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Effects of atom numbers on the miscibility-immiscibility transition
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The effects of atom numbers on the miscibility-immiscibility transition of a harmonically trapped population
imbalanced binary Bose-Einstein condensate are investigated. In two-dimensional parameter space expanded
by the strength of interspecies interaction and the ratio of atom numbers between two components, we have
mapped out the ground-state phase diagrams for the ideal model without intraspecies interactions, and for the
23Na - 23Na mixture and the 87Rb - 87Rb mixture with experimentally accessible intraspecies scattering lengths,
respectively. It is found that all the phase diagrams include the miscible, symmetric immiscible, and asymmetric
immiscible phases, and there exists a tricritical point where those three different phases merge. Furthermore, the
phase boundaries among those three phases show a strong dependence on the atom numbers of two components.
These results can be observed in current experiments.

DOI: 10.1103/PhysRevA.101.033610

I. INTRODUCTION

The experimental realization of a binary Bose-Einstein
condensate (BEC) has provided a platform to investigate
the novel and interesting physics in the interacting quantum
gases [1–15], such as dark-bright solitons [16–23], spin drag
phenomena [24], exotic vortex lattice structure [25–33], and
self-bound quantum droplets [34–38], which do not exist in a
single BEC. A typical feature is that the binary BEC exhibits
miscible or immiscible phenomena depending on the atomic
interactions. As observed in experiments [9–15], when the
interspecies repulsive interaction is large enough, the two
components repel each other so that they separate into two
distinct clouds with small spatial overlap, corresponding to the
immiscible phase. When the effect of interspecies interactions
is weak compared to the intraspecies interactions, the two
components are miscible and overlap with each other at the
center of the trapping potential.

As is well known for a homogeneous binary BEC, where
the kinetic energy is negligible compared with the interaction
energy, the transition between miscible-immiscible phases
can be determined only by the interspecies and intraspecies
interactions. A traditional criterion for the immiscible ground
state is a11a22 < a2

12 [39–45], where a11 and a22 are the
intraspecies s-wave scattering lengths of components 1 and
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2, respectively, while a12 is the interspecies s-wave scat-
tering length between them. Therefore, one can control the
miscibility-immiscibility transition of a binary BEC by using
the Feshbach resonance technique to adjust the interaction
strengths [6–8,14]. However, if a binary BEC is trapped in an
inhomogeneous potential with finite size, the pressure of the
trapping potential dramatically makes the binary BEC more
miscible and shifts the critical value of a12 to a larger value
for the immiscible ground state [46–48], indicating that the
traditional criterion a2

12 = a11a22 is not necessarily the optimal
boundary of the miscible-immiscible transition for a trapped
binary BEC. Furthermore, for a harmonically trapped binary
BEC, it has also been confirmed that the asymmetry in atomic
masses of two components also affects the boundary between
miscible and immiscible phases [49–51].

In general, the immiscible case of a binary BEC exhibits
two typical density profiles [9–15,41–64] (as shown in Fig. 1):
(i) the symmetric immiscible phase, where one component
lies at the trap center with the other lying at the periphery,
and (ii) the asymmetric immiscible phase, where the two
components deviate from the trap center and face one another
separated by a domain wall. In particular, within the Thomas-
Fermi approximation, the miscible, symmetric, and asymmet-
ric immiscible phases can coexist at a11 = a22 = a12 [57,58].
Although the ground-state phase diagrams of a binary BEC
have been extensively studied both experimentally and theo-
retically, only a few studies have been focused on the effects
of atom numbers and the trapping potential. Actually, in the
experiment of the 87Rb - 133Cs mixture, McCarron et al. have
observed that the density profiles of the ground state have
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FIG. 1. The ground-state phase diagram of a binary BEC without
intraspecies interactions in the g12-γ plane. The red, green, and blue
solid lines represent the phase boundaries given by numerical calcu-
lations, the green dot-dashed line is the critical value of g12 for the
asymmetric immiscible ground state given by the variational method,
and the solid black circle denotes the tricritical point. The insets filled
by red and blue represent the density distributions of two components
given by numerical calculations, and the dashed black lines in the
insets of the miscible (M) and asymmetric immiscible (AI) phases
are the density distributions of Gaussian variational approximation,
while the dashed black line in the inset of the symmetric immiscible
(SI) phase is φ2 = π−1/4e−z′2/2. The system parameters of the insets
in the miscible, asymmetric immiscible, and symmetric immiscible
phases are (γ , g12) = (2, 1), (γ , g12) = (2, 4), and (γ , g12) = (7, 3),
respectively.

