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Inducing and controlling magnetism in the honeycomb lattice
through a harmonic trapping potential
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We study strongly interacting ultracold spin-1/2 fermions in a honeycomb lattice in the presence of a harmonic
trap. Tuning the strength of the harmonic trap we show that it is possible to confine the fermions in artificial
structures reminiscent of graphene nanoflakes in solid state. The confinement on small structures induces
magnetic effects which are absent in a large graphene sheet. Increasing the strength of the harmonic potential
we are able to induce different magnetic states, such as a Néel-like antiferromagnetic or ferromagnetic state,
as well as mixtures of these basic states. The realization of different magnetic patterns is associated with the
terminations of the artificial structures, in turn controlled by the confining potential.
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I. INTRODUCTION

The discovery of graphene [1,2], a two-dimensional sheet
of carbon atoms arranged on a honeycomb lattice, has gen-
erated a new field of research which has attracted an un-
precedented interest as it combines an almost ideal nontrivial
quantum problem with extraordinary mechanical, electronic,
thermal, and transport properties [2,3]. From a more theoreti-
cal perspective, the rise of graphene has increased the interest
in the properties of quantum particles on the honeycomb
lattice.

Besides the synthesis of a variety of graphene-based sys-
tems, this has also pushed the community to devise quantum
simulators of the honeycomb lattice using ultracold atoms
[4–9], which can access regimes which are not easily reached
in solid-state systems.

One of the most elusive properties of solid-state graphene
systems is magnetism. Infinite, or very large, graphene sheets
do not show magnetic ordering [10], which is instead pro-
posed and realized in nanoscopic structures composed by a
small number of carbon atoms when the terminations have
a so-called zigzag pattern [11,12]. However, the instability
of zigzag edges severely limits the realization of magnetic
graphene nanostructures and the first solid experimental ev-
idence is very recent [13].

Promising candidates for magnetism are nanoflakes
[14,15]. Their theoretical phase diagram is quite rich, and it
is characterized by a strong competition between short-range
antiferromagnetic (AF) and long-range ferromagnetic (FM)
correlations. The former are particularly strong in insulat-
ing half-filled flakes with one fermion per site, while the
latter emerge when the density is reduced and the carriers
become more mobile. In principle this competition might be
exploited to manipulate the magnetic ground state by, e.g.,
electrostatic [14,16,17] or chemical doping [18–20] and to

engineer different kinds of spin filters [18,19,21–24]. This
rich scenario is, however, so far largely unexplored owing
to the technical difficulties to control the edges of solid-state
graphene nanosystems.

In this paper we propose an alternative route to induce
magnetism in effective artificial graphene structures formed
by cold atoms moving in optical lattices [25,26] which over-
comes the limitations of solid-state realizations. The idea is
to engineer an optical lattice with the graphene honeycomb
structure [4–7] in the presence of a strong harmonic trapping
potential which confines the fermions in a limited portion
of the lattice, thus realizing an artificial nanostructure. A
schematic illustration of this idea is depicted in Fig. 1. In
what follows we show that this procedure leads to sufficiently
well-defined artificial edges which mirror the different edges
of solid-state nanosystems. We demonstrate that, by con-
tinuously tuning the strength of the trapping potential, and
thus the size of the artificial flake, we can induce magnetic
phases starting from a nonmagnetic system and we can induce
transitions between different magnetic states with different
arrangements of the spins. We will highlight that the effective
flakes will be characterized by a spatially inhomogeneous
distribution of the fermions, with a larger local density in the
central region. This will enrich the scenario of the magnetic
properties of the effective flakes with respect to graphene
nanoflakes.

The paper is organized as follows. In Sec. II we introduce
the model used to describe the graphenelike structure and
give an overview of dynamical mean-field theory (DMFT)
that is used to solve the system. In Sec. III we discuss
the two main results, namely, the creation of the artificial
nanostructures in optical lattices reminiscent of graphene
nanoflakes (Sec. III A) and the magnetic properties of the
synthetic nanoflakes (Sec. III B). Section IV is dedicated to
concluding remarks.
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harmonic trap

FIG. 1. Protocol for the realization of artificial nanoflakes by
spatial confinement using an optical trapping potential. Solid and
shaded lines denote the 5N and 3N hexagonal flakes, respectively.

