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Floquet analysis of time-averaged trapping potentials
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Time-averaged trapping potentials have played an important role in the development of the field of ultracold
atoms. Despite their widespread application, there is not yet a complete understanding of when a system can
be considered time-averaged. Here we use Floquet theory to analyze the lowest energy state of time-periodic
trapping potentials, and characterize the transition from a localized state in a slowly moving trap to a delocalized
state in a rapidly oscillating time-averaged potential. We investigate how the driving parameters affect the density
and phase of the Floquet ground state, and provide a quantitative measure of the degree to which they can be
considered time-averaged. We study a number of simple representative systems, and comment on the features
affecting the experimental realization of time-averaged trapping potentials.
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I. INTRODUCTION

Ultracold atomic gases provide a versatile testing ground
for the study of quantum many-body physics. The ability to
precisely control experimental conditions such as trapping po-
tentials and interaction parameters allows them to be used as a
toolbox for designer matter, and their relative simplicity often
allows for direct comparison with theory [1]. The high degree
of control and cleanliness can allow the investigation of novel
phases of matter and novel far-from-equilibrium phenomena
which are often not accessible in solid-state systems [2].

The flexible control and engineering of trap geometries
have been important features in cold atom research, opening
intriguing possibilities for quantum simulation [3], quantum
computation [4], and the creation of exotic states of matter
[5,6]. One approach to trap design has been the use of
time-averaging: moving a trapping potential at a frequency
greater than the atoms can respond to kinematically so that
the effective trap is stationary with respect to the character-
istic timescale of their evolution. Examples include the time
orbiting potential (TOP) trap, which Petrich et al. used in the
original quest for a Bose-Einstein condensate (BEC) [7,8],
and rapidly scanned optical dipole traps [9–17]. In a similar
fashion, experiments have utilized shaken optical lattices to
modify effective tunneling rates between lattice sites [18–20].
Experiments generally drive the trapping potential as fast as is
technically possible to ensure they are in the time-averaged
regime, following a rough guideline of � � ω: that the
driving frequency � is much faster than the frequency of the
trap ω. This raises the question: what precisely are the condi-
tions for which the time-averaging approximation is effective?

It is important to note that the effective static trap in
the time-averaged limit is merely an approximation, and the
system will still exhibit some dynamical features due to the
driving. Experimentally this often manifests as a reduced
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trap lifetime and/or an inherent heating rate of the atoms
[14]. It is therefore important to understand in greater detail
how these features manifest, and correspondingly how they
might be minimized. Some theoretical work has been done in
investigating the underlying dynamical effects induced by the
drive, including investigations of micromotion [21,22], but a
study of the full transition from states localized in a static trap
to becoming delocalized in the time-averaged limit has yet to
be undertaken.

A natural approach to address these issues is Floquet the-
ory, which provides a convenient basis in which to investigate
time-periodic systems. The Floquet framework has been used
in investigations of topological states [23–25], the engineering
of artificial gauge fields [26,27], synthetic magnetic fields
[28], spin-orbit couplings [29–31], and artificial atoms [32].

Here we apply a Floquet analysis to periodically driven
trapping potentials. We examine the nature of the transition
from slow driving, where the lowest energy states of the
systems are localized and adiabatically follow the moving
potential, to fast driving, where the lowest energy states
are delocalized in the time-averaged potential. The precise
way that the system couples to the drive determines how
the localized to delocalized transition occurs. We provide a
quantitative measure of how well the system approximates the
time-averaged limit and additionally derive analytical results
which give insights into the time-averaged transition.

This paper is organized as follows. In Sec. II we provide a
summary of Floquet theory and a description of our numerical
approach. In Sec. III we analyze a ring potential formed
by a time-averaged attractive Gaussian trap. This system is
both experimentally relevant [13,15–17] and relatively sim-
ple, with a Galilean transformation allowing analysis in a
stationary frame. In Sec. IV, we apply our analysis to three
other representative one-dimensional potentials, demonstrat-
ing key features of time-averaged systems that are impor-
tant for the design and analysis of experimental setups. We
highlight the different kinds of resonances that emerge for
different trapping potentials. In Secs. IV A and IV B, we study
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systems which are harmonic in the time-averaged limit, so
they display a collective resonance. In Sec. IV C, we study
an anharmonic system, for which a collective resonance does
not occur. In Sec. IV B and Sec. IV C we see the emergence
of so-called “photon” resonances, which are responsible for
uncontrollable heating in experimental systems [33]. Finally,
we conclude in Sec. V.

II. FLOQUET THEORY

In order for this paper to be self-contained, we provide
a brief overview of Floquet theory. For a more complete
description we refer the reader to Refs. [34,35].

For systems with a periodic time dependence, a stationary
eigenbasis does not exist. Instead, an alternative is the strobo-
scopic basis in which the states are stationary only when sam-
pled in integer multiples of the driving period, T (frequency
� = 2π/T ). The technique of Floquet analysis combines the
usual Hilbert space of square-integrable functions, R, with
the Hilbert space of all time-periodic functions, T , to form
the composite Hilbert space R ⊗ T . This composite space has
norm [36]

〈〈a(t ) | b(t )〉〉 ≡ 1

T

∫ T

0

∫
a∗(x, t )b(x, t )dx dt, (1)

= 1

T

∫ T

0
〈a(t ) | b(t )〉dt, (2)

which is a natural combination of the well-known norms of
the constituent Hilbert spaces R and T .