three distinct immiscible structures depending on the relative
atom numbers of two species [12,62]. Very recently, Lee et al.
have given the ground-state phase diagram of a population-
imbalanced 87Rb - 39K mixture in the a11/a12-a12/a22

plane [64], which shows that the boundaries between the
miscible, asymmetric, and symmetric immiscible phases will
be changed obviously for different ratios of atom numbers.

To gain more insight into the effects of the atom numbers,
in this paper we consider the binary BEC with unequal atom
numbers in two species, and we treat the ratio of atom
numbers between two species as a continuous independent
variable. For the sake of simplicity, we first consider the har-
monically trapped ideal binary BEC without intraspecies in-
teractions, which admits an analytical variational analysis and
is conducive to understanding the effects of atom numbers on
the immiscible-miscible transition. And then, the 23Na - 23Na
mixture and the 87Rb - 87Rb mixture with experimentally
accessible intraspecies scattering lengths are investigated, re-
spectively. By using the imaginary-time propagation method
to obtain the ground states for these systems, we determine the
corresponding phase diagrams in two-dimensional parameter
space expanded by the strength of interspecies interaction and
the ratio of atom numbers between two species, which verifies
again that the atom numbers of two species play an important
role in the transitions among the miscible, symmetric immis-
cible, and asymmetric immiscible phases. For example, the
critical value of interspecies interaction for the asymmetric

immiscible ground state will increase monotonically with the
ratio of atom numbers between two species. In particular, it
has also been found that the three different phases can coexist
at a tricritical point, which is related to the atom numbers of
two components.

The rest of the paper is structured as follows. In Sec. II
we describe the theoretical model based on mean-field theory
at zero temperature. In Secs. III and IV, we will give the
phase diagrams for the system with and without intraspecies
interactions, respectively. Finally, we summarize these results
in Sec. V.

II. THE THEORETICAL MODEL

We consider a binary BEC composed of two different
hyperfine spin states of the same atom, and we assume the two
species have different atom numbers, i.e., N1 �= N2. Within the
mean-field theory at zero temperature, the Gross-Pitaevskii
energy functional of such a system can be written as fol-
lows [39,40]:

E =
∫ +∞

−∞
d3r

⎧⎨
⎩

∑
j=1,2

[
h̄2

2m

∣∣∇� j

∣∣2 + V (r)
∣∣� j

∣∣2
]

+ U11

2
|�1|4 + U22

2
|�2|4 + U12|�1|2|�2|2

}
, (1)

where � j (r) satisfies
∫ +∞
−∞ |� j (r)|2d3r=Nj , with j = 1, 2.

The trapping potential is the cylindrically symmetric har-
monic potential V (r)= 1

2 m[ω2
⊥(x2 + y2) + ω2

z z2], where r =
x, y, z is the spatial coordinate, m is the atom mass, and ω⊥ and
ωz are the trapping frequencies along the transverse and axial
directions, respectively. The contact interaction parameters
read Ui j = 4π h̄2ai j/m, with ai j being the s-wave scattering
length between components i and j, which can be tuned
by using the Feshbach resonance [6–8,14]. In this paper,
we mainly consider the repulsive atomic interactions with
positive scattering lengths.

