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We analyze several puzzling features of a recent experiment with a noninteracting gas of atoms in a quadrupole
trap. After an initial momentum kick, the system reaches a stationary, quasithermal state even without collisions,
due to the dephasing of individual particle trajectories. Surprisingly, the momentum distribution remains
anisotropic at long times, characterized by different temperatures along the different directions. In particular,
there is no transfer of the kick energy between the axial and radial trap directions. To understand these effects we
discuss and solve two closely related models: a spherically symmetric trap V (r) � rα and a strongly confined gas
along one direction (a pancake trap). We find that in the isotropic trap, the gas unexpectedly also preserves the
anisotropy of the kick at long times, which we are able to explain using the conservation of angular momentum
and the virial theorem. Depending on the value of α we find that the kick can cool or heat the orthogonal
directions. The pancake trap case is quantitatively similar to the quadrupole one. We show that for the former,
the temperature anisotropy and memory of the kick direction are due to the change in the two-dimensional
effective potential resulting from the kick, thereby also explaining the quadrupole experimental results.
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I. INTRODUCTION

A major part of the theoretical study of classical Hamilto-
nian dynamics [1] concerns the ability of purely conservative
systems to reach thermal equilibrium. This line of inquiry took
its origin from Boltzmann’s demonstration of the celebrated
H-theorem, which provided for the first time a microscopic
explanation of the second law of thermodynamics. This pio-
neering work quickly gave rise to many paradoxes due to the
fact that the entropy of a Hamiltonian system S is conserved.
Even 150 years after Boltzmann’s work, problems such as
Loschmidt’s paradox [2], Poincaré’s recurrence theorem [3] or
the Fermi-Pasta-Ulam-Tsingou [4–6] problem remain largely
unresolved [7]. A possible approach towards their resolution
lies in the notion that any small subensemble S1 can be
described as an open system interacting with the rest of S .
The latter therefore plays the role of a bath allowing the
thermalization of S1. In the quantum world, this picture is
known as the eigenstate thermalization hypothesis [8–10],
which also applies to classical systems [11]. In this context, an
intriguing question concerns the minimal system size required
for thermalization. Despite the fact that the thermodynamic
limit is usually associated with large-size systems, small ob-
jects such as nanoparticles [12], nuclei [13], or atoms trapped
in optical lattices [14] are nevertheless known to relax towards
thermal equilibrium.

*Deceased 21 May 2016.

With decreasing system size, a natural question to consider
is to which degree a single particle is able to reach thermal
equilibrium. This extreme limit can be studied experimentally
using cold fermions by taking advantage of the Pauli exclusion
principle. The associated suppression of interactions at low
temperature gives rise to a unique experimental platform
facilitating the study of noninteracting Hamiltonian systems.

In this work, we consider an ensemble of noninteract-
ing particles confined in nonseparable power-law potentials.
The question of thermalization in this class of potentials
was already raised in the context of collisionless atoms in
quadrupole traps [15,16]. This problem was recently revived
in the context of quantum simulation of high-energy physics,
where the behavior of (harmonically confined) massless Weyl
fermions was studied experimentally using cold atoms in a
quadrupole trap [17]. In this latter work, it was shown that
after a rapid quench of the trap position, the center-of-mass
motion is damped after a few oscillations and the system
reaches a steady state characterized by partial thermaliza-
tion of its momentum degrees of freedom. The correspond-
ing distribution of the atomic ensemble closely resembles a
thermal distribution, npi=x,y,z ∝ exp(−p2

i /2mkBTi ), but with
anisotropic temperatures.

In this paper, we present a detailed theoretical analysis of
these relaxation dynamics. Furthermore, we provide analyti-
cal calculations of the steady-state properties in an isotropic
as well as in a pancake geometry. These results are com-
pared to numerical solutions of the corresponding dynamical
equations. Our work clarifies the memory effect leading to
the anisotropy of the momentum distribution and predicts a
singular behavior for spherical potentials.
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II. RELAXATION DYNAMICS IN QUADRUPOLE TRAPS

Motivated by recent experiments with nondegenerate spin-
polarized fermions [17], we consider an ensemble of classical
noninteracting particles confined by a quadrupole trapping
potential

V (r) = μBb
√

x2 + y2 + 4z2, (1)

where μB is the Bohr magneton and b is the magnetic field
gradient, a positive quantity.