For a periodic Hamiltonian H (t + T ) = H (t ) with period
T , Floquet’s theorem [37] implies that there exist so-called
Floquet-state solutions to the Schrödinger equation

ih̄
∂

∂t
�(x, t ) = H (x, t )�(x, t ), (3)

of the form

�α (x, t ) = e−iεαt/h̄	α (x, t ), (4)

where 	α (x, t ) is a Floquet mode corresponding to a
quasienergy εα . We note that, for integer n,

	α′ (x, t ) = 	α (x, t )ein�t ≡ 	αn(x, t ) (5)

yields an identical solution to Eq. (4) with shifted quasienergy

εα → εα′ = εα + nh̄� = εαn. (6)

Hence, the index α actually refers to a whole class of solutions
indexed by α′ = (α, n), where n = 0,±1,±2, . . . .

The quasienergies therefore, are defined modulo h̄� and
can be mapped into a first Brillouin zone obeying −h̄�/2 �
ε < h̄�/2. The quasienergy can be viewed as the time-
periodic analog to the quasi-momentum in Bloch’s theorem of
spatially periodic systems. The Floquet modes are eigenfunc-
tions of the Floquet matrix U , which acts as a time evolution
operator by stepping the solutions �α (x, t ) forward in time by
integer multiples of the driving period [35]:

�n(x, t + T ) =
∑

m

Unm(T )�m(x, t ). (7)

In this work, we construct and diagonalize the Floquet
matrix to compute the Floquet states of the one-dimensional

(1D) Schrödinger equation driven by representative external
potentials. While Floquet systems do not in general conserve
energy, the time-averaged energy

Ēα = 1

T

∫ T

0
〈	α (t ) | H | 	α (t )〉dt (8)

is conserved and may be used to classify the states; for
example the Floquet “ground state” is the state with the lowest
time-averaged energy.

Numerical approach

In all the cases discussed in this work, the numerical pack-
age XMDS [38] is used to simulate the Schrödinger equation

ih̄
∂

∂t
�(x, t ) =

(
− h̄2

2m

∂2

∂x2
+ V (x, t )

)
�(x, t ), (9)

with V (x, t ) a time-periodic trapping potential. We study a
1D system of length L with periodic boundary conditions. We
use a basis of plane waves and use a sufficient density of grid
points to ensure numerical accuracy for the Floquet states of
interest (we have typically used L = 16 and N = 256 lattice
points for the cases considered here).

We consider potentials of the form V (x, t ) = V0(x − c(t )).
By varying the form of V0(x) and the driving function c(t ), we
are able to construct a range of time-averaged potentials. To
find the Floquet states as a function of the driving period T =
2π/�, we simulate the time evolution of a complete basis for
a time interval of one period T . From this we can construct
the Floquet matrix U , which can then be diagonalized to find
the Floquet states 	α (x, t ).

For driving frequencies that are near resonance with energy
spacings of the bare trapping potentials it is not possible to
obtain numerically accurate results. In our simulations, there
are regions in which the numerics clearly do not converge,
and thus the Floquet states obtained by diagonalization are
not accurate. By increasing the number of lattice points, it is
possible to obtain more accurate Floquet states for a greater
region of parameter space, but doing so is computationally
expensive. In the Floquet states computed below, the regions
of nonconvergence are characterized by the states reaching the
edge of the spatial grid and are correspondingly accompanied
by a resonance spike in the time-averaged energy spectrum.

III. ONE-DIMENSIONAL RING POTENTIAL

We first investigate the case of a ring trap created by
rapidly scanning a localized attractive potential in a circle.
This geometry is common in experiments [13,14,16,17,39–
41] as it may be used, for example, in matterwave interferom-
etry [42], sensitive gravimetry [43], rotation sensing [44,45],
and investigations of topological states of matter [46,47]. In
particular, we investigate a system similar to that studied by
Bell et al. [16,17] who realized a ring trap for a BEC by
circularly scanning an attractive optical dipole potential. They
performed a theoretical analysis of their system in order to
understand unusual features in the atomic density in time-of-
flight imaging, and found that it resulted from a nontrivial
phase profile due to the time-averaged potential [17]. We find
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that further insights are provided by applying a simple 1D
Floquet analysis.

The trapping potential is

V (x, t ) = VD exp

(
− (x − vt )2

2σ 2

)
, (10)

with x − vt defined modulo L such that we have periodic
boundary conditions, and v = L/T is the speed of the po-
tential such that it returns to its initial position after one
driving period T . We consider an attractive potential of depth
VD = −10 and width 2σ 2 = 1 such that σ 
 L.

Since the moving potential spends the same amount of
time at each point in space in one period, the time-averaged
potential is simply a constant energy offset, independent of x,

V̄ (x) =
√

2πVDσ

L
, (11)

and the Floquet states in the time-averaged limit T → 0 are
plane waves. Additionally, from Eq. (10), the states in the adi-
abatic limit T → ∞ (v → 0) will be the familiar eigenstates
of a stationary Gaussian potential. For our parameters, there
are four bound states, and a number of unbound states with
winding numbers w = 0,±1,±2, etc. The winding numbers
are related to the topology of the ring and are a robustly
conserved quantity. In accordance with our goal of under-
standing the transition from these Gaussian eigenstates to
the plane-wave eigenstates in the time-averaged potential, we
compute the Floquet states for a range of different driving
periods T .

A. The transition between time-averaged and adiabatic limits

In Fig. 1 we plot the Floquet ground state density as the
scanning period T is varied. As T is increased, the Floquet
ground state for the 1D ring system transitions discontinu-
ously from an unbound, plane-wave-like state to the localized
ground state of the stationary potential.