To highlight the effect of atom numbers, we set r = ξr′ and
make a transformation � j (r) = √

Njξ
−3/2ψ j (r′), with ψ j (r′)

satisfying
∫ +∞
−∞ |ψ j (r′)|2d3r′ = 1. The energy functional (1)

can be rewritten in terms of the rescaled wave function ψ j (r′),

E

Eξ

=
∫ +∞

−∞
d3r′

⎧⎨
⎩

∑
j=1,2

γ j−1

[
1

2
|∇′ψ j |2 + V ′(r′)|ψ j |2

]

+ 1

2

β11

γ
|ψ1|4 + 1

2
β22γ |ψ2|4 + β12|ψ1|2|ψ2|2

}
, (2)

where Eξ = h̄2N1/(mξ 2), βi j = N2mUi j/(h̄2ξ ), V ′(r′) =
m2ξ 4[ω2

⊥(x′2 + y′2) + ω2
z z′2]/(2h̄2), γ = N2/N1 is the ratio

of atom numbers between two species, and we assume
γ � 1 (N2 � N1) without loss of generality. From Eq. (2),
it is obvious that the kinetic energy, the trapping potential
energy, and the atomic interaction energy are all related to γ ,
which implies that the atom numbers will certainly affect the
transitions between miscible and immiscible phases.

To investigate the effects of atom numbers on the ground
state of a population-imbalanced binary BEC, we treat γ

as a continuous independent variable, and we give the
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ground-state phase diagram in the a12-γ plane by the
imaginary-time propagation method to obtain the stationary
solutions of this system [65]. Since the ground-state wave
functions have three different structures, we introduce the
following two order parameters to distinguish these three
different phases:

δ =
∫ +∞

−∞
r′(|ψ1|2 − |ψ2|2)d3r′, (3a)

� j = n j (r′ = 0)

Max[n j (r′)]
, (3b)

where δ represents the difference between the center of mass
of two wave functions, and � j is the normalized trap-center
density of the jth component [64]. Consequently, the ground
state is asymmetric immiscible for δ �= 0. For δ = 0, �1 =
�2 = 1 corresponds to the miscible case, and �1 < 1 and
�2 = 1 (or �1 = 1 and �2 < 1) correspond to the symmetric
immiscible one. In the imaginary-time propagation, differ-
ent initial conditions are chosen and the propagation con-
tinues until Max[|φτn+1

j (r′) − φ
τn
j (r′)|] < e−10 and |E (τn+1) −

Eτn | < e−10, where τ represents the discretized imaginary
time. The different types of ground states are identified by
comparing the energies given by different initial conditions.

III. THE GROUND-STATE PHASE DIAGRAM OF A
QUASI-ONE-DIMENSIONAL BINARY BEC WITHOUT

INTRASPECIES INTERACTIONS

To gain some intuition, we first consider the quasi-one-
dimensional binary BEC along the z′ direction and take
a11 = a22 ≡ 0. This ideal case not only admits a simple
analytical analysis, as we shall see below, but it may also
be conducive to understanding the effects of atom num-
bers on the immiscible-miscible transition. Therefore, we
assume that the condensates are tightly confined in the x′y′
plane by the harmonic trap with ω⊥ � ωz, and the mo-
tional degrees of freedom in the x′y′ plane are frozen, so
that the dynamics of such a cigar-shaped binary BEC can
be considered to be effectively one-dimensional along the
z′-direction. In this case, we take ξ = √

h̄/mωz, and we
factorize the wave function as ψ j = ϕho(x′, y′)φ j (z′), where
ϕho(x′, y′) = √

ω⊥/(πωz ) exp [−ω⊥(x′2 + y′2)/(2ωz )] is the
normalized ground-state wave function of a particle trapped
in a harmonic oscillator with dimensionless Hamiltonian H =
− 1

2 (∂2/∂x′2 + ∂2/∂y′2) + ω2
⊥

2ω2
z
(x′2 + y′2). By inserting the fac-

torized wave function into the energy functional (2) and
performing the integrals with respect to x′ and y′, we can
derive the effective one-dimensional energy functional along
the z′ direction,

E

Eξ

=
∫ +∞

−∞

⎡
⎣ ∑

j=1,2

γ j−1

2
(|∂z′φ j |2 + z′2n j ) + g12n1n2

⎤
⎦dz′,

(4)

where the effective interspecies interaction coefficient reads
g12 = ξmN2U12/(2π h̄2ξ 2

⊥), and n j = |φ j |2 presents the den-
sity distribution of the jth component. In addition, we have
omitted the constant associated with the zero-point energy of

FIG. 2. Parts (a) and (b) show the locations z′
1,m and z′

2,m of
the maximum values of two wave functions in the γ -g12 plane,
respectively. Parts (c) and (d) show the dependencies of � j and δ on
g12 for fixed γ , where γ = 2 and 10 in (c) and (d), respectively. The
vertical dot-dashed lines in (c) and (d) indicate the phase boundaries.
The inset in (d) magnifies the curve of δ.

a harmonic oscillator in the x′- and y′-directions, which has no
contributions to the structure of the ground state.