II. MODEL AND METHOD

We model our artificial structure by a Fermi-Hubbard
model with repulsive interactions on a two-dimensional hon-
eycomb lattice:

H = −t
∑

〈i, j〉,σ
(ĉ†

iσ ĉ jσ + H.c.) + U
∑

i

n̂i↑n̂i↓

+
∑

i

(Vi − μ)(n̂i↑ + n̂i↓), (1)

where ĉ†
iσ (ĉiσ ) denotes the creation (annihilation) operator for

spin-1/2 fermions and n̂iσ is the density operator at site i for
the two spin states, labeled by σ ∈ {↑,↓}. ni = ∑

σ niσ is the
total density on site i. t denotes the nearest-neighbor tunneling
amplitude, U denotes the on-site repulsion, while the chemical
potential μ controls the number of fermions. Vi = V0r2

i is
a harmonic trapping potential, with ri = (xi, yi ) the lattice
coordinate and ri = |ri|. In our calculations we consider a
L = 150 sites lattice with hexagonal shape and zigzag edges
the geometric center of which, r = (0, 0), coincides with the
minimum of the parabolic potential, as shown in the left panel
of Fig. 1.

In the absence of the optical trap, on an infinite honey-
comb lattice, this model displays a transition from a Dirac
semimetal to an antiferromagnetic insulator at an average
density of one fermion per site (half filling) [27]. A metallic
state is generally found for any other number of fermions. The
critical interaction strength for the onset of magnetism has
been estimated to be Uc � 3.87t [28] via numerically exact
quantum Monte Carlo simulations of large lattices. On smaller
systems with zigzag edges, an AF spin ordering establishes at
the boundaries [12,14,16]. Importantly, theoretical [14] and
experimental [29] evidences suggest that this edge magnetism
survives up to room temperature. As expected, AF order is
favored in half-filled systems, for which the Hubbard interac-
tion is more effective in localizing the carriers. The general
expectation is that, when the density deviates substantially
from half filling, delocalized metallic states are favored. The
free motion of carriers in a metallic state destroys the AF
ordering, while it can coexist with a FM order, which is not
spoiled by the motion of carriers. This leads to a competition
between AF and FM tendencies which is mainly determined
by the density. It is therefore very interesting to address this
issue in our inhomogeneous system where the local density
changes as we move from the center to the edge of the system.

We solve the model using a real-space DMFT [30–33]
approach, which has been previously used to study

inhomogeneous systems, such as cold atoms [33–35],
and nanostructures [36–38], including isolated graphene
nanoflakes [14]. In the homogeneous case DMFT approx-
imates the lattice self-energy of the interacting many-body
problem with a local momentum-independent self-energy
which, however, retains the full frequency dependence, which
allows us to capture nontrivial quantum correlations charac-
teristic of strongly correlated systems [30]. In order to treat
an intrinsically inhomogeneous system and the confinement
effects induced by the parabolic potential we need to relax
this approximation using real-space DMFT, in which the self-
energy remains local but it acquires a dependence on the
specific lattice, i.e., �i jσ = δi j�iσ .

In order to explore extensively the dependence of param-
eters we focus on finite artificial flakes, following previous
calculations in a solid-state setup [14,23]. We borrow from
these works the choice to start from the 150-site cluster that
we label as 5N (according to a notation where N is the number
of sites on an edge). This cluster contains smaller hexagonal
nanoflakes (4N, 3N, . . .) with the same symmetry, as well as
flakes with different edge terminations (bearded), which are
shown in Fig. 2(f), which can all in principle be stabilized by
the trapping potential.

This allows us to prove whether our protocol to confine
atoms in effective nanostructures actually works in configura-
tions which have already been tested. In this light we refrain
from a detailed comparison with potential realizations with
actual cold-atom experiments, which we postpone to future
research. We notice that a similar scheme, where the optical
trapping is used to induce quantum states in an optical lattice
loaded with ultracold fermions, has been realized in Ref. [39].

III. RESULTS

A. Artificial nanostructures

As discussed in the following, the electronic distribution
and the magnetic ordering of the fermions in the trapping
potential depend on the value of the local repulsion, which
in cold-atom experiments can easily be controlled via tuning
the strength of the optical lattice and the scattering length,
when Feshbach resonances are available. We consider two
cases: U/t = 3.75 and 11.25. The first value corresponds to
a realistic choice for actual graphene, and it falls in the range
where the semimetal to AF insulator transition takes place for
the infinite honeycomb lattice [27,28]. The latter is sufficient
to put any graphene structure deeply in the Mott state, where
the fermions are described as localized spins interacting via a
Heisenberg exchange.