This potential leads to nonintegrable dynamics since it has
three degrees of freedom but only two constants of the motion
(total energy E and angular momentum Lz). As a consequence
its dynamics exhibits chaotic behavior in some regimes. In
contrast, the more usual potential of standard atomic traps is
a sum of harmonic terms of the form V1(x) + V2(y) + V3(z)
allowing us to define three conserved energies, leading to an
integrable problem. Note that, since the quadrupole potential
cannot be written as the sum of potentials as in the harmonic
case, the motion along one direction depends on the other two
so that momentum and energy are constantly being exchanged
between the three directions as the atom moves along the
orbit.

We will study the relaxation dynamics in this potential,
i.e., what happens to the gas after it is slightly perturbed from
equilibrium. At t = 0 with the gas in thermal equilibrium, the
atoms receive a momentum kick q that shifts every atom’s
momentum p → p + q and increases its energy by p · q/m +
q2/2m. Since the original (thermal) distribution before the
kick is an even function of each component of p, the first
term drops out when averaged over that distribution, so that
the average energy change �E per atom is

�E = q2/2m. (2)

We are interested in the subsequent evolution: how the gas
relaxes to steady state and how the energy �E of the kick is re-
distributed along the different directions of motion. Normally,
as is usually assumed, collisions would be responsible for
this redistribution leading to a return to thermal equilibrium.
However, in our case, there are no collisions nor mean-field
interactions, so any relaxation process is due purely to the
ergodicity of the dynamics of the system.

The state of the gas can be described by the Boltzmann
distribution f (r, p, t ), which we normalize to unity:∫

d3r
∫

d3p f (r, p, t ) = 1. (3)

All extensive quantities are to be taken as ensemble averages
over this distribution. For example, the final measured mo-
mentum distribution npz is given by

npz =
∫

d3r
∫

d px d py f (r, p, t → ∞). (4)

To simulate this distribution we perform molecular dynam-
ics simulations of the gas [18,19] where the trajectory of each
atom is calculated following the classical equations of motion,
without suffering any collision. This method gives us full
access to all observables, including the Boltzmann distribution
itself. For example, we can measure the phase-space average
〈p2

i 〉 for i = x, y, z over the entire system as a function of time

by averaging over the trajectories of individual atoms:〈
p2

i

〉
t ≡

∫
d3r

∫
d3p p2

i f (r, p, t ) � 1

N

∑
all N atoms

p2
i (t ),

(5)

We start with a gas of N = 105 atoms sampled from the
initial Boltzmann distribution at temperature kBT0 = 1 with a
momentum kick of q along x:

f ∝ exp

(
− (px − qx )2 + p2

y + p2
z

2
− V (x, y, z)

)
(6)

(analogously for a kick qz along z, etc.) and let each individual
atom evolve according to the classical trajectory. From now on
we set m = kBT0 = μBb = 1, which is equivalent to choosing
m as the mass unit, l0 = kBT0/μBb as the unit of length and
t0 = √

mkBT0/μBb as the unit of time (for the experiment on
6Li reported in Ref. [17], these units would correspond to
r0 = 0.6 mm and t0 = 1 ms). The time evolution is calculated
using the velocity Verlet algorithm [20,21]. We use a time step
�t = 0.001t0, which provides sufficient accuracy, as the error
of the algorithm is of the order O(�t2). For each simulation,
we sample the trajectories of �105 particles, leading to negli-
gible statistical error bars in the graphs displayed below.