Figure 1 exhibits the ground-state phase diagram as a func-
tion of the effective interspecies interaction g12 and the ratio of
atom numbers between two species γ , where the miscible and
immiscible phases are separated by the solid green and blue
lines, and we have denoted the critical value of interspecies
interaction as gc

12 for the immiscible ground state. It is easy
to see that the system is miscible for g12 < gc

12, where two
wave functions overlap in the center of the trap, while for
g12 > gc

12 the system is immiscible and exhibits two different
types of density profiles: a symmetric demixed phase and an
asymmetric demixed phase. In addition, we observe that both
phase boundaries, for the miscible-asymmetric immiscible
transition and the symmetric immiscible–asymmetric immis-
cible transition, increase monotonically with γ . The boundary
between the miscible and symmetric immiscible ground states
decreases marginally for a relatively small γ , but remains
almost unchanged for a larger γ . More interestingly, there is a
tricritical point at g12 	 2.8 and γ 	 2.9 in the phase diagram,
where these three different phases merge.

In Figs. 2(a) and 2(b), we have plotted the locations |z′
1,m|

and |z′
2,m| of the maximum values of two wave functions in

the g12-γ plane, which also confirm the phase diagram shown
in Fig. 1. In the miscible phase, the two wave functions with
z′

1,m = z′
2,m = 0 are located at the center of the trap. In the

symmetric immiscible phase, φ1 forms a bilaterally symmetric
structure with two identical maximum values at z′ = ±z′

1,m
to surround φ2, and the distance d = 2|z′

1,m| between the
two maximum values of φ1 increases with g12. While g12 is
large enough, the two wave functions separate along opposite
directions and the system is in the asymmetrical immiscible
phase, in which |z′

1,m| increases but |z′
2,m| decreases with γ for

a fixed g12. Moreover, for γ = 2 and 10, the dependencies of
� j and |δ| on g12 have also been shown in Figs. 2(c) and 2(d),
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respectively, which show that these two order parameters
changing with g12 are different in different phases. In the
miscible phase, we have � j = 1 and |δ| = 0, both of which
will not change with g12. In the asymmetric immiscible phase,
� j < 1 and |δ| > 0, the former decreases with g12, while
the latter increases monotonically with g12. In the symmetric
immiscible phase, �2 and |δ| remain unchanged, but �1

decreases monotonically with g12, which indicates that the
value of the wave function φ1 at the trap center gradually
reduces with increasing g12.

To give a clearer understanding of the above results, we
analyze the transitions among these three different phases in
detail, respectively.

A. The miscible-asymmetric immiscible transition

We first focus on the miscible-asymmetric immiscible
transition, where the numerical results show that far from
the phase boundary, the profiles of two wave functions are
similar to the Gaussian function in both miscible and asym-
metric immiscible phases. Therefore, we employ the Gaus-
sian variational method to analyze the miscible-asymmetric
immiscible transition, and take the following variational wave
functions [47]:

φi = π−1/4w
−1/2
i e[−(z′−z′

i )
2/2w2

i ], (5)

where wi and z′
i are the width and center of the wave function,

respectively. Inserting this ansatz into the energy function (4),
we obtain

E0

Eξ

= 1

4

(
1

w2
1

+ w2
1

)
+ γ

4

(
1

w2
2

+ w2
2

)
+ 1

2

(
z′2

1 + γ z′2
2

)

+ g12

√
π

√
w2

1 + w2
2

e
− (z′1−z′2 )2

w2
1+w2

2 . (6)

