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Measurement of the 671-nm tune-out wavelength of 7Li by atom interferometry
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We have measured the tune-out wavelength of lithium isotope 7Li at 671 nm. We have used our atom
interferometer to measure the phase shift due to the dynamical Stark effect as a function of the laser frequency
when a laser beam was focused on a single interferometer arm. The tune-out wavelength is a function of
the hyperfine F, mF sublevel, and we have prepared the atoms in the sublevel F = 2, mF = +2 or −2. We
find that the tune-out frequency of the F = 2, mF = +2 sublevel is at 3388(8) MHz to the blue of the 2S1/2,

F = 1 → 2P1/2, F ′ = 2 transition, the accuracy of this measurement being limited by imperfect optical
pumping. This measurement is in excellent agreement with its theoretical value, and, once corrected for different
tensorial contributions, our measurement agrees with the more precise measurement of Copenhaver et al. [Phys.
Rev. A 100, 063603 (2019)], who also used atom interferometry but different experimental conditions.
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I. INTRODUCTION

Atom interferometry has developed rapidly since 1991,
and many very interesting results have thus been obtained,
which are described in books or review papers [1–3]. Atom
interferometry demonstrates an extreme sensitivity for the
measurement of acceleration: such a variation is detected
through the phase shift of the interferometer fringe signal.

In this paper we consider the measurement of the atom
electric polarizability. This quantity cannot be measured by
spectroscopy, which has access only to the difference of the
polarizabilities of two internal states. If we except macro-
scopic techniques based on the dielectric constant or the
index of refraction, which have been applied mostly to noble
gases, all the polarizability measurements rely on mechanical
effects; the traditional technique due to Scheffers and Stark [4]
in 1934 is the deflection of the atom (or molecule) trajectory
by an electric field gradient [5,6].

Atom interferometry was first applied in 1995 to the
high-precision measurement of the static polarizability of the
sodium atom by Ekstrom et al. [7] (see also [8]) and of
the lithium atom by our research group in 2005 [9,10]. The
dynamical polarizability of the rubidium atom was measured
in 2008 by Deissler et al. [11] using a guided wave atom
interferometer. Since 2010, the research group of Cronin
has developed high-precision measurements of the absolute
values and the ratios of the static polarizability of Na, K, Rb,
and Cs [12–14].

There is great interest in the dynamical polarizability, also
called the AC Stark effect or light shift, because it is an effi-
cient tool to manipulate cold atoms. When an atom interacts
with an electric field E(r) of frequency ω, at second-order
perturbation expansion, the energy of the internal state i is
modified by the quantity Ui given by

Ui(r) ≈ −αi(ω)E2(r)/2, (1)
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where αi(ω) is the atom dynamical polarizability of state i.
This expression of Ui(r), which is the lowest nonvanishing
contribution, is proportional to E2(r), i.e., to the local light in-
tensity, and it depends on the state i, on the light polarization,
and on the frequency ω. The polarizability αi(ω) cancels for
certain frequencies, and the corresponding wavelengths are
called tune-out wavelengths. (These wavelengths have also
been called magic-zero wavelengths in some papers; they
should not be confused with magic wavelengths, for which
the difference of the polarizabilities of two internal states
vanishes.) In the case of the ground state, the existence of
such frequencies can be explained by a very simple argument:
when the light frequency ω crosses the frequency ω0 of a res-
onance transition, the contribution of this transition, which is
resonantly enhanced and positive when ω < ω0, becomes neg-
ative when ω > ω0. As a consequence, a tune-out frequency
is expected between two resonances and, in particular, in the
case of alkali atoms, between the fine-structure components
of their D lines.

The tune-out wavelengths are particularly interesting for
two main reasons. From the point of view of applications, this
property can be used to selectively apply a potential on an
atomic (or isotopic) species and not on another one [15–17].
Early applications of this idea can be found in Refs. [18,19].

From a theoretical point of view, it is possible to accurately
calculate tune-out wavelengths, and they can also be measured
with great accuracy because their measurement does not re-
quire the calibration of the light intensity, which is needed for
measurement of the polarizability itself. The comparison of
calculations and measurements provides accurate tests of the
calculations, and they give access to very precise information
on oscillator strengths [20].

Here we describe our measurement of the tune-out wave-
length of the 7Li atom, near 671 nm, between the two com-
ponents of the D line, using our thermal atom interferometer.
Copenhaver et al. [22] have used a cold lithium atom inter-
ferometer to measure the same tune-out wavelength. The two
experiments differ on some important aspects, and we will
compare their results to ours.
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TABLE I. This table presents measurements of the tune-out
wavelengths. For each measurement, we give the atom, an ap-
proximate value of the tune-out wavelength λT O, the experimental
technique used (with the following short-hand: OMMT for optical
modulation of a magnetic trap, AI for atom interferometry, AD for
atom diffraction, PP for pump and probe), and their references.

Atom λT O Experiment References

He∗ 413 nm OMMT [21]
Lithium 671 nm AI [22]
Potassium 769 nm AI [23–25]
Rubidium 790 nm AI [26]
Rubidium 790 nm AD [27]
Rubidium 790 nm PP [28]
Rubidium 421,423 nm AD [29]
Dysprosium 741 nm AD [30]

The content of our paper is organized as follows: Section II
recalls the previous knowledge on tune-out wavelengths;
Sec. III presents a theoretical overview and its application
to the case of lithium; Sec. IV describes our experimental
setup; and in Sec. V we present our measurement of the Stark
phase shift and the tune-out frequency, which is discussed and
compared to the measurement of Copenhaver et al. [22]. A
brief conclusion in Sec. VI and an Appendix complete our
paper.