To learn more about how this transition manifests, in
Fig. 1(b) we show the the time-averaged energies [Eq. (8)]
and density profiles for some representative Floquet states
as a function of T : shown are the ground, first-excited, and
second-excited states in the adiabatic limit, and the ground
state in the time-averaged limit. The energy of the bound
states varies strongly with T , yet their density profiles are
independent of T . In contrast, the energy of the unbound states
is insensitive to the value of T and is almost constant. They
also exhibit a density depletion at the instantaneous location
of the attractive potential which deepens as T increases. The
size of this defect is slightly different for unbound states of
different winding numbers. The sharp transition between the
bound and unbound Floquet ground states occurs due to an
exact crossing in the energy levels at T = 4.19.

B. Solutions in a Galilean boosted frame

The trapping potential Eq. (10) is time-independent in
the translating frame coordinates xc = x − vt . This de-
fines a Galilean boost, which transforms the Hamiltonian

FIG. 1. Localized to delocalized transition in a 1D ring trap.
(a) The Floquet ground state density at t = 0 for the 1D ring
trap as a function of driving period. At T = 4.19 the ground state
transitions from being homogeneous to the localized ground state
of the attractive potential. (b) The time-averaged energy spectrum
[Eq. (8)] as a function of driving period. Points are the results of
Floquet simulations, and solid lines for the bound states labeled by
quantum number n are the result of the analytic theory given by
Eq. (14). The solid line for the energy of the homogeneous state with
winding number w = 0 is from Eq. (15) with the phase given by
Eq. (17). The black dashed line is the predicted transition point from
equating Eqs. (14) and (17). The insets illustrate the Floquet state
density corresponding to each spectral curve.

(see Appendix A)

Hc(xc, t ) = p2

2m
− vp + 1

2
mv2 + V (xc), (12)

= (p − mv)2

2m
+ V (xc). (13)

Since the Hamiltonian Hc is time independent, it
conserves energy and we can use standard sepa-
ration of variables to find solutions of the form
�(xc, t ) = ϕ(xc)e−iEct , where ϕ(xc) obey the eigenvalue
equation Hcϕ(xc) = Ecϕ(xc) and ϕ(xc) = ϕ(x� − vt )
are Floquet modes: after a driving period, ϕ(x� − vT )
= ϕ(x� − L) = ϕ(x�), since the spatial coordinate x� − vt is
defined modulo L. The energy in the laboratory frame E is
related to the translating frame energy Ec by

E = Ec + v〈p〉 − 1
2 mv2. (14)

In the regime of fast scanning, the term containing the
potential evolves significantly faster than the timescale over
which the kinetic term evolves. We can therefore approximate
the dynamics of the system by neglecting the kinetic energy
term, and obtain an analytical approximation for the wave
function. Although here we consider the noninteracting case
of the linear Schrodinger equation, this approach can also
be applied to nonlinear Schrodinger-type equations, for ex-
ample the Gross-Pitaevskii equation for a weakly interacting
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Bose-Einstein condensate [17], provided the external potential
energy also dominates over the interaction energy. We write
the wave function in the Madelung form

�(xc) =
√

n(xc)eiφ(xc ). (15)

where the density n(xc) = |ψ (xc)|2 and phase φ(xc) are both
real functions. Neglecting kinetic terms and inserting Eq. (15)
into the Schrödinger equation (see Appendix B) gives

∂xφ(xc) = V (xc) − E ′

h̄v
, (16)

an ordinary differential equation for the phase, which can be
readily solved to obtain

φ(xc) = VD
√

πσ√
2h̄v

(
erf(xc/

√
2σ ) − 2

L
xc

)
− 2πwxc

L
, (17)

where w is the winding number [17]. The constant

E ′ =
√

2πVDσ

L
+ v

2πwh̄

L
,

= V̄ + v 〈p〉 (18)

approximates the energy of the nonkinetic terms in the
boosted frame. A wave function with constant density and a
phase profile given by Eq. (17) has laboratory frame energy

E (T ) = V̄ + (2π )2h̄2w2

2mL2
+ σT 2V 2

D

mL3

(√
π

2
− πσ

L

)
, (19)

i.e., it has a constant offset V̄ , the kinetic energy of a plane-
wave with p = 2π h̄w/L, and a term which grows as T 2 which
represents the contribution of the phase profile to the energy.
We plot Eq. (19) as solid line in Fig. 1(b). The ground state so-
lution has winding number zero, as this minimizes the energy.

We are now in a position to understand the behavior in
Fig. 1. At T → ∞ (v = 0), we are in the adiabatic limit, and
the laboratory frame energy is the same as in the stationary
problem, i.e., E = Ec. The bound states, which are real and
nondegenerate, must have 〈pc〉 = 0 in the center-of-mass
frame. That is, they have 〈p〉 − mv = 0. Thus, from Eq. (14),
we see that, overall, their energy changes from the stationary
problem simply by the addition of the kinetic term 1

2 mv2.
The bound states are sensitive to the driving period T in the
laboratory frame, and insensitive in the translating frame.

In contrast, from Eq. (19) it can be seen that the unbound
states are quite insensitive to the drive in the laboratory frame.
As T → ∞, the bound states approach their translating frame
energy Ec, whereas the unbound states increase their energy
slightly due to a combination of an increasing variance σp as
well as a growing depletion in their density profile. Hence, we
have a crossover in the spectrum.