Minimizing the energy (6) with respect to wi and z′
i, we can

obtain

1

2

(
1 − 1

w4
1

)
=

(
w2

1 + w2
2 − 2δ2

)
g12√

π
(
w2

1 + w2
2

)5/2 e
− δ2

w2
1+w2

2 , (7a)

γ

2

(
1 − 1

w4
2

)
=

(
w2

1 + w2
2 − 2δ2

)
g12√

π
(
w2

1 + w2
2

)5/2 e
− δ2

w2
1+w2

2 , (7b)

z′
1 = 2g12δ√

π
(
w2

1 + w2
2

)3/2 e
− δ2

w2
1+w2

2 , (7c)

z′
2 = − 2g12δ

γ
√

π
(
w2

1 + w2
2

)3/2 e
− δ2

w2
1+w2

2 , (7d)

where δ = z′
1 − z′

2 corresponds to the difference between the
centers of two wave functions. It can be observed that both
the widths and centers of two wave functions show a strong
dependence on γ .

By solving Eqs. (7), we can obtain the corresponding
variational wave functions in the miscible and asymmetric
immiscible phases, which agrees with the numerical results
(see the insets in the miscible and asymmetric immiscible
phases of Fig. 1). It is found that for both the miscible phase
and the symmetric immiscible phase, the difference between

the centers of two wave functions is zero. Consequently, we
can obtain the critical value gc

12 for the onset of the asymmetric
immiscible ground state by setting δ = 0, that is,

gc
12 =

√
π

2

(
γ

γ + 1

)1/4

(1 + √
γ )3/2, (8)

which illustrates that gc
12 increases monotonically with γ (as

shown by the green dot-dashed line in Fig. 1), and it agrees
qualitatively well with our numerical results. Equation (8)
can also be understood from the energy (6). With increasing
γ , the kinetic energy of component 2 is enhanced, which
acts against the interspecies interaction. The critical value
of g12 is therefore shifted to a large value for a larger γ as
shown in Eq. (8) [46–48]. However, Eq. (8) is quantitatively
different from the critical value of g12 given by numerical
calculation (the green solid line in Fig. 1). Actually, at the
beginning of asymmetric immiscible phase for g12 � gc

12, the
numerical result shows that the profiles of two wave functions
deviate slightly from the Gaussian function and vary slowly
in space, which makes the critical value gc

12 always smaller
than the one given by the Gaussian variational approximation.
For the asymmetric immiscible phase, despite the fact that
gc

12 in Eq. (8) deviates from the one given by numerical
calculation, the analytical expression offers valuable insight
into the dependence of gc

12 on atom numbers.

B. The miscible-symmetric immiscible transition

Next, we shift our attention to the miscible-symmetric
immiscible transition. In our numerical results, for γ > γtc,
with γtc being the value at the tricritical point, when g12

surpasses the phase boundary denoted by the blue solid line
in Fig. 1, we find that φ2 	 π−1/4e−z′2/2 (see the dashed black
line of the inset in the symmetric immiscible phase of Fig. 1),
which is merely the ground-state wave function of a single
particle in the harmonic potential. In this case, the effect
of φ1 on φ2 via interspecies interaction can be neglected,
and the effective trapping potential for φ1 can be written as
z′2/2 + g12e−z′2

/
√

π , which acts as a barrier formed by φ2 at
the center of a harmonic trap with the strength proportional to
g12, leading to the formation of a symmetric shell structure of
φ1, as shown in the inset of Fig. 1. In addition, the peak of the
effective potential barrier increases with g12, which leads to a
larger z′

1 and deeper collapse of the center of φ1.
Furthermore, when γ is relatively larger, the repulsive

interspecies interaction is overwhelmed by the strong
effective kinetic energy and trapping potential energy,
and the component 2 is always in the ground state of the
harmonic trapping potential. In this case, the contribution of
γ to the total energy is a constant zero-point energy γ /2,
and it is no use to adjust the atom numbers of two species to
change the critical value of g12 for the miscible-symmetric
immiscible transition. Therefore, the phase boundary between
the miscible and symmetric immiscible phases remains
almost unchanged with increasing γ . To clarify this point,
we use the Gaussian variational approximation again. For
the symmetric immiscible ground state, our numerical
calculations show that φ1 can be approximately viewed
as the superposition of two Gaussian wave functions with
opposite centers, that is, φ1 	 {exp [−(z′ − z′