II. PREVIOUS MEASUREMENTS AND CALCULATIONS
OF TUNE-OUT WAVELENGTHS

The measurements of tune-out wavelengths have been
made by various techniques and on different atoms. We have
collected to the best of our knowledge the measurements
in Table I. There are also many calculations of tune-out
wavelengths and, frequently, several tune-out wavelengths are
calculated in the same paper. The calculation of the 413-
nm tune-out wavelength for He∗ has been made by several
research groups [31,32] and in some works with very so-
phisticated methods [33–35]. Many works have been devoted
to the alkali atoms: lithium [17,36], including a calculation
with Hylleraas wave functions [37], sodium [17], potassium
[17,38], rubidium [17,26,27,29], cesium [17], and francium
[39,40]. Other atoms have also been considered, e.g., alkaline-
earth-metal atoms [20,41].

III. THEORETICAL OVERVIEW AND APPLICATION TO
THE LITHIUM 671 NM TUNE-OUT WAVELENGTH

A. Interaction of an atom with an electromagnetic wave

An atom interacts with a plane electromagnetic wave
of wave vector k, angular frequency ω, and polariza-
tion vector ε, with an electric field given by E(r, t ) =
E0[ε exp [i(k · r − ωt )] + c.c.]/2. In the dipole approxima-
tion, this interaction can be described by

V = −d · E(r, t ), (2)

where d is the atom electric dipole. With respect to atomic
parity, the operator d is odd, which means that this operator
couples only states of opposite parities.

When the frequency ω is far from resonance and provided
that the electric field is not too strong, the product of the dipole
moment and the electric field is small against the detuning
from the resonance, and we can apply perturbation theory. The
only nonvanishing terms of the perturbation series are those of
even order.

B. Second-order term in the simple case of a nondegenerate
ground state

The second-order term is usually the only one which is
considered. For a nondegenerate ground state g, the second-
order energy shift is given by

Ug(ω) = −α(ω)〈E (t )2〉
2

= −α(ω)E2
0

4
, (3)

with the polarizability α(ω) given by

α(ω) = 1

h̄

∑
b

Re

( |〈b|d · ε|g〉|2
ωbg − ω − iγbg/2

+ |〈b|d · ε|g〉|2
ωbg + ω + iγbg/2

)
,

(4)

where ωbg is the angular frequency of the transition from g to
b and γbg the natural width of this transition. The summation
also includes an integration over the ionization continuum.

C. The case of alkali atoms

In this case, it is possible to separate the contribution of
the valence electron from the contribution of the inner core
of the atom made of closed shells. The excitation frequencies
of the inner shells are very large with respect to the laser
frequency ω, and the contribution of the inner shells to the
polarizability is almost independent of ω. We can write

α(ω) ≈ αcore + αval.(ω), (5)

where αval.(ω) is given by Eq. (4), the summation being
limited to excited states of the valence electron.

D. Calculation of αval.(ω) in the presence of fine and
hyperfine structure

In the presence of fine and hyperfine couplings, the atomic
states are labeled by the principal quantum number n, the
orbital and spin angular momenta L and S, the total elec-
tronic angular momentum J = L + S, the nuclear spin I, and
the total angular momentum F = J + I, with the associated
quantum numbers L, S, J, I, F, mF . The dipole operator has
no action on the nuclear spin and, using the Wigner-Eckart
theorem, it is possible to express the valence contribution of
the polarizability in the following form [26,42] (the index val.
is omitted to simplify the notation):

αg,J,F,mF =
[
α

(s)
g,J,F − V cos χ

mF

2F
α

(v)
g,J,F

+
(

3 cos2 ξ − 1

2

)
3m2

F − F (F + 1)

F (2F − 1)
α

(t )
g,J,F,

]
, (6)

where α(s,v,t ) are the scalar, vectorial, and tensorial irreducible
components of the polarizability. The orientation-dependent
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coefficients are defined by the wave vector k, the polarization
vector ε, and the quantization axis eB = B/B, usually defined
by a static magnetic field B. (This field is assumed to be weak
enough so that the Zeeman splittings may be neglected.) We

have cos χ = k · eB, V the fourth Stokes parameter of the light
with V cos χ = i(ε∗ × ε) · eB. V = 1 for right-handed and −1
for left-handed circular polarization, and cos ξ = ε · eB. Using
Eqs. (B36) and (B37) of Ref. [42], α(s,v,t ) can be written as

α
(s)
g,J,F = 1√

3(2F + 1)
α

(0)
g,J,F , α

(v)
g,J,F = −

√
2F

(F + 1)(2F + 1)
α

(1)
g,J,F , α

(t )
g,J,F = −

√
2F (2F − 1)

3(F + 1)(2F + 1)(2F + 3)
α

(2)
g,J,F , (7)

with

α
(K )
g,J,F = (−1)K+F+1(2F + 1)

√
2K + 1

∑
n′,J ′,F ′

(−1)F ′
(2F ′ + 1)

{
1 K 1
F F ′ F

}{
F 1 F ′
J ′ I J

}2 |〈n′, J ′||d||g, J〉|2
h̄

× Re

(
1

ω′ − ω − iγ ′/2
+ (−1)K

ω′ + ω + iγ ′/2

)
, (8)

where ω′ and γ ′ are respectively the angular frequency
and the linewidth of the g, J, F → n′, J ′, F ′ transition and
〈n′, J ′‖d‖g, J〉 is the reduced matrix element of the dipole.