C. Quantification of time-averaging

For values of T < 4.19 the Floquet ground state is close
to being homogeneous, but exhibits small deviations in the
form of a density defect and a nonlinear phase profile that
become larger as T increases. A natural question that remains
is how well these states approximate the homogenous ground
state in the time-averaged limit. By comparing the Floquet
ground state ψ (x, T ) at some driving period T to the ground
state of the time-averaged potential, ψ0(x) = L−1/2, we can
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FIG. 2. Properties of the Floquet ground state vs scanning period
T in the time-averaged limit T → 0. (a) Depth of the density defect
�. (b) Height of the phase defect δ. (c) Fidelity of the Floquet
ground state with the k = 0 plane-wave ground state of the time-
averaged limit. Circles show numerical results. Solid lines show the
predictions given by Eq. (15). The blue dashed line in (c) shows the
analytical approximation (24).

quantify the quality of the time-averaged approximation for a
given period T through the fidelity f = 〈ψ0 | ψ (T )〉. We can
obtain an analytic approximation for the phase step height of
the ground state as a function of driving period:

δ(T ) = VD
√

πσ√
2h̄L

(
erf(xM/

√
2σ ) − 2

L
xM

)
T, (20)

where xM = −√
2σ

√
ln (L/

√
2πσ ) is the x coordinate where

the phase reaches its maximum value. In the inset of Fig. 2(b),
we show the phase profile, along with the definition of the
phase step height δ = max(φ).

In the boosted coordinates, the continuity equation
(see Appendix B) takes the form

−v ∂xn + ∂x(nu) = 0, (21)

where u = h̄∂xφ/m. This is an ordinary differential equation
for the density n(x) and can be solved to obtain

n(xc) = A

u(xc) − v
, (22)

where the integration constant A = 2πwh̄/mL2 − T −1 is de-
termined since the density must be normalized to unity. We
can then obtain an expression for the depth of the density
defect �/n0:

�

n0
= LT 2VD

T 2VD

(
L − √

2πσ
)

− Lh̄
(
L2 + 2πT w

) . (23)

Using the full wave function � = √
neiφ , we can compute the

ground state fidelity as a function of T , which is shown as
a solid red line in Fig. 2(c). By taking a series expansion to
second order, we can obtain an analytic approximation for the
fidelity with the time-averaged ground state

f = 1 − πσ 2T 2V 2
D

L2h̄2

(
σ 2

L2
− σ√

πL
+ 1

12

)
, (24)

which is plotted as a dashed blue line in Fig. 2(c).
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The dip in the density and spatially varying phase pro-
file will affect the dynamics of atoms in experimental
time-averaged traps. From our 1D Floquet analysis, we are
able to qualitatively reproduce the features found experimen-
tally by Bell et al., who made use of a 2D Gross-Pitaevskii
simulation to investigate the phase profile of a BEC in a
time-averaged ring trap [16,17]. Specifically, we find the same
homogeneous Floquet states in the time-averaged limit as well
as the phase profile identified as responsible for the “kink” in
the ring produced in the experiment.

IV. SINUSOIDALLY DRIVEN TRAPPING POTENTIALS

While the 1D ring of Sec. III can be understood using
Floquet theory, it was not necessary as there was a Galilean
boost which rendered the problem time independent. Hence
we could use exact diagonalization to understand the different
energy dependences on T for the bound and unbound states,
leading to a level crossing in the energy spectrum. However,
this is only one way in which the localized to delocalized
transition can occur. In this section we investigate systems for
which there is no time-independent frame of reference, and so
a full Floquet analysis is required. We illustrate the different
ways that the Floquet states transition from the adiabatic to
the time-averaged limits with three representative trapping
potentials.

A. Driven harmonic oscillator

We first consider perhaps the simplest theoretical model,
which breaks Galilean invariance and has ground states which
are bound in both the time-averaged and adiabatic limits. We
sinusoidally drive the position of a 1D harmonic oscillator

V (x, t ) = 1
2 mω2

0[x + A sin(�t )]2, (25)

where � = 2π/T is the frequency of the drive. We choose
the amplitude A = 2 and harmonic oscillator frequency ω0 =
2π/1.5 (i.e., the harmonic oscillator period is T = 1.5). This
potential has time-average

V̄ (x) = 1
2 mω2

0x2 + 1
4 mω2

0A2, (26)

i.e, it is simply the same harmonic oscillator shifted up in
energy by the constant 1

4 mω2
0A2, as can be seen in Fig 3(a).

This system will allow us to explore some additional features
of Floquet systems that are important to the transition between
the adiabatic and time-averaged limits.

The driven harmonic oscillator can be solved exactly by
building on a solution described by Husimi [48] and requiring
the solutions to obey the Floquet condition. The same results
can be obtained using the harmonic potential theorem [49].
The problem can be cast as

ih̄
∂

∂t
ψ (x, t ) = [H0 − x f (t ) + q(t )]ψ (x, t ), (27)

where H0 = −h̄2/(2m) ∂2
x + mω2

0x2/2 is the Hamiltonian
for the unperturbed harmonic oscillator, and the time-
dependent functions f (t ) = −Amω2

0 sin(�t ) and q(t ) =
1
2 mω2

0A2 sin2 (�t ) correspond to the driving protocol specified

FIG. 3. Floquet analysis of the driven harmonic oscillator. (a) A
schematic of the time-averaged (left) and adiabatic (right) driven
harmonic oscillators, with the lowest four energies indicated. (b) The
Floquet ground state density for the driven harmonic oscillator
with ω0 = 2π/1.5. In a small region around Tres = 1.5 the strong
resonance means that the numerical results for the density have not
converged. Outside of this range, the numerics are stable and we
obtain the expected harmonic oscillator ground state density. (c) The
time-averaged energy spectrum as a function of driving period for
the same parameters (markers). The analytic result Eq. (31) is shown
as dashed lines. The solid lines are the result of an inverse frequency
expansion to second order in T . The black vertical line at T = 1.5
indicates the location of the resonance.