1)2/(2w2
1 )] +
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exp [−(z′ + z′
1)2/(2w2

1 )]}/
√

2
√

πw1[1 + exp(−z′2
1 /w2

1 )]. If
we take φ2 = π−1/4w

−1/2
2 exp (−z′2/2w2

2 ), then the energy
functional (4) is rewritten as

E0

Eξ

= 1

4

(
w2

1 + 1

w2
1

)
+ γ

4

(
w2

2 + 1

w2
2

)
+ w4

1ez2
1/w

2
1 − 1

2w4
1

(
1 + ez2

1/w
2
1
) z′2

1

+ e
z′21 w2

2
w2

1 (w2
1+w2

2 ) + 1√
π

(
w2

1 + w2
2

)(
1 + ez′2

1 /w2
1
)g12. (9)

Minimizing the energy (9) with respect to wi and z′
1, we find

w2 ∼ 1 for a larger γ , as observed in the numerical calcula-
tions. In this case, the energy in Eq. (9) can be approximated
as E0/Eξ = γ /2 + f (w1, g12, z′

1), where f is a function of
the width w1, the center z′

1 of wave function φ1, and the
interspecies interaction g12. Therefore, γ has no contributions
to the width and center of φ1, and the critical value gc

12 for
the miscible-symmetric immiscible transition shows almost
no dependence on γ , as confirmed by the numerical results
shown in Fig. 1.

C. The symmetric immiscible-asymmetric immiscible transition

Finally, for a fixed γ with γ > γtc, when g12 further
surpasses the phase boundary denoted by the red solid line
in Fig. 1, the interspecies interaction will dominate the kinetic
and potential energy for component 2. To minimize the in-
teraction energy, the two components separate along opposite
directions under the strong repulsive interaction, and thus
the system will experience the transition from the symmetric
immiscible phase to the asymmetric immiscible phase. In
this transition, the concave of φ1 disappears, which leads to
a sudden change of �1 at the boundary of the symmetric
immiscible–asymmetric immiscible transition, as shown in
Fig. 2(d). Moreover, as shown in the inset of Fig. 2(d), for
larger γ , we have �2 ∼ 1 and z′

2 ∼ 0 in the asymmetric
immiscible phase, indicating that the component 2 with more
atoms will stay almost at the center of the trap even for strong
interspecies repulsive interaction, which can also be observed
from Fig. 2(b).

IV. THE GROUND-STATE PHASE DIAGRAM IN THE
PRESENCE OF INTRASPECIES INTERACTIONS

So far, we have focused on the ideal case without in-
traspecies interactions. In real experiments of a binary BEC,
there are intraspecies interactions in each species. The repul-
sive intraspecies interactions try to expand the condensates
and against the phase separation [46–48]. To see the effects
of atom numbers on the miscibility-immiscibility transition
in the presence of intraspecies interactions, we consider the
23Na - 23Na mixture and the 87Rb - 87Rb mixture, respec-
tively, with experimentally realizable intraspecies scattering
lengths and trap geometries, and we perform the full three-
dimensional numerical calculations based on the energy func-
tional (2) with N2 ≡ 104 and N1 ∈ [103, 104] (i.e., 1 � γ �
10).

We first consider the binary BEC with equal intraspecies
scattering lengths, which correspond to the recent experiment