This very simple setup gives rise to some surprises which
have also been confirmed experimentally [17]:

(i) Stationary thermal distribution: In Fig. 1(a) we plot
〈p2

i 〉t . We see that, at long times, it has reached an apparently
stationary value. As illustrated by Fig. 1(b), we observe
that the long time doubly integrated momentum distributions
npi=x,y,z (4) fit closely to a Gaussian (thermal) distribution
npi ∝ exp(−p2

i /2mkBTi ) where we define an effective temper-
ature analogously to the experiment [17]:

Ti ≡ 〈
p2

i

〉
t→∞, i = x, y, z (7)

so that

�Ti ≡ 〈
p2

i

〉
t→∞ − 〈

p2
i

〉
t=0. (8)

(ii) Anisotropic temperatures: From Fig. 1(a) we see that,
even though the doubly integrated distributions npi along the
different directions i are Gaussian, their widths are different:
generally we find Tx ∼ Ty �= Tz. We also see that Tz ∼ T0 <

Tx,y,which we find to be true whenever the kick is in the
xy plane, the opposite being true if the kick is along the z
direction. This is unexpected because the quadrupole potential
is nonseparable, continuously transfering energy and momen-
tum between all directions for each atom, so we might expect
naïvely that on average Tx ∼ Ty ∼ Tz, i.e., there would be a
certain degree of ergodicity.

(iii) Apparent separability of the z and x-y distributions:
For a kick along z, the width of the momentum distribution
along x and y seems to be unchanged (i.e., Tx,y � 1) whereas
Tz increases. The energy increase �E due to the kick is mainly
concentrated into the z direction so that �E � 3/2 �Tz. Like-
wise, if the kick is along x, the increase in kinetic energy
along the z is negligible (Tz � 1) but both Tx and Ty increase
by the same amount (Tx = Ty) so that �E � 3�Tx. In fact
we will see below that this separation is not exact; there
is a slight increase of energy in directions transverse to the
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(a)

(b)

FIG. 1. Numerical simulation of the relaxation dynamics in a
quadrupole trap. (a) Kinetic energy per atom along different direc-
tions as a function of time after a kick q = 1 along x at t = 0. As in all
following graphs, times is expressed in units of t0 = √

mkBT0/μBb.
The energies seem to reach a stationary state for t � 80. Along z
the average kinetic energy is almost unchanged from its initial value
∼1, but along x and y the corresponding values increase by the same
amount to a final value of ∼1.2. (b) Momentum distribution npz of
the steady state. The solid line Geq is a Gaussian distribution with the
same variance. Similar results are found along all three directions.

kick. Nevertheless this behavior is consistent with a strong
separation of the dynamics into z and xy plane components
even though the potential is nonseparable.

The naïve, straightforward conclusion from these observa-
tions is that the gas seems to have thermalized in the absence
of collisions [since the doubly integrated momentum distribu-
tions (4) become Gaussian-like, a hallmark of thermalization]
but with some effective decoupling of the motion along z and
xy directions leading to different temperatures Tz and Txy.

A. Apparent thermalization

In point (i). above we noted that the gas becomes sta-
tistically stationary after some time. This stationary state of

the gas is not due to collisions but to the fact that, in the
quadrupole trap, the orbits of different atoms will have differ-
ent, incommensurate periods leading to the relative dephasing
of individual trajectories. This dephasing, when averaged over
the whole gas, leads to a stationary distribution. Note that the
appearance of a stationary distribution would not happen in
the standard harmonic trap since a momentum kick would lead
to undamped oscillations of the center of mass. Note also that
irreversibility has not set in by this stage since there are no
collisions. We also mentioned above that the gas seemed to
have thermalized in the absence of interactions since the dou-
bly integrated momentum distributions (4) become Gaussian
after the kick.

Of course, since the effective temperatures deduced from
the width of the Gaussians are different (Tz �= Tx,y) the state
cannot be a true thermal state. Indeed, collisions are necessary
to redistribute the kick energy �E among all accessible
phase space regions of energy E + �E so that the entropy
increases S(E ) → S(E + �E ) whereas in this experiment,
E → E + �E but entropy is unchanged. Nevertheless, as can
be seen from the simulations, several thermal properties can
be achieved, e.g., stationarity and equilibration of tempera-
tures along the x and y directions.