by Eq. (25). Solutions can be written as (see Appendix C)

ψn(x, t ) = χn[x − ξ (t ), t]

× exp

[
i

h̄
mξ̇ (x − ξ ) + i

h̄

∫ t

0
L(t ′)dt ′

]
, (28)

where χn(x) is a solution of the unperturbed harmonic oscilla-
tor H0 with quantum number n. The center-of-mass coordinate
is

ξ (t ) = Aω2
0 sin(�t )

�2 − ω2
0

, (29)

and

L = 1
2 mξ̇ 2 − 1

2 mω2
0ξ

2 + f (t )ξ − q(t ) (30)

is the classical Lagrangian. The time-averaged energy is then
given by

Ēn = h̄ω0

(
n + 1

2

)
+ A2m�2ω2

0

(
�2 + ω2

0

)
4
(
�2 − ω2

0

)2 , (31)
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FIG. 4. Illustration of the relative motion of the Floquet ground
state density and center of the trapping potential as the driving period
T is increased. The red dashed line shows the analytic center-of-mass
coordinate given by Eq. (29). (a) T = 0.1, near the time-averaged
limit. (b) T = 1.2, just before resonance; the Floquet state undergoes
large amplitude center-of-mass oscillations and is out of phase with
the trapping potential. (c) T = 1.9, after the resonance; the Floquet
state exhibits large amplitude center-of-mass oscillations and is in
phase with the trapping potential. (d) T = 9.9, where the Floquet
state is far from resonance and follows the motion of the trapping
potential.

and the fidelity of the ground state is

f = exp

(
− A2m�2ω3

0

4h̄
(
�2 − ω2

0

)2

)
. (32)

The results of a numerical Floquet analysis of this potential
are summarized in Fig. 3. Since the energy level spacings for
the harmonic oscillator are constant, a collective resonance
occurs in the region of Tres = 1.5, which is clearly seen in the
time-averaged energy spectrum in Fig. 3(c).

While the analytic Floquet ground state is identical for
any T , numerically in a narrow region around the resonance
point the energies are too high for the states to be accurately
calculated by our simulation, which results in the noisy region
near T = 1.5 in Fig. 3(b).

In Fig. 3(c), we have also plotted the results of an inverse
frequency expansion [33,50–52] up to second order in T ,
which approximates the energy spectrum perturbatively in
powers of 1/�. (For more details see Appendix D.) We find
that the energy is well approximated with quadratic growth as
T approaches Tres.

For this potential the collective resonance marks the local-
ized to delocalized crossover. In Fig 4, for T < Tres we can see
that the Floquet ground states oscillate out of phase with the
center of the potential (white dashed line), while for T > Tres

they are in phase with it. As would be expected, the effects
of the driving are more significant for T close to Tres. For
T = 0.1, we are clearly in the time-averaged limit, as there

is almost no center-of-mass oscillation, and the fidelity (see
Fig. 7) is close to unity. In the opposite limit for T = 9.9
the system is close to the the adiabatic limit, and the Floquet
ground state follows the oscillating potential.

In contrast to the ring potential of Sec. III, the Floquet
states of the driven harmonic oscillator are the same in the two
limits, so there are no energy level crossings as T is varied.

B. Driven linear potential

In the case of the driven harmonic oscillator, the Floquet
states in the time-averaged and slow-moving limits were the
same. This allowed us to highlight the role that the collective
resonance played in the transition between the two regimes of
interest. Here we consider the potential

V (x, t ) = VD

∣∣∣∣x + A sin

(
2πt

T

)∣∣∣∣, (33)

which is harmonic in the time-averaged limit, but has the form
V (x) ∼ |x| in the slow-moving limit. We choose the numerical
parameters VD = 10 and A = 3. The analytic expression for
the time-averaged potential is

V̄ (x)

VD
=

{
2
[√

A2 − x2 + x sin−1 (x/A)
]
/π, |x| � A,

|x|, |x| > A.

(34)

In the time-averaged limit the Floquet states are well-
approximated by harmonic oscillator eigenstates. Performing
a series expansion in x gives

V̄ (x)

VD
≈ 2A

π
+

(
1

πA

)
x2 + O(x4) (35)

which yields a harmonic oscillator frequency of ωHO =
(2VD/πA)1/2.

In Fig. 5(b) we plot the Floquet ground state density as a
function of the period T , and again observe the presence of
a collective resonance peak due to the equal energy spacing
of the time-averaged harmonic oscillator potential. As in the
harmonic oscillator case (Sec. IV A), for T 
 Tres ≈ 2π/ωHO

