that M(R,�R, t f ) in position space is
proportional to M in momentum space. If that happens, we
say that the correlations are in the “far field.” As we see

above, in the case of �Z correlations the time t f is too small.
We are not in the far field for this variable (in fact we are
almost in the “near field” as the correlations are given by
the spatial density of the quasicondensate). In Appendix E3,
we analyze the far-field conditions for other variables of
the M(R,�R, t f ) function. We show that the approximate
condition for �X, �Y and |R| correlations to be in the far
field is h̄σ 2

k t f /2m 
 1. Here σk is the correlation width in
the momentum space. In Appendix E3, we find that σK⊥ ≈√

2
σr

and σK ≈ 2
Qã2

hor
. Substituting into the above experimental

parameters, we find that for the above variables the conditions
are satisfied. In such a case from Eqs. (31) and (54) we find

Mρ (R,�R⊥, t f ) = CMρ (K,�K⊥) (61)

where �R⊥ = h̄�K⊥
m t f , R = h̄K

m t f , and C = 1
2
√

π
( m

ih̄t f
)5/2 exp

[i(K2 + �K2
⊥

4 ) h̄t f

m ].
We define G(2)

ρ (�R⊥, t f ) through the relation

G(2)
op (�R, t f ) = G(2)

ρ (�R⊥, t f )G(2)
z (�Z, t f ). (62)

Using Eqs. (51), (54), and (58), we arrive at

G(2)
ρ (�R⊥, t f ) =

∫
dR |Mρ (R,�R⊥, t f )|2. (63)

We calculate this quantity in Appendix E4.
Finally, we note that the pair-correlation function measured

in the experiment takes the form

g(2)
op (�R⊥,�Z ) =

∫
d�̃R w(�R − �̃R)G(2)

op (�R, t f )∫
d�̃R w(�R − �̃R)

∫
V dR G(1)(r1, r1, t f )G(1)(r2, r2, t f )

(64)

where r1 = R+�̃R/2, r2= − R+�̃R/2, and �R⊥=|�R⊥|.

VII. RESULTS

To make a comparison between theory and experiment, we
first examine g(2)

op (0, 0), the amplitude of the opposite corre-
lation, given by Eq. (64), and using Eqs. (62), (60), (E11),
and (46).

In this case, the resolution, σzd , has a negligible effect on
the width and will therefore be ignored. We obtain g(2)

op (0) −
1 	 0.087. This is in poor agreement with the experimental
value, g(2)

op (0) − 1 = 0.16. However, the value of g(2)
op (0, 0) − 1

depends crucially on the total number of particles in the quasi-
condensate, and the experimental value of the total number of
particles has an uncertainty of about a factor of 2. Therefore,
we seek the value of N which makes the theoretical and
experimental g(2)

op (0, 0) agree. We find N 	 7×104, which is
within the experimental uncertainty. From this value for N , we
can deduce σr/ahor 	 1.65 μm, σz 	 0.26 mm, ω̃ 	 1.02 ωr ,
lφ = 92 μm, σ̃z 	 1.23 σz, and �0 	 0.85. We remind the
reader that ahor = √

h̄/mωr is a harmonic oscillator length.
With the new value of N , we now calculate the other

interesting characteristics. We start with the radial density
profile, given by Eqs. (46) and (47). In Fig. 2, we plot the
function h(δk) normalized to unity. We find a half width of

about 0.08 Q. The radial profile was not measured in Ref. [11],
but a similar experiment, described in Ref. [37], has also
found a value 0.08Q for this width. From Eq. (48) we find
Nsc 	 2×103 atoms scattered in the region where the atoms
are measured.

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

k/Q

h(
k)

/h
(0

)

FIG. 2. The radial density profile h(δk)/h(0) of the collision
sphere as a function of the radial momentum in units of Q. The half
width roughly equals 0.08 Q.
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)

FIG. 3. The function g(2)
op (

h̄t f

m �K⊥, 0) (upper panel) and

g(2)
op (0,

h̄t f

m �KZ ) (lower panel) together with the experimental points
as a function of �K⊥/Q and �KZ/Q, respectively. The red dashed
line shows g(2)

op with the interaction term 2g|ψQC(r, t )|2 present in
Eq. (22) neglected.