We will first consider a system with the same number
of fermions per each spin species N↑ = N↓ = Nf /2, where
Nf is the total number of fermions, which is fixed. This is
the standard situation for a cold-atom experiment, where the
number of fermions in each species is conserved. As a second
step we will also release this constraint, allowing the system
to relax in a state with a finite global magnetization (i.e.,
with N↑ �= N↓). This situation would be realized in systems
in which spin-flip processes are possible as a consequence
of the coupling to an external environment or the inclusion
of a small artificial spin-orbit coupling. From a theoretical
perspective, this will be useful to clarify the tendency towards
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FIG. 2. Spatial confinement into artificial nanoflakes. (a)–(c)
Map of the local density n(ri ) = 〈ni〉 in the absence of the trap, and
for trapping potential strengths V0/t = 0.4 at repulsion U/t = 3.75
and 11.25. (d), (e) Radial density distribution for selected potential
strengths V0/t = 0.1, 0.25, 0.4, at U/t = 3.75 and 11.25. Average
fermion density: 〈n〉 = 0.36. The vertical solid lines in panels (d) and
(e) mark the positions of the edge sites, as labeled in panel (f), where
only one-sixth of the flake is shown.

ferromagnetic ordering with a finite magnetization for some
values of the interaction and of the trapping potential.

In all our calculations we consider Nf = 54, which coin-
cides with the number of sites composing the 3N nanoflake
with zigzag edges. Thus, if the fermions can be trapped in the
portion of space corresponding to the 3N flake we would have
one fermion per site (half filling), which is the ideal situation
for the onset of AF ordering, at least for a homogeneous
system. On the other hand, for our system of 150 sites,
the average filling is n = Nf /L = 0.36, i.e., a small density
which makes interactions marginally effective. Therefore, in
the absence of the trapping potential we have no magnetic
effects and the fermions are spread over the whole system also
for large interaction strength.

This nonmagnetic state is the starting point to introduce
the harmonic potential. Increasing the strength V0, we pro-
gressively localize the fermions in the central region. This is
demonstrated in Figs. 2(a)–2(c), where we show the map of
the local density 〈ni〉 on the whole system for calculations
with N↑ = N↓[40]. In the absence of the trap we recover a

nearly homogeneous system (the small deviation is due to
boundary effects) with 〈ni〉 ≈ 0.36 for every site i. Conversely
for trapping potential strength V0/t = 0.4 the fermions are
spatially localized within a reduced region around the center
of the trap. The sharpness of the confinement depends on the
value of the Coulomb repulsion.

In order to investigate this aspect, in Figs. 2(d) and 2(e) we
show the radial profile of the local density as a function of the
distance from the trap center r = |r| for different values of
the trapping potential. In shallow traps (e.g., V0/t = 0.1 and
0.25) the fermion distribution is only weakly affected by the
Coulomb repulsion due to the low average local density. As
the trap deepens, the fermions tend to leave the boundaries
to pack in the central region, and we witness an important
effect of the repulsive interaction, which competes with the
spatial charge accumulation. This effect is clear at V0/t = 0.4.
For relatively weak repulsion U/t = 3.75, as in Figs. 2(a)
and 2(d), the charge accumulates towards the center of the
trap, where we approach the maximum local density allowed
by the Pauli principle. Therefore, even if the fermions are
localized in a region r � 5, the distribution is not uniform
within the confinement region. At U/t = 11.25 instead, as
in Figs. 2(c) and 2(e), the fermions are Mott localized, and
energetically costly double occupancies 〈ni↑ni↓〉 are strongly
suppressed throughout the lattice. The tendency to reduce
double occupancy contrasts the packing of fermions in the
center of the trap and favors single occupation 〈ni〉 = 1. In
the strong-coupling (Mott) regime, most of the fermions are
confined within a region r � 4.5, characterized by a nearly
constant local density of ni � 1, with a sharp drop at this
effective boundary. The competition between the trapping po-
tential and the repulsion results in a smaller structure, almost
homogeneously filled, which appears as a promising effective
nanoflake. Our results directly reflect the incompressible na-
ture of the Mott insulator, where the configuration with singly
occupied sites is highly favored and robust with respect to
the packing effect of the trapping potential. In contrast, in
the weak- and intermediate-coupling regimes the system is
a quantum fluid with a finite compressibility, which allows
charges to accumulate in the center of the trap.