the Floquet ground state is delocalized and oscillates out of
phase with the potential, and vice versa for T � Tres. The
collective resonance is again the most significant contribution
to the decrease in fidelity with increasing T and thus the tran-
sition to the adiabatic limit. A new feature for this potential,
however, is the presence of multi-“photon” resonances [33],
which appear as smaller resonances outside of the main reso-
nance peak. These resonances are due to avoided crossings in
the quasienergy spectrum as a result of hybridization of states
in one “photon” block with another. In terms of the extended
Hilbert space H ⊗ T , an N-“photon” resonance results from
the coupling of two Fourier modes k, � with k − � = N in
the space T . These resonances are not captured to any order
by inverse frequency expansion, which explicitly removes the
matrix elements responsible for the coupling of one “photon”
block to another, dealing only with diagonal elements in the
extended space. These resonances are important for experi-
ments, as they result in a breakdown of adiabatic following
[53] of the Floquet states and physically represent heating due
to energy transferred from the drive [33]. Thus, experiments
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FIG. 5. Large collective resonance and emergence of “photon”
resonances for the driven |x| potential. (a) A schematic of the time-
averaged (left) and adiabatic (right) driven |x| potential, with the
lowest four energies indicated. (b) The Floquet ground state density
for the driven |x| potential as a function of driving period T . (c) The
time-averaged energy spectrum for the driven |x| potential as a func-
tion of driving period T . The states undergo a collective resonance,
the position of which can be predicted by the energy spacings for
low T (vertical black line). The numerics do not converge in small
regions around the collective and photon resonance points where the
Floquet state reaches the edge of the x grid. Solid lines are the result
of an inverse frequency expansion, where the third order term has
been fitted to the Floquet simulation.

should choose parameters which avoid this breakdown for
preparing and measuring time-periodic systems.

This behavior is related to the more general phenomenon of
Floquet prethermalization in nonintegrable systems, wherein
states thermalize (in the sense of the eigenstate thermalization
hypothesis (ETH) [54–56]) to a quasistable state according
to a Hamiltonian that does not govern its evolution [57].
This results in two separate timescales: a heating time τh

and a relaxation time, which here depends on how quickly
the system can relax to a prethermal state under the effective
(local) Hamiltonian Heff, which is expected to obey the usual
ETH. The state will only relax to an equilibrium state of Heff if
the relaxation time is much shorter than τh. Periodically driven
systems are in some sense useful only to the extent that the
system can be made to prethermalize under Heff [58].

A periodic drive can resonantly create excitations within
a low-energy subspace [59] via “photon” resonances. In the
small-T limit, the coupling matrix elements are generally sup-
pressed, and a prethermal state persists for an exponentially

long time [33,60], before heating up to infinite temperature as
predicted by the Floquet ETH. This may provide an explana-
tion for why we do not see photon resonance effects for small
values of T .

In addition, systems which are integrable or display many-
body localization do not obey the Floquet ETH and thus do not
heat up to an infinite temperature state. Hence, the harmonic
oscillator described in Sec. IV A does not display resonances
and will not undergo heating.

C. Driven quartic double well

The previous two trapping potentials considered in this
section have had harmonic oscillator eigenfunctions in the
time-averaged limit. This led to a collective resonance occur-
ring and a clear separation between localized and delocalized
regimes. Here we consider a trapping potential which still
admits bound states in both the time-averaged and slow-
moving limits, but has an anharmonic spectrum everywhere.

We consider the quartic double-well potential and subject
it to sinusoidal driving,

V (x′, t ) = A
(
e0x′4 − x′2), (36)

where the coordinate x′ = x + ε sin(�t ), and we choose the
numerical values A = 1.5 and e0 = 0.36, so that the potential
has a double-well shape in the adiabatic limit. This potential
Eq. (36) has time-average

V̄ (x) = A
(
e0x4 + 1

8ε2(3e0ε
2 − 4) + x2(3e0ε

2 − 1)
)
. (37)

The results for this potential are summarized in Fig. 6,
where it can be seen that this system transitions in a manner
qualitatively different from the previous two. Since there is no
collective resonance, there is no single point after which the
states become localized in the potential. The Floquet ground
state density as a function of the driving period T is shown
in Fig. 6(b). A number of different ground states densities
are apparent, and there are regions of collective resonances,
photon resonances, and mixing between the states of each
limit. Since the energy level spacings of the lowest energy
states are reasonably similar in magnitude, there is a quasi-
collective resonance where many of the states are destroyed
at similar values of T . As before, it is possible to compute an
approximation to the high frequency energy spectrum via an
inverse frequency expansion, and we find good agreement at
second order [solid lines in Fig. 6(c)].

D. Behaviour of fidelity

For the harmonic systems considered in Secs. IV A and
IV B, which have equal energy level spacings in the time-
averaged limit, a collective resonance marks the localized to
delocalized transition point. For anharmonic systems as in
Sec. IV C, this collective resonance does not occur and, as
such, there is no clear localized to delocalized transition point
and states are able to undergo mixing in intermediate regions
of parameter space.

In Secs. IV B and IV C, we highlighted the impact of
so-called “photon” resonances on the transition and general
dynamics of Floquet systems. For experiments, regions of
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FIG. 6. The quartic double well displays a quasicollective reso-
nance as well as photon resonances. (a) The time-averaged (left) and
adiabatic (right) potentials. (b) The density of the Floquet ground
state for the driven double well potential as a function of T . At
large T we recover the two-peaked ground state of the double-well
potential. (c) The time-averaged energy spectrum for the driven
double-well potential as a function of T . The numerics do not
converge in regions where the Floquet state reaches the edge of the
x grid. Solid lines are the result of an inverse frequency expansion to
third order.

photon resonance should be avoided, as it leads to uncontrol-
lable heating which will ultimately destroy the system.

The fidelity between the time-averaged ground state pro-
vides a quantitative measure of the degree to which a Flo-
quet state is in the time-averaged limit. In Fig. 7 we plot
the fidelity as a function of scaled driving period T/T0,
where the characteristic driving period T0 = h/�E is
determined by the energy difference �E between the
ground and first excited states. The fidelity decay for
the Floquet systems studied is well approximated by a
Gaussian (solid lines in Fig. 7). For the quartic dou-
ble well, the fidelity remains close to unity until a
photon resonance sharply destroys the Floquet ground
state.