Next, we move to g(2)
op (�R⊥,�Z ), the spatial dependence

of the opposite correlation function. In Fig. 3, we plot
g(2)

op ( h̄t f

m �K⊥, 0) and g(2)
op (0,

h̄t f

m �KZ ) together with the ex-
perimental points. While leaving the collision volume, the
atoms interact with the quasicondensate atoms via the mean-
field potential 2g|ψQC(r, t )|2 [present in the H0(r, t ) given
by Eq. (22)]. To see the influence of this interaction on the
correlation function, we also plot g(2)

op with 2g|ψQC(r, t )|2
neglected (red dashed line in the upper panel of Fig. 3). The
correlation in the radial direction (along �K⊥) measured in
the experiment is quite close to our calculation, and we obtain
slightly better agreement by including the mean field. The
width in the radial direction is given by the width in velocity of
the colliding condensates in that direction, that is, proportional
to 1/σr , the inverse of the radial condensate size.

In the case of the longitudinal (�KZ ) correlations, the
theoretical width is smaller than the experimental one but not
much. Unlike in the radial direction, the longitudinal width is
approximately proportional to the size of the quasicondensate
in that direction (equal approximately to σz). This is because
for this correlation function the observation does not take
place in the far field. To be in the far field, the time of flight
must be longer than σz/vφ where vφ = h̄/mlφ is the width of
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0.9
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1.1
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1.5
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c(2

) (0
,

T
k z

/m
)

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15
0.8
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1.2

1.3

1.4

1.5

kr/Q
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c(2

) (
T

k r
/m

,0
)

FIG. 4. The function g(2)
loc(

h̄t f

m �k⊥, 0) (upper panel) and

g(2)
loc(0,

h̄t f

m �kz ) (lower panel) together with the experimental points
as a function of �k⊥/Q and �kz/Q, respectively.

the quasicondensate velocity distribution. We find vt f /σz 	
0.14 which locates these correlations much closer to the near
field than to the far field. The remaining discrepancies may be
due to the use of a variational approach. The �KZ correlations
are mostly given by the spatial size of the quasicondensate.
The variational ansatz decreases the spatial width in the z
direction compared to the true GP solution, and therefore
overestimates the �KZ width. Thus, using the GP solution the
discussed difference would be smaller.

Finally, we examine the local correlation g(2)
loc(�r⊥,�z).

From Eqs. (42), (43), (45)–(47), (49), and (50) we numerically
calculate the g(2)

loc function. In Fig. 4, we plot g(2)
loc( h̄t f

m �k⊥, 0)

and g(2)
loc(0,

h̄t f

m �kz ) together with the experimental measure-
ments. The local correlations are narrower than the opposite
ones, and, therefore, the detector resolution is not negligible.
The vertical resolution σzd is not well known, but we can find
its value by fitting the data shown in Fig. 4 (lower panel). We
find σzd = 41 μm or approximately 0.0015v0 consistent with
the limit set in Ref. [4].

The theoretical correlation function is in good agreement
with the experimental result in the longitudinal direction while
in the radial direction it is larger by a factor of 1.5. This
is a marked improvement over the work given in Ref. [32],
in which we estimated much smaller radial and longitudinal
widths. This improvement is due to the inclusion of the
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condensate expansion in the problem. As the condensate
expands, the density declines to the point where the collision
rate becomes negligible. Therefore, the effective duration of
the collision is shorter, and this in turn increases the energy
uncertainty of the collision products. The energy uncertainty
broadens the correlation function relative to that calculated in
Ref. [32], and it is still this uncertainty that determines the
radial size of the correlation, rather than the spatial width
of the source. In the case of the z direction, and under the
experimental conditions, the correlation width is limited by
the inverse of the size of the source, and in part also by
the detector resolution. The calculated amplitude g(2)

loc(0, 0) is
somewhat smaller than the measured one. As in the opposite
correlation case, this may be due to the use of the variational
ansatz. The fact that g(2)

loc(0, 0) < 2 comes from the finite
detector resolution. In the case of perfect detector resolution,
i.e., σrd = σzd = 0, we have g(2)

loc(0, 0) = 2.