E. Estimate of the first tune-out frequency for the alkali atoms

For the alkali atoms, the transitions from the ground state
2S1/2 to the lowest in energy 2PJ (J = 1/2 and 3/2) state,
i.e., the components of the D lines, have a large oscillator
strength and they contribute to more than 95% of the static
electric polarizability. Neglecting the hyperfine structure and
the natural widths of these transitions, the contributions of
these two transitions to the valence polarizability are approx-
imately given by

αval. = 1

3h̄

[
d2

1/2ω1/2

ω2
1/2 − ω2

+ d2
3/2ω3/2

ω2
3/2 − ω2

]
, (9)

where dJ = |〈 2PJ ‖d‖g, J〉| and ωJ are the dipole matrix
element and frequency of the fine-structure components of
the D line. In the absence of relativistic effects, these dipole
moments verify d3/2 ≈ d1/2

√
2. In this approximation and, if

the fine-structure splitting 	FS = ω3/2 − ω1/2 is very small
with respect to ω1/2 and ω3/2 (this is particularly true
for lithium), αval. vanishes for the tune-out frequency ωT O

given by

ωT O ≈ ω1/2 + 	FS

3
. (10)

F. Calculation of the first tune-out wavelength for lithium 7Li

Lithium 7Li has a nuclear spin I = 3/2 and thus two
hyperfine ground states F = 1 and F = 2. The contribution
of the core electrons to the polarizability is taken equal to
the contribution αcore = 2.04 a.u. to the static polarizability,
as calculated by Safronova et al. [43]. The core contributions
to the vector and tensor components are negligible, because
the fine and hyperfine-structure splittings of the core excited
states are very small with respect to their excitation energies.

In our experiment as well as in that of Copenhaver et al.
[22], the laser is linearly polarized so that the vector term
cancels in Eq. (6) and the tune-out frequency is measured
for sublevels of the F = 2 level of the 2S1/2 ground state.

Dropping the irrelevant index J = 1/2, the valence contribu-
tion to the polarizability of these levels is given by

αg,F=2,mF = α
(s)
g,F=2 +

(
3 cos2 ξ − 1

2

)
α

(t )
g,F=2

m2
F − 2

2
. (11)

Using Eq. (8), we have calculated the irreducible components
α

(K )
F=2 of the lithium F = 2 hyperfine ground-state level, taking

into account the excited states up to n′=7. For the n = 2, J =
1/2, F → n′ = 2, 2P, J ′, F ′ transitions, we have used the re-
duced matrix elements of the dipole given by Safronova et al.
[36] (d1/2 = 3.3169 a.u. and d3/2 = 4.6909 a.u.), the experi-
mental values of the transition frequencies of Sansonetti et al.
[44], and the transition natural width γ ′ = 2π × 5.87 MHz
measured by McAlexander et al. [45]. For the higher-lying
states, we have used experimental values from Wiese and Fuhr
[46], neglecting the natural widths γ ′ which are extremely
small compared to the quantities (ω′ ± ω). When the laser
frequency is close to the D lines, the contribution of the
higher-lying P states n(n � 3) is only 0.67 au. Because of the
large values of the dipole matrix elements d1/2 and d3/2 and
the very small value of the frequency differences (ω′ − ω),
comparable to the 2P state fine structure (≈10 GHz in fre-
quency units), the contribution of the higher-lying P states
shifts the tune-out frequency νT O to the red by ≈420 Hz only;
this correction is negligible.

Figure 1 presents the polarizability α2,2 of the F = 2,
mF = 2 sublevel as a function of the laser frequency for
two configurations. The first configuration is that used in our
experiment, with a linear polarization ε perpendicular to the
quantization axis eB, leading to V cos χ = 0 and ξ = π/2.
The second configuration corresponds to a left-handed circu-
lar polarization, while the light wave vector k is parallel to the
quantization axis eB, leading to V cos χ = 1, ξ = π/2. The
shift of the tune-out frequency from the first configuration to
the second one, about 3 GHz, is due to the vectorial part of
the polarizability, which has a large effect in the second con-
figuration. This result illustrates the importance of a careful
alignment of the optical setup with respect to the quantization
axis as well as the need of a pure laser polarization. From our
calculations, we deduce the position of the tune-out frequency
of the F = 2 level of the 2S1/2 ground state. It is on the
blue side of the 2S1/2, F = 1 → 2P1/2, F = 1 transition, at a
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FIG. 1. Polarizability α2,2 as a function of the frequency in the
region of the D1 and D2 lines for the two polarizations described in
the text. First configuration: red bullets. Second configuration: black,
dashed line. The insert zooms on the tune-out region for the first
configuration.

distance (in frequency units) equal to 3384.3 ± 2.4 MHz, with
a 1σ uncertainty due to the uncertainties of the dipole matrix
elements d1/2 and d3/2.

G. Higher-order terms of the perturbation series

Up to now, we have considered only the second-order term
of the perturbation series. In the case of lithium, the fine-
structure splitting of the n = 2, 2P state is small, ≈10 GHz
in frequency units, and the tune-out frequency is very close
to the atom resonance frequencies. With the parameters of
our experiment (laser waist radius w0 = 61 μm and the usual
value of the laser power PL = 10 mW), the value of the
electric field at the center of the laser beam is E0 = 3.6 ×
104 V/m. Using the dipole moment d3/2 = 4.6909 a.u. (i.e.,
d3/2 ≈ 4 × 10−29 C m), we get the value of the matrix element
of the perturbation d3/2E0/h ≈ 2 GHz, which is comparable to
the resonance detuning of 7 GHz. Therefore the higher orders
of the perturbation theory cannot be neglected, but we have
found that the fourth-order term vanishes near the tune-out
frequency, and Copenhaver et al. [22] have shown the same
property.