V. CONCLUSIONS

We have studied time-averaged potentials for ultracold
atoms using the method of Floquet analysis. We first con-
sidered a 1D ring potential formed by an attractive Gaussian
beam scanned at a constant velocity. Due to the Galilean
invariance of this potential, it was possible to obtain Floquet
states for this system by transforming to a time-independent

FIG. 7. Comparison of the fidelity of the Floquet ground state
with the time-averaged limit for as a function of scaled driving period
for the three potentials considered in this section. Solid lines are a
Gaussian fit to the data, with the exception of the harmonic oscillator
case, which uses the analytic fidelity given by Eq. (32). Dashed lines
have been added between the quartic double-well data points to aid
the eye.

frame of reference. We have built on the earlier work of
Bell et al. [17] to demonstrate how the Floquet states of
this system change as a function of the driving period, and
have derived several approximate analytic results. Our results
provide further insights into the nature of this time-averaged
potential.

We then performed a Floquet analysis of three other 1D
potentials where the position of the trap was driven sinu-
soidally. These examples illustrated the effects of a collective
resonance when harmonic oscillator potentials were driven
near their resonant frequency, and photon-resonance effects
due to coupling between individual Floquet states. We per-
formed an analytic inverse-frequency expansion in the fast-
moving limit that agreed well with our numerical results. We
used the fidelity to provide a quantitative measure of the de-
gree to which these systems approximated the time-averaged
limit.

Our results clearly illustrate the transition of the ground
state density from adiabatic following of a moving potential
to being delocalized in the time-averaged potential. They
show the resonances that can lead to heating that when
making use of of driven trapping potentials for ultracold
atoms.

The fidelity between the time-averaged state and the Flo-
quet states decays proportionally to T 2 for small T and is
approximately Gaussian at larger T . This fidelity decay is a
common feature of all the systems studied here and provides
a more quantitative means for determining an appropriate
scanning rate than the rule of thumb � � ω.

In this work, we restricted ourselves to potentials which
are monochromatically driven in time, which have a single
frequency of driving. For nonmonochromatic driving, the
presence of multiple driving frequencies drastically increases
the complexity of the resulting dynamics, and as such is an
important consideration for future work.
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APPENDIX A: GALILEAN TRANSFORMATION TO A
TIME-INDEPENDENT HAMILTONIAN

The Schrödinger equation is

ih̄
∂��(x�, t )

∂t
=

[
− h̄

2m

∂2

∂x2
�

+ V (x�, t )

]
︸ ︷︷ ︸

H (x�,t )

��(x�, t ), (A1)

where ��(x�, t ) is the wave function in the laboratory frame
and x� is the laboratory frame position coordinate.

The coordinate transformation to the moving frame,

xc = x� − vt, (A2)

transforms the various functions according to

��(x�) = ��(xc + vt ), (A3)

∂

∂t
��(x�, t ) = ∂

∂t
��(xc + vt, t ) − v

∂

∂xc
��(xc + vt, t ),

(A4)
∂

∂x�

��(x�, t ) = ∂

∂xc
��(xc + vt, t ), (A5)

so that Eq. (A1) becomes

ih̄
∂

∂t
�� =

[
− h̄2

2m

∂2

∂x2
c

+ ih̄v
∂

∂xc
+ V (xc + vt, t )

]
︸ ︷︷ ︸

H ′(xc,t )

��. (A6)

Now recall that ∂
∂xc

= ip, where p = h̄k is the conjugate
momentum, and we can write

ih̄
∂

∂t
�� =

[
p2

2m
− vp + V (xc + vt, t )

]
��. (A7)

Since the potential is of the form V (x, t ) = V (x − vt ), the
Hamiltonian becomes time independent and can be solved via
separation of variables, giving the eigenvalue equation[

p2
c

2m
− vpc + V (xc)

]
ϕ(xc) = E ′ϕ(xc). (A8)

The bound state solutions of this eigenvalue problem (which
move with the potential in the laboratory frame) have 〈p〉 =
mv. In the moving frame, they have 〈pc〉 = 0, i.e., pc = p −
mv. So the Hamiltonian in the moving frame (in terms of the
laboratory momenta) is

Hc = (p − mv)2

2m
+ V (xc), (A9)

which is simply H ′ + 1
2 mv2. Since the addition of a constant

does not change the dynamics, we can solve the moving frame
problem given by Eq. (A9).

APPENDIX B: MADELUNG TRANSFORMATION FOR A
BOOSTED HAMILTONIAN

Inserting the Madelung form ϕ(xc) = √
n(xc)eiφ(xc ) into

Eq. (A8) and equating the imaginary components yields

−v ∂xn(x) + ∂x[n(x)u(x)] = 0, (B1)

where u(x) = h̄/m ∂xφ(x). Equating the real parts gives

V (x) − E ′ − mvu + 1

2
mu2 − h̄2

2m

∂2
x

√
n√

n
= 0, (B2)

where E ′ is a constant independent of x. We assume V �
1
2 mu2, h̄2

2m
∂2

x

√
n√

n(x
to obtain

∂xφ(x) = V (x) − E ′

h̄v
. (B3)

APPENDIX C: DRIVEN HARMONIC
OSCILLATOR SOLUTION

We consider a harmonic trap with frequency ω0 and
subject it to driving which can depend linearly on x and
arbitrarily on t :

ih̄
∂

∂t
ψ (x, t ) = [H0 − x f (t ) + q(t )]ψ (x, t ), (C1)

where

H0 = − h̄2

2m

∂2

∂x2
+ 1

2
mω2

0x2 (C2)

is the Hamiltonian of the unperturbed harmonic oscillator. A
related problem was described by Husimi [48] without the
time-dependent function q(t ).