VIII. SUMMARY

We have provided an analytical treatment of the production
of atom pairs during the collision of two BECs via four-
wave mixing and compared the results to an experiment. The
calculation represents a significant improvement over our pre-
vious analytical calculation [32], and the agreement with the
experiment is as good as an earlier numerical treatment [37].
Compared to the numerical approach, the present calculation
has the advantage that we can identify the physical processes
which affect the widths and amplitudes of the correlation
functions. Compared to the earlier analytic treatment, we are
now able to take into account the expansion of the condensate
during the collision. The decrease in the density caused by the
expansion is the mechanism which governs the collision time.
Therefore, the uncertainty in the energy of the pairs is more
accurately accounted for especially in the collinear correlation
functions.

We are also able to clearly identify the role of the far-field
condition. We have shown that the experiment is not in the far
field for observation in the longitudinal (z) direction. Thus,
the correlation along z for opposite pairs does not reflect
the correlations in momentum, but rather more nearly the
spatial correlations. For collinear pairs, the local correlation
effect is simply a variant of the Hanbury-Brown-Twiss cor-
relation [36], and the far-field condition plays no role. For
example, Earth is not in the optical far field of typical stars
in our galaxy. We thus find, as expected, that apart from
broadening by the detector resolution, the local, longitudinal
correlation width is a measure of the size of the source. The
local correlation result also allows us to infer the detector
resolution, which is in agreement with other upper limits we
have already set.

We also took into account the interaction of the scattered
atoms with the colliding clouds’ mean-field potential. How-
ever, this did not affect the results much.

Finally, our treatment has included the fact that, in the ex-
periments, the colliding clouds were quasicondensates, having
a correlation length in the longitudinal direction smaller than
the condensate itself. This feature, however, has not proved
crucial for understanding the observations.
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APPENDIX A: DERIVATION OF EQ. (15)

We insert Eq. (14) into Eq. (12), and arrive at

eiQz

[
K − h̄2

m
Q∂z + g(|ψ+Q|2 + 2|ψ−Q|2)

]
ψ+Q

+ e−iQz

[
K + h̄2

m
Q∂z + g(|ψ−Q|2 + 2|ψ+Q|2)

]
ψ−Q

+ ge−i3Qzψ∗
+Qψ2

−Q + gei3Qzψ∗
−Qψ2

+Q = 0,

where K = −ih̄∂t − h̄2

2m � and the factor exp(−i h̄Q2

2m t ) multi-
plying the whole equation was dropped. In order to get the
approximate equation for ψ+Q, we multiply the equation by
e−iQz. We observe that ψ+Q satisfies

ih̄∂tψ+Q =
(

− h̄2

m
Q∂z − h̄2

2m
�

)
ψ+Q

+ g(|ψ+Q|2 + 2|ψ−Q|2)ψ+Q + · · · ,

and the remaining terms at the right-hand side of the equation
are always multiplied by some power of eiQz. In the main part
of the paper, we assumed that the momentum spread of ψ±Q is
much smaller than Q. Thus, the remaining terms, due to rapid
oscillations, effectively average to zero and can be neglected.
As a result, we obtain Eq. (15).

APPENDIX B: TEMPORAL PHASE DIFFUSION
OF THE QUASICONDENSATE

It follows directly from Ref. [40] that

〈(φ(z = 0, t ) − φ(z = 0, 0))2〉
caused by the thermal fluctuations reads

〈(φ(z= 0, t )−φ(z=0, 0))2〉= 1

n1Dπ

∫
dk nk

εk

Ek
sin2

(
εkt

h̄

)
where Ek = h̄2k2/2m, εk = √

Ek (Ek + 2g1Dn1D) and
nk = [exp (εk/kBT ) − 1]−1. Calculating the above for
the parameters of the system considered in the paper
and taking the expansion time τex = 1/ω̃ we obtain√

〈[φ(z = 0, τex) − φ(z = 0, 0)]2〉 	 0.14.

APPENDIX C: DERIVATION OF THE ANOMALOUS
DENSITY FORMULA

In this Appendix we show that the approximate treatment
introduced in Ref. [39] in the case of collision of condensates
applies also for our system. The crucial step of the analysis
presented in Ref. [39] lies in the approximate solution to the
single-particle scattering problem presented in Appendix C3
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of Ref. [39]. There we deal with the equation(
− h̄2

2m
� + Ven(r, t ) − h̄2k2

2m

)
ϕ(r, t ) = 0

with the boundary condition given by plane wave eikr. In
the above Ven is given by Eq. (34). Following Ref. [39] we
introduce φ through the relation ϕ = eikr+iφ(r). Substituting
this form into the above equation and expanding φ in series
φ = φ(0) + φ(1) + · · · we obtain