Finally, this calculation gives an overestimation because
the atom travels through the laser beam and is not in the largest
field during all its interaction with the laser beam. Moreover,
we think that the beam radius was larger than the waist
radius because the laser was not exactly focused on the atom
interferometer arm. We have observed some nonlinear effects
in laser power which are described in [47], but these effects
were not very large and the shift of the tune-out frequency
due to nonlinear terms is negligible.

IV. OUR EXPERIMENTAL SETUP

Our setup is implemented in our atom interferometer. In or-
der to measure the tune-out frequency of the F = 2, mF = +2
(or −2) sublevel, we optically pump the atomic beam into the
chosen sublevel before it enters the interferometer. A laser

beam is then focused on one interferometer arm in order to
produce a phase shift of the atom fringe signal. This phase
shift is measured as a function of the laser frequency and/or
power. The tune-out frequency is deduced from a series of
such measurements.

A. The atom interferometer

Our lithium Mach-Zehnder interferometer has been de-
scribed in detail [48], and it is schematically represented in
Fig. 2. The lithium atomic beam, produced by supersonic
expansion of lithium seeded in argon, has a Gaussian velocity
distribution with a mean velocity vm ≈ 1050 m/s and a 24%
FWHM. This atomic beam, which is strongly collimated by
two very narrow slits, crosses three laser standing waves
which diffract the atom wave in the Bragg regime. We use
first-order diffraction to split, reflect, and recombine the atom
waves. The laser standing waves are produced by a single-
frequency dye laser, with its frequency on the blue side of the
2S1/2 → 2P3/2 transition of 7Li at 671 nm: this choice makes
the interferometer very selective for this isotope, and this
selectivity combined with the very large natural abundance
of 7Li, (92.5%) makes that only this isotope contributes to
the signal [49]. This signal I is the number of atoms arriving
on the Langmuir-Taylor detector during a counting period,
usually = 0.1 s, and it is given by

I = I0[1 + Vobs cos(ϕd + ϕP )], (12)

where ϕd is a phase due to the diffraction process. This phase,
which is independent of the atom velocity, is a function of the
x position of the laser standing-wave mirrors; ϕd is used to
scan the interference fringes. ϕP is a phase shift due to the
perturbation under study.

FIG. 2. Atom interferometer configuration including an optical
pumping stage and a dephasing region. To measure the optical
pumping efficiency, we use a coil at mid-distance between the first
and second laser standing waves (upper box). This coil produces a
magnetic field gradient on the interferometer arms. The lower box
shows the laser interaction region. In this region, the magnetic field is
along the x axis, with Bx ≈ 10−4 T. The Stark laser beam enters along
the vertical y axis, perpendicular to the atom beam propagating along
the z axis. This laser beam is linearly polarized with its polarization
vector parallel to the z axis.
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B. Stark phase shift

In order to induce a phase shift, one must apply a perturba-
tion U on one arm and not on the other one. The best place is
just ahead of the second laser standing wave, as the separation
of the two interferometer arms is largest, close to 100 μm,
while the FWHM of the atomic beams is about 30 μm. If the
perturbation U is applied on one arm only, the phase shift ϕP,
given by a semiclassical calculation, is

ϕP = −
∫

U

h̄v
dz. (13)

This calculation is valid if U is very small with respect to the
atom kinetic energy, a condition very well fulfilled. v is the
atom velocity and the integral is taken along the unperturbed
atom interferometer arm.

The laser beam used to produce the Stark phase shift is
perpendicular to the interferometer plane and it is focused on
one interferometer arm. Assuming a Gaussian TEM00 beam
of radius w and power PL, the Stark phase shift is equal to

ϕS,F,mF = PL√
2πε0ch̄vw

αF,mF (ω), (14)

where c is the speed of light and ε0 the vacuum permittivity.
This calculation, which corresponds to the ideal case of an
atom going through the center of the laser beam, neglects
the fact that the other interferometer arm is also irradiated by
the wing of the TEM00 beam. A smaller Stark phase shift is
induced on this arm, and we measure their difference. This
effect does not change the tune-out frequency.

C. Polarization of the laser in the interaction region

We choose to work with a linear polarization, perpen-
dicular to the quantization axis and parallel to the atom
propagation direction. A point which must be stressed is
that no spin-flip occurs in the interferometer. If there is no
point on the interferometer arms where the three components
of the magnetic are very small at the same time, the atom
angular momentum F follows adiabatically the direction of
the magnetic field direction; this means that the projection mF

of the total angular momentum F on the field B is conserved
along the atom propagation. This is why we do not control the
direction of the magnetic field between the optical pumping
region and the interaction region.

In the interaction region, the magnetic field B is made
parallel to the x axis. For this purpose, we use two pairs of
rectangular coils acting on its Bx and By components and a pair
of circular coils acting on the Bz component. All these coils,
in a quasi-Helmholtz configuration, are outside the vacuum
chamber. We checked that the fringe visibility does not depend
on the coil operation; this result proves that the magnetic field
is sufficiently homogeneous over the interferometer arms.

D. Optical pumping of the lithium atomic beam

The optical pumping is performed before the collimation
stage of the lithium atomic beam, as the random character
of the photon momenta transferred to the atom would spoil
the beam collimation. We have already described this optical
pumping in detail [50], and we give here only an overview.