In Figs. 2(d) and 2(e) we denote by vertical lines the
radii corresponding to the edge sites of different hexagonal
nanoflakes (5N , 4N , and 3N) as labeled in Fig. 2(f). At V0/t =
0.4, the sharp edge observed in the strong coupling regime
coincides with that of the 3N nanoflake with zigzag edges
which we already identified as a promising candidate for
the emergence of magnetism because it can host a half-filled
configuration for the chosen total number of particles.

Before probing the magnetic properties of the artificial
flake, we introduce a concrete definition of the effective edge
r∗

edge. In Fig. 3 we plot as a function of V0/t the estimate of
r∗

edge given by the position where the derivative of the density
with respect to the position ∂n/∂r is maximal. Obviously,
this definition has a degree of arbitrariness, but we have
verified that different criteria provide the same result for large
interactions, while some intrinsic ambiguity is present for
small interactions. We marked as horizontal lines the positions
of the edge sites as in Fig. 2. Upon increasing V0/t the
fermionic cloud is attracted towards the center of the trap and
its effective size is reduced. The contraction is faster at weak
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FIG. 3. Effective edge r∗
edge of the artificial flake induced by the

trapping potential as a function of V0/t . Horizontal lines correspond
to the positions of the edge sites as labeled in Fig. 2(b). In this setup,
the 3N flake is stable for a wide range of V0/t .

coupling with respect to strong coupling because the Coulomb
repulsion acts as internal pressure competing with the trapping
potential. Interestingly, in both regimes the system evolves
through a series of effective flakes of different sizes. The 3N
zigzag-edged flake is the most stable artificial structure, due
to the initial choice of Nf , and it is realized in a wide range of
trapping potential strengths.

B. Magnetism

We are now in the position to test whether the effective
nanostructures that we have defined actually support magnetic
ordering. Therefore in Fig. 4 we report color maps of the local
magnetization along the z direction 〈Sz

i 〉 = 〈ni↑ − ni↓〉 for the
two values of interaction and three values of trapping potential
used in Fig. 1. Red (blue) indicates a positive (negative)
magnetization. Since the honeycomb lattice is bipartite, i.e.,
it can be divided in two sublattices A and B, such that sites of
A are only connected with sites of B and vice versa, we can
define a perfect AF state when the magnetization of sublattice
A is the opposite of that of sublattice B 〈Sz

iA
〉 = −〈Sz

iB
〉, while

a FM state has the same magnetization on the two sublattices.
A ferrimagnetic state is characterized by the presence of both
a staggered and a uniform magnetization. In a nonmagnetic
state we have vanishing local magnetic moments 〈Sz

iA,B
〉 ≈ 0.

The results in Fig. 4 show a rich landscape of magnetic
solutions which depend on the effective radius and the density
distribution of the artificial flakes.

We start by presenting results where we impose that the
total number of up and down fermions is conserved and
N↑ = N↓ = Nf /2, or 〈Sz〉 = 0, where Sz = ∑

i Sz
i . We first

consider results in the strong-coupling regime, where the
emergence of an effective half-filled 3N nanoflake is clear,
as shown by our data for U/t = 11.25. In the absence of
a trapping potential, or for very shallow ones, the fermion
density is low on every site (we recall that 〈ni〉 ≈ 0.36 at
V0 = 0) and the flake is not magnetic (not shown). As the
fermions are attracted towards the center of the trap, as in
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FIG. 4. Map of the local magnetization 〈Sz
i 〉. The first row (a)–(c)

presents results for U/t = 11.25, while the second row (d)–(f) shows
data for U/t = 3.75 with 〈Sz〉 = 0, and the third row (g)–(i) shows
data for U/t = 11.25 with 〈Sz〉 �= 0. In all cases we show results
for three different values of V0/t . The competition of emergent AF
and FM magnetic exchanges gives rise to different magnetic states,
depending on the electronic density distribution determined by V0/t
and U/t .