2k∇φ(0) = −2m

h̄2 Ven,

2k∇φ(1) = −(∇φ(0) )2 + i�φ(0)

with formal solution

φ( j)(r, t ) = − 1

2k

∫ 0

−∞
dsWj (r + sek, t ) (C1)

where W0 = 2m
h̄2 Ven and W1 = (∇φ(0) )2 − i�φ(0). We clearly

see that φ(0) depends on the Ven potential given by Eq. (34). We
substitute to this equation ψc given by the variational ansatz
and presented in Eq. (20). As a result in the case ek = ex,

t = 0, and z = 0 we obtain

φ(0)(x, y, 0) = −2mgn0σr

h̄2Q
exp

(
− y2

σ 2
r

)√
π

2

[
1 + Erf

(
x

σr

)]
where n0 = N/(π3/2σ 2

r σz ). Inserting experimental values we
obtain φ(0)(∞, 0, 0) 	 1.5. We insert the above solution into
Eq. (C1) and obtain the analytic form of φ(1)(x, y, 0). We
find that φ(1)(x, y, 0) increases to infinity with the increase
of x. This is a well-known phenomenon in semiclassical
approximation caused by the presence of caustics. Anyway
as stated in Ref. [39] we need the approximate solution only
in the space where the cloud is present. This gives us roughly
x < 2σr . In this part of space we find the maximal value of
φ(1) equal to 0.15. As this value is smaller than unity and also
much smaller than φ(0) we neglect it. Thus we have

ϕk 	 exp[ikr + iφ(0)(r)].

In Ref. [39] using the above formula we derived expression
for the anomalous density given by Eqs. (32) and (31).

APPENDIX D: DERIVATION OF EQ. (43)

We now analyze the above formulas in a way analogous
to that presented in Ref. [39]. It is crucial to note that
B̃ vanishes if |x + �x + h̄kx�t

m | is larger than σr . As k =
(k sin θ, 0, k cos θ ) and k 	 Q with sin θ >

√
3/2, we find

that |�t | < �t0 = 2σr

v0
√

3
	 20 μs. We note that �t0 is the

time the scattered particle leaves the cloud. The characteris-
tic distance �0 = √

h̄�t0/m 	 0.56 μm present in the free
propagator Kf (x, t ) ∝ exp ( ix2

2�2
0t/t0

) is more than three times
smaller than σr . On the distance �0 and in time �t0, the
change of the wave function ψc and the phase � is not crucial
and can be neglected. As a result, from Eqs. (33a), (35),
and (41), we obtain that

Bp(r, k, t,�t ) 	 B̃

(
ek, r + h̄k�t

m
, t

)
exp

(
i
h̄Q2

m
�t

)
. (D1)

In the formula describing the source function f , and
given by Eq. (40), we notice the presence of the term
B∗

p(r, k, t,−�t )Bp(r, k, t,�t ). According to the above equa-
tion, it is now equal to

B̃∗
(

ek, r− h̄k�t

m
, t

)
B̃

(
ek, r+ h̄k�t

m
, t

)
exp

(
i
2h̄Q2

m
�t

)
.

(D2)

Substituting here B̃, given by Eqs. (33a) and (35), and using
the fact that the phase � is constant along the ek direction, i.e.,
�(r − sek, ek, t ) = �(r, ek, t ), we find a cancellation of the
phase � in Eq. (D2). Additionally, h̄kz�t

m is maximally equal
to σr . On that distance, we can neglect the change of the phase
φ(z) and, as a result, we obtain a cancellation of the phase φ

in Eq. (D2). As a result, we find that the quantity present in
Eq. (D2) is equal to

g2ψ2
c

∗
(

r − h̄k�t

m
, t

)
ψ2

c

(
r + h̄k�t

m
, t

)
. (D3)

Consequently, we find that the source function f does not
depend on the phases � and φ. Due to the relation given
by Eqs. (44) and (36), the same applies to a single-particle
correlation function G(1) and the local part of pair-correlation
function G(2)

loc. It means that these functions are not affected
by the presence of the quasicondensate or the interaction of
the scattered atoms with the atoms of the colliding clouds.
Therefore, we can omit the bracket 〈. . .〉cl present in Eq. (36),
and arrive at

G(2)
loc(r1, r2, t f ) = |G(1)(r1, r2, t f )|2. (D4)

We now continue with the analysis of the source function
f . From Eqs. (40), (D1), and (D3), we find that

f (r, k, t ) = 2

(2π )3h̄2

∫ t

−t
d�t exp

(
−i

2h̄(k2 − Q2)

m
�t

)
× g2ψ∗

c
2
(

r − h̄k�t

m
, t

)
ψc

2

(
r + h̄k�t

m
, t

)
.