TABLE II. Relative population P(F, mF ) sublevels deduced from
the fits of visibility and phase-shift data. The target sublevel
(mF = ±2) is indicated on the header. In both cases, the measured
efficiency of the optical pumping is very good, but a few percents
of the population probably remain in the other sublevels, and the
optical pumping is slightly better in the mF = +2 sublevel than in
the mF = −2 sublevel.

Population mF = +2 mF = −2

P(2,2) 1.00+0
−0.04 0.00+0.02

−0

P(2,-2) 0.00+0.03
−0 0.99+0.01

−0.05
P(2, 1) + P(1,−1) 0.00+0.02

−0 0.01+0.02
−0

P(2, −1) + P(1, 1) 0.00+0.01
−0 0.00+0.01

−0

P(2, 0) + P(1, 0) 0.00+0.01
−0 0.00+0.01

−0

In the optical pumping region, the magnetic field, con-
trolled thanks to three pairs of square Helmholtz coils, is
made parallel to the light propagation axis. We use the D1

line because the hyperfine splittings of the 2P1/2 state are
larger than those of the 2P3/2 state, and it is thus possible
to excite more selectively the chosen hyperfine transitions.
The optical pumping is produced by two circularly polarized
laser beams tuned to the 2S1/2, F = 1 → 2P1/2, F ′ = 2 and
to the 2S1/2, F = 2 → 2P1/2, F ′ = 2 transitions. The first
laser beam empties the F = 1 level and, at the same time,
modifies the mF value, while the second one pumps the atoms
into the F = 2, mF = ±2 sublevel because this sublevel is the
only one which cannot be excited. The choice of the sign of
mF of the target sublevel depends on the choice of the circular
polarization for a given direction of the magnetic field.

We characterize the optical pumping efficiency by applying
a magnetic field gradient on the interferometer arms (see
Fig. 2). As the Zeeman phase shifts are very different for
the various sublevels F, mF , the observed atom fringe vis-
ibility and phase are functions of the sublevel populations.
We measure this visibility and phase as a function of the
coil current, and we extract the pumping efficiency from this
measurement. Table II summarizes the relative populations of
the various sublevels. These results are noticeably better than
in our previous experiment [50]. The main improvement is
due to a better circular polarization of the laser beams, which
was obtained by replacing the vacuum windows with new
ones with a lower birefringence.

E. Optical setup for the Stark laser

Figure 3 shows the optical setup which produces the Stark
laser and which measures its frequency. The Stark laser beam
is produced by an external cavity laser diode amplified by a
tapered amplifier (Sacher TEC-420-0670-0500), and an exter-
nal cavity laser diode (Toptica DL100) serves as a frequency
reference. A beam from the reference laser is frequency
shifted by −218 MHz using an acousto-optical modulator
(AOM), and this beam is locked to the 2S1/2, F = 1 →
2P1/2, F ′ = 2 transition. This frequency shift was introduced

for two reasons: (i) it extends the range of measurement of
the Stark laser frequency, which is limited by our spectrum
analyzer, and (ii) the AOM produces sideband frequencies
used for locking the frequency on a saturated absorption signal
observed on a heat pipe [51].
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FIG. 3. Optical setup for the Stark laser. Polarizing cube beam
splitters (PBSs) are used to separate the laser beams. A beam
of the reference laser is frequency shifted by −218 MHz by an
acousto-optic modulator (AOM) and locked on the 2S1/2, F = 1 →

2P1/2, F ′ = 2 transition observed in a heat-pipe oven. The Stark
laser frequency is locked on a resonance of a confocal Fabry-Pérot
cavity. We superpose the Stark and the reference lasers by a non-
polarizing beam splitter (NPBS), and the beat signal is detected by a
large-bandwidth photodiode (PD1). The main beam of the Stark laser
is transferred by a polarization maintaining a single mode fiber (OF)
to the atom interferometer. This beam is split in two, one beam being
sent to a beam profiler (BP) or a photodiode (PD3) while the other
beam is focused on the interferometer arm by a 250-mm focal length
lens. The polarization of this beam is cleaned by a Glan-Thompson
prism (GT), and it enters the vacuum chamber though an antireflected
coated window.

In order to produce an adequate lithium vapor pressure, the
heat pipe is heated to 300 ◦C. We use two opposite windings
of the Thermocoax heater with the same current to minimize
the produced magnetic field and the Zeeman splittings of
the transition. From the width of the transition and the error
signal, we estimate the frequency stability of the reference
laser to be better than 1 MHz.

A weak beam of the Stark laser is used to lock its frequency
on a tunable confocal Fabry-Pérot cavity. The frequency of the
Stark laser is measured by the beat note with the reference
laser. The FWHM width of the beat note is smaller than
1 MHz for a 1-ms observation time. We thus get a sensitive
measurement of the frequency of the Stark laser. Another
weak beam of the Stark laser is used to monitor the power
of the Stark laser beam; its fluctuations are smaller than 1%.
The main beam of the Stark laser is transferred to the atom
interferometer, using a monomode optical fiber, which also
serves as a mode cleaner. This beam is enlarged by a telescope
and is focused on one interferometer arm by a 250-mm-
focal-length plano-convex lens. Its polarization is purified by
a Glan-Thomson polarizer placed before the 250-mm focal
length lens, and it enters the vacuum chamber through a
high-quality AR-coated window.

We have measured the beam profile near its waist with
a beam profiler (DataRay Beam’R2). The measured waist
is w0 ≈ 61 μm, and the Rayleigh length is LR ≈ 17 mm.
However, we have not taken into account the presence of the

10-mm-thick vacuum window. It shifts the waist further from
the lens by about 3.3 mm, and the accurate height position
of the interferometer arm is known with an uncertainty of the
order of 3 mm. Therefore, we estimate that the offset between
the waist and the interferometer arm is smaller than 7 mm.