Figs. 4(a) and 4(b), we observe a clear AF pattern in the
region of the inner rings, where 〈ni〉 ≈ 1, while in the region
where 〈ni〉 ≈ 0.5 (quarter filling) we find weakly FM islands.
In Fig. 4(c) we show that increasing V0/t leads to a dramatic
enhancement of the magnetic moments, which form the Néel
AF state extended over the whole occupied central region. The
character of the magnetic ordering of this half-filled structure
is not surprising and it can be easily understood in terms of
the strong-coupling limit (U/t � 1) of the Hubbard model,
that leads to an effective Heisenberg model with a nearest-
neighbor exchange coupling J = 4t2/U which leads to an AF
ordering on the honeycomb lattice. The magnetic response
confirms the formation, in the strong-coupling regime, of a
well-defined effective flake, with properties reminiscent of an
isolated graphene nanoflake, and proves that a simple change
of the trapping potential can induce a magnetic state. The
results in the strong-coupling limit do not change if we relax
the 〈Sz〉 = 0 constraint, confirming that the AF solution is the
actual ground state of the system.

At intermediate interaction (e.g., for U/t = 3.75) the evo-
lution of the magnetic properties in Figs. 4(d)–4(f) is richer
and more peculiar, as a result of a less pronounced tendency
towards the formation of magnetic moments and the more
ambiguous definition of artificial edges. On the other hand,
as discussed in previous work on graphene nanoflakes [14],
densities different from one fermion per site favor FM corre-
lations which are more compatible with metallic behavior. In
our artificial nanoflake, this leads to a nontrivial evolution as
a function of V0/t characterized by the competition between
AF and FM correlations.
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For shallow traps, the fermions are spread over a relatively
large area, and AF ordering establishes in the central region,
even if weaker than in the large-U case. In the outer region
we observe the development of small FM islands which are
ordered in a staggered pattern around a hexagonal ring as
shown in Fig. 4(d). This suggests the emergence of long-range
AF correlations between FM domains at distances dAF ≈ 5r,
mediated by the short-range (i.e., dAF = r) Heisenberg ex-
change. For deeper traps the packing towards the center is
stronger because of the smaller repulsion. Once the occupa-
tion of the sites in the inner region becomes close to 2 the
tendency towards AF order is washed away, and the center of
the trap tends to host a FM island surrounded by a nonmag-
netic region and an external ring where the fermions have the
opposite spin with respect to the center. When the trapping
potential becomes even larger [Fig. 4(f) for V0/t = 0.8] the
magnetic moments become smaller because of the increased
density in the center of the trap.

Our results directly demonstrate that tuning the trapping
potential and the interaction strength we can induce mag-
netism or change completely its nature. For example, if we
change the interaction strength at fixed V0/t we can induce a
transition between FM and AF states [Figs. 4(b) and 4(e) or
Figs. 4(c) and 4(f)].

Finally, as anticipated above, we relax the 〈Sz〉 = 0 con-
straint. This protocol, which would require us to include some
mechanism able to flip the spins of the atoms, is chosen in
order to better highlight the tendency towards the FM state
that we have identified for the case with moderate electron-
electron interaction. In contrast with the large-U case, here we
find that the system indeed minimizes its energy by polarizing
the fermionic spins. In the third row of Fig. 4 we show these
results. In particular if we compare Fig. 4(h) with Fig. 4(e) and
compare Fig. 4(i) with Fig. 4(f) we find a clear enhancement
of the FM correlations which invade a larger portion of the
effective flake and, for the largest value of the potential that
we considered, we obtain a FM polarization spread over the
whole effective flake.

IV. CONCLUSIONS

In this paper we have shown that a trapping potential can
induce a variety of magnetic phases in an otherwise nonmag-
netic honeycomb lattice. In particular, a parabolic potential
can be used to trap the fermions in artificial nanoflakes, which
inherits the properties that have been widely studied in a solid-
state framework. The trapping is most effective for strong
fermion-fermion repulsion, underlining the important effect of
interactions in the realization of well-defined artificial edges.
Our paper shows a route to induce magnetism in artificial
graphene nanostructures, and it is expected to be robust with
respect to details of the system, i.e., actual size and number of
fermions, as long as the interactions can be made sufficiently
strong to reach the Mott regime.

Also, when it is difficult to establish a direct correspon-
dence with solid-state systems, because the trapping leads
to strongly inhomogeneous density distributions, we find
a competition between FM and AF tendencies. This leads
to a tunable system evolving from a weak antiferromagnet
to a ferromagnet. The magnetic ordering is also expected
to be reflected in the transport properties, leading to highly
nontrivial spin transport. The possibility to induce different
magnetic states could be exploited to investigate spin-filter
[23] and spin-valve effects within transport experiments in
optical lattices [41,42].
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