To proceed further, we make a series of approximations. First,
h̄kz�t

m is maximally equal to σr . As σr � σz, we neglect the
change of ψc on that distance. Second, �t0 is significantly
smaller than the collision time. Therefore, we approximate∫ t
−t ≈ ∫ ∞

−∞. Third, as |k − Q| � Q, we approximate k2 −
Q2 	 2Qδk, where δk = k − Q, and additionally approximate
h̄k�t

m 	 h̄Q�t
m ek. As a result, the above formula takes the form

f (r, k, t ) = mg2

4π3h̄3Q

∫
dδr exp (−i4δkδr)ψ∗

c
2

× (x−δr sin θ, y, z, t )ψc
2(x+δr sin θ, y, z, t ),

where we introduced δr = h̄Q�t
m and used ek = (sin θ, 0,

cos θ ). Inserting into the above ψc given by Eq. (20) and
performing the integral over δr, we obtain

f (r, k, t ) = D1

(1 + ω̃2t2)3/2 sin θ
e
−2 z2

σ2
z

−2 x2+y2

σ2
r (t )

× exp

[
−2

(
δkσr (t )

sin θ
− x

σr (t )
ω̃t

σ 2
r

ã2
hor

)2
]
, (D5)

where D1 =
√

πmg2n2
0σr

4
√

2π3 h̄3Q
= 2

√
2√

π
n2

0a2σr ã2
hor

ω̃
Q .
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APPENDIX E: THE CALCULATION
OF THE G(2)

op (�R, t f ) FUNCTION

1. Derivation of decomposition of M(K,�K) functions

From Eqs. (32), (33a), and (35) we obtain

M(K,�K) = g

ih̄(2π )3

∫ ∞

0
dt

∫
dr ψ2

c (r, t ) exp (−i�Kr)

× exp

[
i

h̄

m

(
K2 − Q2 + �K2

4

)
t

+ 2iφ(z) − i�

]
. (E1)

According to Eq. (20) ψc(r, t ) = ψρ (r⊥, t ) exp(−z2/2σ 2
z ).

We insert this ψc into the above equation and concentrate on
the integral over z which takes the form∫

dz exp

(
−i�Kzz − z2

σ 2
z

+ 2iφ(z) − i�(r, eK, t )

)
. (E2)

First we start with phase � analysis. Due to the axial sym-
metry of the system we may take eK = (sin θ, 0, cos θ ). As
σr � σz and sin θ >

√
3

2 we approximate

�(r, eK, t ) 	 1

sin θ
�(r, ex, t )

= 1

sin θ

m

h̄2Q

∫ ∞

−∞
ds 2g|ψc(x + s, y, z, t )|2

where we used Eqs. (33b) and (34). Inserting into the above
the variational ansatz solution of ψc given by Eq. (20) we
obtain

�(r, eK, t ) 	 1

sin θ

2gm

h̄2Q

n0σ
2
r

σr (t )

√
π exp

(
− y2

σ 2
r (t )

− z2

σ 2
z

)
.

(E3)

We find that the gradient of the phase φ(z) is much larger than
∂z�. This makes us approximate the integral given by Eq. (E2)
as ∫

dz exp (−i�Kzz) exp

(
− z2

σ 2
z

+ 2iφ(z) − i�(r, eK, t )

)
≈ exp[−i�̃(r⊥, eK, t )]Mz(�Kz )

where

Mz(�Kz ) =
∫

dz exp

(
−i�Kzz − z2

σ 2
z

+ 2iφ(z)

)
. (E4)

In the above we used the variational ansatz wave function ψc

given by Eq. (20). We also introduced �̃(r⊥, eK, t ), which
is �(r, eK, t ) averaged over z with the condensate density
exp (− z2

σ 2
z

):

�̃(r⊥, eK, t ) =
∫

dz �(r, eK, t ) exp
(− z2

σ 2
z

)∫
dz exp

(− z2

σ 2
z

) .