on the 23Na - 23Na mixture [66], where the magnetic
sublevels mF = ±1 of the hyperfine spin F = 1 state are
used for two components and the intraspecies scattering
lengths are a11 = a22 = 54.54aB. Moreover, to extract
more underlying physics, we will also consider three
different trap geometries: the spherical harmonic trap with
(ω⊥, ωz ) = (10, 10) Hz, the oblate harmonic trap with
(ω⊥, ωz ) = (10, 100) Hz, and the prolate harmonic trap
with (ω⊥, ωz ) = (100, 10) Hz, which are realizable in current
experiments. By using the imaginary-time propagation
method to minimize the full three-dimensional energy
functional (2), we depict the ground-state phase diagrams in
the three different trap geometries and show the representative
density profiles of two species in each phase. The results are
shown in Fig. 3. As with the phase diagram of the ideal case
without intraspecies interactions shown in Fig. 1, Fig. 3 shows
that in the presence of equal intraspecies interactions, the
phase diagrams in different trap geometries still contain three
different phases, which also merge at a tricritical point. In the
symmetric immiscible phase, as shown by the density profiles
of two species (see the insets), the component 2 also serves as
an effective potential barrier for component 1 at the harmonic
trap center, leading to the formation of a symmetric shell
structure in component 1. On the other hand, unlike the ideal
case, due to the intraspecies interactions, the critical value
of a12 at the boundary between the miscible and symmetric
immiscible phases decreases slowly with γ , as shown by the
blue lines in Fig. 3.

The tricritical point and all the phase boundaries depend
quantitatively on trap geometries. If the binary BEC is trapped
tightly in the transverse direction as in Fig. 3(a), we find that
the energy scale of the interaction energy is much larger than
that of the kinetic energy in the axial direction, and the atomic
interactions always play the dominant role in determining the
configuration of the ground state. Therefore, the boundary
between the miscible and immiscible phases almost occurs
at a2

12 	 a11a22, and the range of the symmetric immiscible
ground state in the phase diagram is very narrow, as shown in
Fig. 3(a). In the oblate trap in Fig. 3(b), the atomic density
is lower and the kinetic energy in the transverse direction
becomes relatively important. In this case, the critical value
of interspecies interaction for the immiscible ground state is
shifted to a larger value [46–48], leading to a broader range of
the symmetric immiscible ground state in the phase diagram
as shown in Fig. 3(b). In the spherical trap in Fig. 3(c),
this tendency becomes more pronounced. The tricritical point
moves to smaller γ from Figs. 3(a)–3(c). Thus, the phase
diagram can be controlled quantitatively by changing the trap
frequencies.

Finally, we consider the asymmetric intraspecies scattering
lengths (i.e., a11 �= a22), where the binary BEC is assumed to
be the mixture of two internal spin states of 87Rb atoms. In
this case, we take, respectively, two sets of the experimentally
realized intraspecies scattering lengths, one is a11 = 98.98aB

and a22 = 100.4aB in the mixture of |F = 2, mF = 2〉 and
|F = 1, mF = 1〉 hyperfine states [19], the other is a11 = 95aB

and a22 = 100.4aB in the mixture of |F = 2, mF = −1〉 and
|F = 1, mF = 1〉 hyperfine states [14]. We take the spherical
harmonic trap as an example, and we consider the weak
confinement with ω⊥ = ωz = 10 Hz and the tight confinement
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FIG. 3. The ground-state phase diagram for the 23Na mixture
with a11 = a22 = a = 54.54aB in different trap geometries, where
the insets in each phase are the representative density profiles of two
wave functions for γ = 8. The trapping frequencies are (ω⊥, ωz ) =
(100, 10)Hz in (a), (ω⊥, ωz ) = (10, 100)Hz in (b), and (ω⊥, ωz ) =
(10, 10)Hz in (c), respectively. For M, SI, and AI phases, the inter-
species scattering lengths of the insets are a12/a = 1.01, 1.03, 1.04
in (a), a12/a = 1.04, 1.2, 1.3 in (b), and a12/a = 1.1, 2.2, 2.6 in (c),
respectively. In each inset, the green outside surface represents the
isosurface of the density profile, the cross section depicts the density
distribution in the x′y′ plane at z′ = 0 (for the oblate and spherical
traps) or in the y′z′ plane at x′ = 0 (for the prolate trap), and the
spatial scales in both axial and transverse directions are in [−6ξ, 6ξ ],
where ξ = √

h̄/mωm, with ωm = min{ω⊥, ωz}, is the unit of space.