F. Systematic effects on the frequency measurement
of the Stark laser

The frequency of the reference laser is locked on the
lithium transition observed by saturated absorption spec-
troscopy in the heat-pipe oven. Small frequency shifts may be
due to the pressure shift of the lithium transition by the argon
buffer gas contained in this oven (pressure below 1 mbar) or
to the Zeeman effect in the local magnetic field (comparable
to Earth’s magnetic field). We have evaluated these effects by
an experiment done before each acquisition.

We align a beam of the Stark laser in retroreflection on
the mirror of the second laser standing wave. The Bragg
condition insures that the surface of this mirror is parallel to
the atom interferometer arms within the Bragg angle equal
to ±80 μrad. The uncertainty of this alignment is smaller
than 1 mrad, which corresponds to a maximal Doppler shift of
1.4 MHz. We sweep the laser frequency near the frequency of
the 2S1/2, F = 2 → 2P1/2, F ′ = 2 transition, and the atom
detector measures an intensity loss when the laser is at reso-
nance; this intensity loss is due to the deflection of the atoms
by the radiation pressure. We thus measure the frequency shift
of the transition observed in the heat-pipe oven with respect
to its perturbation-free position equal to 3.4 ± 1.4 MHz; the
uncertainty is dominated by the laser-beam alignment.

The main Stark laser beam is introduced from the top and
should be vertical. For the alignment, we used the mechanical
support structure of our interferometer. The mirror mounts
for the three standing laser waves are mounted on a solid
aluminum bar. This bar is under the interferometer plane,
and it is horizontal with a very good accuracy. Before the
measurements, we place a mirror on this bar and we align the
Stark laser beam by retroreflection on this mirror. We scan
the frequency of this laser near resonance, and we observe
the intensity loss due to photon scattering by the atoms when
the laser is at resonance. We thus measure the Doppler shift
equal to −11.4 ± 0.5 MHz, which corresponds to an angle
of 7 mrad. During the Stark shift measurements, this mirror
is replaced by another mirror which reflects the Stark laser
beam out of the interferometer so that the atoms interact only
once with the Stark laser beam. Due to these two effects, we
estimate the uncertainty on the systematic shift of the Stark
laser frequency to be equal to 2 MHz.

V. MEASUREMENT OF THE STARK PHASE SHIFT

A. Fringe signal recording and its fits

During a data acquisition period, we start by a fine tun-
ing of the direction of the Stark laser beam using the last
mirror before the f = 250 mm lens which is supported by a
piezoelectric mirror mount. In order to maximize the overlap
in the x direction of the Stark laser beam and the interfer-
ometer arm, we set the interferometric signal at midfringe,
the Stark laser beam being stopped, and we observe a phase
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FIG. 4. Example of interferometer fringe signal I/(2I0) plotted
as a function of the diffraction phase ϕd : measurements with laser off
(black triangle) and their best fit (dashed black line); measurements
with laser on (red crosses) and their best fit (full red line). In the
present experiment, the measured value of the Stark phase shift is
ϕS = 213 mrad.

shift when we apply the Stark laser beam. We then vary
the direction of the Stark laser beam and we determine the
position which maximizes the Stark phase shift.

To measure the Stark phase shift ϕS , we slowly scan the
atom interference fringe by varying the position of the third
laser standing-wave mirror and we alternate 13-s-long periods
with the Stark laser beam on or off. A similar technique was
used in previous studies made with our atom interferometer
(e.g., [52]). Figure 4 shows such a recording and the fits of the
fringe signals, from which we extract the phase shift ϕS , with
a typical uncertainty near 20 mrad.

B. Determination of the tune-out frequency

We measure phase shift ϕS as a function of the Stark laser
frequency. As explained above, this frequency is measured
by the frequency difference 	 with the laser locked on the
2S1/2, F = 2 → 2P1/2, F ′ = 1 transition, whose frequency
is very accurately known, 446 799 771.121 ± 0.013 MHz
[44]. Figure 5 displays the variation of ϕS as a function of
	 in the vicinity of the tune-out frequency, where ϕS is a
linear function of 	 with a good accuracy, and a linear fit
gives the frequency for which ϕS vanishes. This is the position
	T O of the tune-out frequency. In the case of Fig. 5, we get
	T O = 3400 ± 1 MHz and a slope of 1.84 ± 0.1 mrad/MHz,
with 1σ uncertainty.

C. Effect due to an imperfect optical pumping

By changing the optically pumped sublevel, we have
measured the Stark phase ϕS for the two F = 2, mF = ±2
sublevels. Figure 6 presents the results of these measurements.
From the linear fits, we extract the tune-out frequencies given
by 	T O(mF = +2) = 3407.1 ± 0.5 MHz and 	T O(mF =
−2) = 3427.4 ± 0.6 MHz. If the experiment was perfect, the
tune-out frequency of these two sublevels should be equal,

FIG. 5. Stark phase shift ϕS for the F = 2, mF = 2 sublevel as a
function of the frequency difference 	: the measured phase shifts are
represented by black bullets and the best linear fit by the full black
line. The tune-out frequency deduced from this set of measurements
corresponds to 	T O = (3400 ± 1)MHz. The laser power used for
this experiment is PL = 10 mW.

while we observe a frequency difference equal to 20.3 MHz.
We think that this difference is due to an imperfect optical
pumping, with different distributions of the population among
the ground-state sublevels as shown in Table II. Using the
measured distribution of the population among the ground-
state sublevels and taking into account the uncertainty of
the measured populations, we have calculated the possible
maximum shift of the tune-out frequency thanks to Eq. (6),
and this calculation confirmed our explanation.