Substituting � given by Eq. (E3) we obtain

�̃(r⊥, eK, t ) 	 �0
1

sin θ
√

1 + ω̃2t2
exp

(
− y2

σ 2
r (t )

)
(E5)

where �0 = 2gmn0σr

h̄2Q

√
π
2 	 1.07.

From Eq. (E4) we find that the characteristic width of �Kz

is roughly equal to 1/lφ . Using this value and taking as the

time of the collision 1/ω̃ we estimate that the term h̄�K2
z

4m t
present in Eq. (E1) is of the order of h̄

4ml2
φω̃

= ã2
hor/4l2

φ � 1

and therefore can be neglected. With the above approximation
M(K,�K) given by Eq. (E1) turns into

M(K,�K) = Mρ (K,�K⊥)Mz(�Kz )

where

Mρ (K,�K⊥) = g

ih̄(2π )3

∫ ∞

0
dt

∫
dr⊥ exp (−i�K⊥r⊥)

× exp

[
i

h̄

m

(
K2−Q2+�K2

⊥
4

)
t−i�̃(r⊥, eK, t )

]
ψ2

ρ (r⊥, t ).

(E6)

2. The calculation of 〈|Mz(�Z, t f )|2〉cl

Inserting Eq. (57) into Eq. (55) we find that

Mz(�Z, t f ) =
∫

d�Kz exp

(
i�Kz

�Z

2
− i

h̄�K2
z

4m
t f

)
×

∫
dz exp

(
−i�Kzz + 2iφ(z) − z2

σ 2
z

)
.

Using the above we notice that G(2)
z (�Z, t f ) =

〈|Mz(�Z, t f )|2〉cl can be rewritten as

G(2)
z (�Z, t f ) =

∫
dKz W

(
�Z − h̄t f

m
Kz, Kz

)
(E7)

where

W (�Z, Kz ) = 2π

∫
d�z exp

(
−iKz�z − �Z2 + �z2

2σ 2
z

)
×

〈
exp

[
2iφ

(
�Z + �z

2

)
− 2iφ

(
�Z − �z

2

)]〉
cl

is a Wigner function. Using local-density approximation we
have

W (�Z, Kz ) 	 exp

(
−�Z2

2σ 2
z

)
ρ(Kz ) (E8)

where

ρ(Kz ) = 2π

∫
d�z exp (−iKz�z)

×
〈

exp

[
2iφ

(
�z

2

)
− 2iφ

(
−�z

2

)]〉
cl

.

The above can be calculated using the formulas for a 1D
uniform system [48] arriving at

ρ(Kz ) = 2π lφ
1 + (Kzlφ/2)2

where lφ is the thermal coherence length given by Eq. (11).
For simplicity we rewrite Eq. (E7) as

G(2)
z (�Z, t f ) =

∫
dKz G(2)

z

(
�Z − h̄t f

m
Kz, 0

)
ρ(Kz )

where we used Eq. (E8) and G(2)
z (�Z, 0) = exp (−�Z2

2σ 2
z

).
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3. Far-field conditions

In this Appendix we discuss far-field conditions for the
Mρ (R,�R⊥, t f ) function given by Eqs. (56).

Following Ref. [39] we take the simple but realistic model
of anomalous density

Mρ (K,�K⊥, t f ) = M0(t f ) exp

(
−2

(K − Q)2

σ 2
K

)

× exp

(
−�K2

⊥
2σ 2

K⊥

)
(E9)

where σK⊥ ≈
√

2
σr

and σK ≈ 2m
h̄Qτd

. Here τd is the characteristic
time of the collision which in our case is equal to 1/ω̃. This
gives σK ≈ 2

Qã2
hor

. Inserting Eq. (E9) into Eq. (56) we arrive at

M(R,�R, t f ) = M0M1(R, t f )M2(�R⊥, t f ),

M1(R, t f ) =
∫

dK
(2π )3/2

exp

(
i2KR − i

h̄K2

m
t f

)
× exp

(
−2

(K − Q)2

σ 2
K

)
,

M2(�R⊥, t f ) = 1

(2π )3/2

∫
d�K⊥ exp

(
i
�K⊥�R⊥

2

)

× exp

(
−i

h̄�K2
⊥

4m
t f − �K2

⊥
2σ 2

K⊥

)
. (E10)

As the above integrals are of Gaussian form they can be
integrated analytically to get

M1(R, t f ) = QσK

4iR

1√
1 + i h̄σ 2

Kt f

2m

exp

(
−i

h̄Q2

m
t f

)

× exp

(
2iQR − (R − v0t f )2σ 2

K

2
(
1 + i h̄σ 2

K t f

2m

)
)

and

M2(�R⊥, t f ) = 1

1 + i
h̄σ 2

K⊥ t f

2m

exp

⎛⎝− �R2
⊥σ 2

K⊥

8
(
1 + i

h̄σ 2
K⊥ t f

2m

)
⎞⎠.