We proceed by performing a coordinate transformation
x′ = x − ξ (t ), where ξ is a function of time to be specified
below. The Schrödinger equation is then

ih̄
∂

∂t
ψ (x′ + ξ, t ) =

[
ih̄ξ̇

∂

∂x′ − h̄2

2m

∂2

∂x′2 + 1

2
mω2

0(x′ + ξ )2

− (x′ + ξ ) f (t ) + q(t )

]
ψ (x′ + ξ, t ).

(C3)

We write the solution in terms of a phase and an arbitrary
function ϕ(x′ + ξ, t ):

ψ (x′ + ξ, t ) = exp

(
i

h̄
mξ̇x′

)
ϕ(x′ + ξ, t ), (C4)

and insert this into (C3) to obtain

ih̄
∂

∂t
ϕ(x′ + ξ, t )

=
(

− h̄2

2m

∂2

∂x′2 + 1

2
mω2

0x′2
)

ϕ(x′ + ξ, t )

+ (− f (t ) + mω2
0ξ + mξ̈

)
x′ϕ(x′ + ξ, t )

+
(

q(t ) − f (t )ξ + m

2
ω2

0ξ
2 − m

2
ξ̇ 2

)
ϕ(x′ + ξ, t ). (C5)

Requiring that

f (t ) − mω2
0ξ − mξ̈ = 0 (C6)
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eliminates the second line of Eq. (C5). The term in brackets on
the third line, which depends only on time, can be eliminated
by performing a further transformation

ϕ = χ exp

(
i

h̄

∫ t

0
f (t ′)ξ − q(t ′) + 1

2
mξ̇ 2 − 1

2
mω2

0ξ
2dt ′

)
,

(C7)

so that the full solution is

ψ (x, t ) = χn[x − ξ (t ), t]

× exp

(
i

h̄
mξ̇ (x − ξ ) + i

h̄

∫ t

0
L(t ′)dt ′

)
, (C8)

where χn[x − ξ (t )] are the usual harmonic oscillator wave
functions with center-of-mass coordinate ξ and

L = 1
2 mξ̇ 2 − 1

2 mω2
0ξ

2 + f (t )ξ − q(t ) (C9)

is the classical Lagrangian. For the potential given by Eq. (25),
we can identify f (t ) = −Amω2

0 sin(�t ) and solve Eq. (C6).
We take ξ (0) = 0 and, crucially, include the Floquet condition
ξ (0) = ξ (T ). The solution is then

ξ (t ) = Aω2
0 sin(�t )

�2 − ω2
0

. (C10)

We can additionally identify q(t ) = 1
2 mω2

0A2 sin2 (�t ) and
compute the integral of the classical Lagrangian Eq. (30).
From the full wave functions we can compute the energy as
a function of time:

En(t ) = h̄ω0

(
n + 1

2

)

+ A2m�2ω2
0

(
�2 sin2(�t ) + ω2

0 cos2(�t )
)

2
(
�2 − ω2

0

)2 (C11)

which has time-average

Ēn = h̄ω0

(
n + 1

2

)
+ A2m�2ω2

0

(
�2 + ω2

0

)
4
(
�2 − ω2

0

)2 . (C12)

APPENDIX D: INVERSE FREQUENCY EXPANSION

Here we outline the calculation for the inverse frequency
expansion for the driven harmonic oscillator. We follow
Ref. [51], although we note that the same result may be ob-
tained with equivalent methods described in Refs. [33,50,52].

The effective Hamiltonian given in [51] is

H (0)
eff = H0, (D1)

H (1)
eff = 1

�

∑
j=1

1

j

[
V ( j),V (− j)

]
, (D2)

H (2)
eff = 1

2�2

∞∑
j=1

([[V ( j), H0],V (− j)] + [V (− j), H0],V ( j) ),

(D3)

where H0 is the time-averaged Hamiltonian and V ( j) are
the Fourier components of the driving potential. Recall the
Hamiltonian for the driven harmonic oscillator is

H (x, t ) = p2

2m
+ 1

2
mω2

0[x + A sin(�t )]2, (D4)

and the time-averaged Hamiltonian is

H0 = p2

2m
+ 1

2
mω2

0x2 + 1

4
mω2

0A2. (D5)

The Fourier components of the potential are

V (0) = 1
2 mω2

0x2 + 1
4 mω2

0A2, (D6)

V (1) = − 1
2 iAxmω2

0 = −V (−1), (D7)

V (2) = − 1
8 A2mω2

0 = V (−2). (D8)

We immediately see that H (1)
eff = 0, since |V (− j)| = |V ( j)|.

Computing the commutators, we find that the second-order
term is

H (2)
eff = A2mω4

0

4�2
. (D9)

Thus, to second order, we have

Heff = p2

2m
+ 1

2
mω2

0x2 + 1

4
mω2

0A2 + A2mω4
0

4�2
, (D10)

which gives a quasienergy spectrum

εα =
(

α + 1

2

)
h̄ω0 + 1

4
mω2

0A2 + A2mω4
0

4�2
. (D11)

The time-averaged energy can be given in terms of
the quasienergy by using the Hellmann-Feynman theorem
[34,61],

Ēα = εα − �
∂εα

∂�
, (D12)

and we finally obtain the expression for the time-averaged
energy to second order:

Ēα =
(

α + 1

2

)
h̄ω0 + 1

4
mω2

0A2 + 3A2mω4
0

4�2
. (D13)

We note that this agrees exactly with Eq. (C12) expanded to
second order in 1/�.
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