with ω⊥ = ωz = 100 Hz. The ground-state phase diagrams
and the representative density profiles in each phase are
depicted in Fig. 4. For the case of a11 = 98.98aB and a22 =
100.4aB, due to the small distinction between intraspecies
scattering lengths of two species, as shown in Figs. 4(a)
and 4(b), the ground-state phase diagrams in both traps are
similar to the ones for a11 = a22. For a11 = 95aB and a22 =
100.4aB, in a relatively weak trap, the ground-state phase
diagram in Fig. 4(c) is similar to Fig. 4(a). However, in a
relatively strong trap, as shown in Fig. 4(d), the ground-state
phase diagram has an additional symmetric immiscible phase
between the miscible and asymmetric immiscible phases for
γ ∼ 1 (see the green area in the lower left corner of the phase

FIG. 4. The ground-state phase diagram in the a12/
√

a11a22-γ
plane for the 87Rb mixture with a11 �= a22, where (a11, a22) =
(98.98, 100.4)aB in (a) and (b), (a11, a22) = (95, 100.4)aB in (c) and
(d), and the insets in each phase diagram are the representative den-
sity profiles in three different phases. The trapping frequencies are
(ω⊥, ωz ) = (10, 10) Hz in (a) and (c), and (ω⊥, ωz ) = (100, 100) Hz
in (b) and (d). The parameters of the insets in (a) and (c) are γ = 5
and a12/

√
a11a22 = 1.05, 1.25, 1.4 for the M, SI, and AI regions,

respectively. In (b), the parameters of the insets in the M, SI, and
AI regions are (γ , a12/

√
a11a22) = (5, 1.02), (5, 1.08), (5, 1.14), re-

spectively. In (d), the parameters of the insets in the left SI re-
gion are γ = 1.1 and a12/

√
a11a22 = 1.04, and the parameters of

the insets in AI and the right SI regions are (γ , a12/
√

a11a22) =
(5, 1.08), (5, 1.14), respectively. In each inset, the green outside
surface represents the isosurface of the density profile, the cross
section depicts the density distribution in the x′y′ plane at z′ = 0,
and the spatial scales in both axial and transverse directions are in
[−6ξ, 6ξ ], where ξ = √

h̄/mωm with ωm = min{ω⊥, ωz} is the unit
of space.
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diagram). In this symmetric immiscible phase, since the BEC
is in the Thomas-Fermi regime and a11 < a22, the component
2 extends outward and forms a symmetric shell to surround
the component 1 for minimizing the interaction energy (see
the insets). With increasing γ , the effective kinetic energy is
enhanced gradually and the phase separation is suppressed. As
a result, the symmetric immiscible phase is compressed grad-
ually and finally disappears at the tricritical point. When γ is
large enough, the tricritical point and symmetric immiscible
phase emerge again, but the difference is that the component
1 surrounds the component 2 in this symmetric immiscible
phase (see the insets), as observed before. We would like to
point out that the tricritical point on the left side of Fig. 4(d)
is similar to the one found by Svidzinsky et al. [57,58], which
is caused by the asymmetric intraspecies interactions of two
species in the Thomas-Fermi regime. On the other hand, the
tricritical point as well as the symmetric immiscible phase on
the right side of Fig. 4(d) are caused purely by the asymmetry
in atom numbers of two species, as analyzed in the case
without intraspecies interactions.

V. CONCLUSION

We have studied the ground-state structures of a
population-imbalanced binary BEC in a harmonic potential.
In the two-dimensional parameter space expanded by the
interspecies interaction and the ratio of atom numbers of
two components, for the binary BEC without intraspecies

scattering lengths and the 23Na - 23Na or 87Rb - 87Rb mix-
tures with experimentally realizable intraspecies scattering
lengths, we have mapped out the corresponding ground-state
phase diagrams, which are composed of three different config-
urations: the miscible ground state where two wave functions
overlap at the center of trap, the symmetric immiscible ground
state where one component forms a shell structure around
the other, and the asymmetric immiscible ground state where
the two wave functions separate along opposite directions.
It is verified that the phase boundaries among these three
different configurations depend strongly on the atom num-
bers of two components; there exist tricritical points in the
phase diagram, where those three different phases merge. The
parameters used in this work are within current experimental
capacity.
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