In the above we clearly notice that the far field is reached

when h̄σ 2
K t f

2m 
 1 and
h̄σ 2

K⊥ t f

2m 
 1. Substituting the experimen-
tal values we find

h̄σ 2
Kt f

2m
	 100,

h̄σ 2
K⊥t f

2m
	 1.6×103.

The above show that the far-field conditions are satisfied.

4. Calculation of G(2)
ρ (�R⊥, t f )

Upon inserting Eq. (61) into (63) we arrive at

G(2)
ρ (�R⊥, t f ) = |C|2

(
h̄t f

m

)3 ∫
dK |Mρ (K,�K⊥, t f )|2

where we used dR = ( h̄t f

m )
3
dK. Now we insert Mρ given by

Eq. (E6) into the above and perform Dirac delta approxima-

tion described in Ref. [39] to obtain

G(2)
ρ (�R⊥, t f ) 	

(
m

h̄t f

)2 mQ

h̄3

1

4(2π )6

∫ ∞

0
dt

∫
d�K

×
∣∣∣∣∫ dr⊥ exp[−i�K⊥r⊥−i�̃(r⊥, eK, t )]gψ2

ρ (r⊥, t )

∣∣∣∣2

.

Substituting ψρ given by Eq. (20) into the above we find

G(2)
ρ (�R⊥, t f ) = C0

∫ ∞

0
dt̃

∫
d�K

π

(1 + t̃2)
√

1 + t̃2 σ 4
r

ã4
hor

× exp

⎛⎝−1

2
�K2

⊥ cos2 φ
1 + t̃2

1 + t̃2 σ 4
r

ã4
hor

⎞⎠
×

∣∣∣∣ ∫ dỹ exp

[
− i�K⊥ sin φỹ − i�(θ, σr ỹ, t̃/ω̃)

− ỹ2

1 + t̃2

(
1 − it̃

σ 2
r

ã2
hor

)]∣∣∣∣2

(E11)

where �R⊥ = |�R⊥|, �K⊥=mσr�R⊥
h̄t f

, t̃=ω̃t, ỹ = y/σr , and

C0 =
(

m

h̄t f

)2 mQ

h̄3

1

4(2π )6
(gn0)2σ 4

r .

In the above we used standard parametrization eK =
(sin θ cos φ, sin θ sin φ, cos θ ). It is important to mention that
in the experiment the averaging over the solid angles �k is
performed only over part of the sphere, i.e., for π

3 < θ <
2π
3 [11].

We also calculate the above neglecting the phase �. Then
it can be integrated arriving at

G(2)
ρ (�R⊥, t f )

=
∫ ∞

0
dt̃

2C0π
3(

1 + t̃2 σ 4
r

ã4
hor

) exp

⎛⎝−1

2
�K2

⊥
1 + t̃2

1 + t̃2 σ 4
r

ã4
hor

⎞⎠. (E12)

APPENDIX F: SPONTANEOUS REGIME

In this Appendix, we show that the considered system
is in the regime of spontaneous scattering of atoms. The
system is in this regime when the mean number of scattered
atoms per mode is much smaller than unity. In our case, the
“mode” can be defined as the correlation volume of G(1) (see
Ref. [39]). The maximal density of the scattered atoms in the
momentum space is equal to h(δk = 0). From Eq. (47), we
find h(0)/Q3 	 2200 for the experimental parameters. Invok-
ing the widths of G(2)

loc, we estimate the correlation volume
as (2×0.05Q)2(2×0.003Q). Therefore, the mean number of
atoms within the correlation volume (equal to 0.13) is much
smaller than unity.
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Chwedeńczuk, Phys. Rev. A 90, 033616 (2014).

[13] T. Wasak, P. Szańkowski, M. Trippenbach, and J.
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Trippenbach, Phys. Rev. Lett. 94, 200401 (2005).
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