D. Our final results

We have made eight measurements of the tune-out fre-
quency for the F = 2, mF = +2 sublevel, similar to that

FIG. 6. Stark phase shift ϕS as a function of the frequency dif-
ference 	. The measurements for the F = 2, mF = +2 sublevel are
represented by red bullets, those for the F = 2, mF = −2 sublevel
by black squares, and their best fits by the full (red) and dashed
(black) lines, respectively. In order to increase the phase shift ϕS ,
the laser power used for this experiment is PL = 34 mW.
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FIG. 7. Our series of measurements of the tune-out frequency
	T O. The black solid line represents their weighted mean value,
and the dashed lines represent the 1σ confidence range. The large
difference in the uncertainties stems from the different optical powers
used.

presented in Fig. 5. Figure 7 presents the measured values
of 	T O. We think that their dispersion, which is considerably
larger than the uncertainties of several measurements, is due
to the irreproducible character of the optical pumping. We
averaged these measurements using 1/σ 2 weights, and we get
	T O = 3399 ± 8 MHz. As explained above, a small Doppler
shift correction, equal to −11.4 ± 0.5 MHz, must be taken
into account. We thus get the corrected tune-out frequency of
the F = 2, mF = 2 sublevel,

	T O = 3388(8) MHz. (15)

This result is in agreement with the theoretical value 3384.3 ±
2.4 MHz calculated in Sec. III. In addition to the statistical
uncertainty equal to 8 MHz, a systematic uncertainty, equal
to 2 MHz, is taken into account. The latter is mainly due to
the uncertainty of our realization of the frequency reference.
Another systematic effect is due to the broadband nonresonant
light emitted by the Stark laser. This effect, calculated in the
Appendix, shifts the tune-out frequency by −68 kHz, which is
fully negligible.

E. Comparison with the results of Copenhaver et al. [22]

Let us compare our measurement with that of Copenhaver
et al. [22]. Both experiments have measured the tune-out
frequency at 671 nm of 7Li, but the two experimental setups
are very different in many aspects. The most important differ-
ences are as follows:

(i) The interaction time with the Stark laser is consider-
ably larger in their experiment, so they need a smaller power
density.

(ii) The atom interferometer selectivity in F, mF is differ-
ent, which is obtained by a combination of optical pump-
ing and destruction of the coherence of a complementary
interferometer.

TABLE III. Values of the tune-out frequency of the scalar polar-
izability obtained by theory or by experiment. For our measurement,
we give two values corresponding to two values of 3A/(4π ) due to
the tensorial polarizability. We took either the experimental value of
[22] (56.9 MHz) or the theoretical value (47 MHz). These four values
of 	T O,s are in good agreement.

Method 3A/(4π ) MHz 	T O,s/(2π ) (MHz)

Experiment [22] 56.9 ± 4.7 [22] 3310.6 ± 4.9
Our experiment 56.9 ± 4.7 [22] 3315 ± 8
Our experiment 47 (Theory) 3312 ± 8
Theory 47 (Theory) 3308.1 ± 2.4

(iii) They measured the tune-out frequency of the F =
2, mF = 0 sublevel, and they measured the variation of this
frequency with the angle ξ between the laser polarization and
the quantization axis.

(iv) They use as a reference frequency the 2S1/2, F =
2 → 2P1/2, F ′ = 2 transition, which differs from our ref-
erence frequency corresponding to the 2S1/2, F = 2 →
2P1/2, F ′ = 1 transition by the hyperfine splitting of the 2P1/2

level equal to 91.9 MHz [56].
To compare our result to the result of Ref. [22], we first

subtract this hyperfine splitting from our value of 	T O to
take the same reference, and we get 	

(corr.)
T O = 3296(8) MHz.

We must also take into account the different contributions
of the tensor polarizability, as we used different sublevels.
Finally, as discussed by various papers, it is traditional to
define the tune-out frequency ωT O,s(F ) as the frequency for
which the scalar polarizability vanishes, α(s)(F, ωT O,s) = 0.
Equation (11) gives the variation of αF=2,mF with mF and
with the angle ξ . A first-order Taylor expansion of Eq. (11)
around the tune-out frequency ωT O,s gives the dependence of
ωT O(F, mF , ξ ) on mF and ξ :

ωT O(F, mF , ξ ) ≈ ωT O,s − A
3 cos2 ξ − 1

2
× m2

F − 2

2

with A ≈ α(t )(ω)

dα(ω)/dω
for ω = ωT O,s. (16)

The range covered by ωT O(F, mF , ξ ) when ξ varies from
0 to π/2 is 3A/2. The measurement by Copenhaver et al.
[22] gives 3A/(4π ) = 56.9 ± 4.7 MHz, while theory predicts
3A/(4π ) = 47 MHz. Using these two values, we can deduce
the difference 	T O,s between the frequency ωT O,s and the
frequency of the 2S1/2, F = 2 → 2P1/2, F ′ = 2 transition.
These experimental values, as well the theoretical value of
	T O,s, are collected in Table III.

F. Information on the oscillator strengths of the D1 and D2 lines

As explained in Sec. III, the tune-out frequency is very
sensitive to the ratio R of the dipole matrix elements squared
of the D1 and D2 lines,

R = d2
3/2/d2

1/2. (17)

In Sec. III F, we calculated the theoretical tune-out frequency.
For this calculation we used the reduced matrix elements
of the dipole given by Safronova et al. [36] [see Eq. (6)].
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TABLE IV. Experimental values of the ratio R = d2
3/2/d2

1/2 of the
squared dipole matrix elements of the components of the D lines of
alkali atoms.

Atom Ratio Method Ref.

7Li 1.999(7) Atom interferometry Present work
7Li 2.001(4) Atom interferometry [22]
23Na 1.9994(37) Spectroscopy [14,53]
K 1.9977(11) Atom interferometry [25]
87Rb 1.99219(3) Atom interferometry [26]
Cs 1.9809(9) Spectroscopy [54]
210Fr 1.9011(11) Spectroscopy [55]

As the tune-out frequency depends on the exact value of R,
we have fitted R in order to match our measurement of the
tune-out frequency value and we get R = 1.999(7). The given
uncertainty comes from the statistical (7) and the systematic
one (1).

Using the measurement of Copenhaver et al. [22], we
get R = 2.001(4). The calculations of Tang et al. [37] use
R − 2 = 0.000 024 107, quoting an unpublished relativistic
calculation due to Jiang. A test of the value of R at the
10−5 level requires reducing the uncertainty on the tune-out
frequency to near 10 kHz. We have collected the experimental
values of the ratio R for the first resonance line of alkali
atoms (see Table IV). R differs from the value R = 2, and this
deviation increases rapidly with the nuclear charge Z because
of relativistic effects.

VI. CONCLUSION

This paper describes the measurement of the tune-out fre-
quency of 7Li at 671 nm between the D1 and D2 lines. For this
measurement, we used our atom interferometer with the atoms
optically pumped in the F = 2, mF = +2 (or −2) sublevel.
One arm of the interferometer was irradiated by a laser beam,
and we measured the phase shift due to the dynamical Stark
effect as a function of the laser frequency. This frequency was
measured by comparing the Stark laser and a reference laser
locked on the frequency of the 2S1/2, F = 1 → 2P1/2, F ′ =
2 transition. Although the achieved optical pumping was very
good, we found that the main uncertainty on the measurement
of the tune-out frequency is due to the presence of a few
percent of the atoms left in other sublevels than in the target
sublevel.

This defect is not stable in time, and the eight individual
measurements of the tune-out frequency of the F = 2, mF =
+2 sublevel present some dispersion; because of this disper-
sion, our final uncertainty on this frequency is 8 MHz. Its
value is in very good agreement with our calculation using the
dipole moments of Safronova et al. [36], including the effect
of hyperfine structure. Our measurement is also in very good
agreement with the measurement of Copenhaver et al. [22],
after correction for the different contributions of the tensorial
term.

Our final value of the tune-out frequency of the scalar
polarizability is

ωT O,s/(2π ) = 446 803 175(8) MHz, (18)

where we have used the theoretical value of the tensorial term.
The uncertainty of 8 MHz comes from the statistical (8 MHz)
and the systematic one (2 MHz). The corresponding tune-out
wavelength is 670 972 085(11) fm (11 fm statistical and 3 fm
systematic). We have interpreted our measurement in terms of
the ratio of the oscillator strengths of the components of the D
line, and we find that R = d2

3/2/d2
1/2 = 1.999(7). This result is

in agreement with a recent calculation [37] which is extremely
precise.
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APPENDIX: INFLUENCE OF BACKGROUND LIGHT
EMITTED BY THE STARK LASER SYSTEM

The Stark laser is a tapered laser diode which emits, in ad-
dition to the laser line, a broad background. This background
light produces a supplementary phase shift ϕbg of the atom
wave, and this phase shift must be taken into account for
the measurement of the tune-out frequency. To describe the
spectrum of this background, we used the data sheet of our
laser system given by the manufacturer (Sacher Lasertechnik
GmbH) [57]. This data sheet describes the spectrum as a broad
component and a Gaussian peak corresponding to the laser
line, the width of the Gaussian peak being limited by the res-
olution of the spectrometer. We use a modified Gaussian-like

FIG. 8. Plot of the spectrum Ibg(ν ) of the background light emit-
ted by our amplified laser system as a function of the light frequency
ν. The data points (red bullets) are from the Sacher Lasertechnik data
sheet (the laser peak has not been represented), provided by [57], and
their fit (red full line) (left scale). Lithium polarizability α(ω) with
ω = 2πν approximately given by Eq. (9) also represented by the blue
dashed line (right scale).
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equation to fit the intensity Ibg if the background spectrum

Ibg(ν) = I0,dg exp

(
− (ν − νbg)2

	ν2
bg

+ a3(ν − νbg)3

)
. (A1)

This spectrum and its fit are represented in Fig. 8. The param-
eters given by the fit are νbg = (448.22 ± 0.01) THz, 	νbg =
(4.03 ± 0.01) THz, and a3 = (3.94 ± 0.08) × 10−3 THz−3.
From the data sheet, we have also calculated the ratio of the
power PL of the laser line and the power Pbg of the background,
and we have found Pbg/PL = 5.3 × 10−3.

We can now calculate the Stark phase shift due to
the background light. We have done this calculation using
the polarizability α(ω) given by Eq. (9), which neglects
hyperfine structure. This calculation involves the integral∫

Ibg[ω/(2π )]α(ω)dω, which has two singularities for ω =
ω1/2 and ω3/2. We calculate the principal values numerically
with MATHEMATICA [58]. Our final result is that, for the laser
power PL = 10 mW used for our measurements, the tune-out
frequency is shifted by −20 kHz, which is negligible with
respect to our experimental uncertainty.
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