We can ask to what extent the final state of the gas is close
to a thermal state. For example, could it be, e.g., a product of
three different Gaussians (with different temperatures) of the
type

f ∼ e−p2
x/2Tx e−p2

y/2Ty e−p2
z /2Tz × e−V/T ? (9)

It is easy to see that this is not possible since it does not satisfy
the time-independent collisionless Boltzmann equation. In
fact we can plot a slice of f as a function of one of its six
coordinates keeping all others fixed as in Fig. 2, which shows
a markedly non-bell-shaped curve.

In fact, the Gaussian character is only restored upon
integration of the other five coordinates of the Boltzmann
distribution, e.g.:

npx =
∫

d3r
∫

d pyd pz f (r, p, t → ∞) ∝ e−p2
x/2mkBTx ,

(10)

which raises the question of why averages over complex
distributions such as those of Fig. 2 lead to a Gaussian profile.
We will not consider this question further here, leaving it for
further study.

B. Symmetries and sum rule of the distribution

We can be more quantitative regarding the �Ti. We first
notice that the quadrupole potential (1) is homogeneous of
order one, [a potential homogeneous of order α has the
property that V (λr) = λαV (r)]. So we can apply the virial
theorem, which leads to the following relation [22]:

�E = 3
2 (�Tx + �Ty + �Tz ). (11)

For kicks much smaller than the thermal momentum, we
can expand the temperature shifts as

�Ti ≡
∑

j

�i j

q2
j

2
, (12)
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FIG. 2. The long time Boltzmann distribution f after a kick
along z plotted as a function of pz keeping all other variables
x, y, z, px, py fixed and for different values of x. To obtain a nonzero
number of atoms in the six-dimensional volume we considered a
narrow region in phase space given by the coordinates in the figure
and divided it into bins. We plot the number of atoms in each
bin averaged over time. It can be seen that f does not resemble a
Gaussian thermal function and that the three peaks become more
prominent for x closer to the center. Similar results are found by
plotting along all other coordinates.

where i, j = x, y, z, qi is the momentum kick along the ith
direction and the matrix �i j is symmetric.

More generally it is straightforward to show using (2) and
(11) that, if the potential is homogeneous of order α, then for
all directions i, �i j satisfy the constraint∑

j

�i j = 2α

2 + α
. (13)

For potentials with axial symmetry around the z axis, which
is the case of the quadrupole trap, the fact that the matrix is
symmetric and that in any kick �Tx = �Ty imply that the
matrix can be written using only three distinct elements θ1,2,3

as

� =
⎛⎝θ1 θ1 θ2

θ1 θ1 θ2

θ2 θ2 θ3

⎞⎠. (14)

Using the sum rule we find θ2 + 2θ1 = θ3 + 2θ2 = 2/3, which
leaves us with a single unknown parameter. The experimen-
tally measured value �Tz/q2

z /2 = 2/3 [see point (iii) above]
implies θ3 = 2/3, θ2 = 0 and θ1 = 1/3, the latter also being
in agreement with the measured value.

The quadrupole simulations confirm the experimental ob-
servations [(i)–(iii)] (see Fig. 1) even though there is a small
correction to the experimental values: a slight cooling of the
directions transverse to the kick so that �xx = 0.36 (instead

FIG. 3. Poincaré map of the quadrupole potential. We study
trajectories with the same energy but different initial phase-space
coordinates. The values of x and px are recorded whenever z = 0 and
pz > 0. We see the appearance of small islands denoting invariant
torii close to which quasi-integrable trajectories evolve, separated by
contiguous regions of chaotic dynamics.

of 1/3) and �xz = −0.05. So the observation of point (iii).,
the apparent separability of the z and x-y distributions, seems
not to be perfect but rather an excellent approximation.1

We can study the gas dynamics by analyzing individual
atomic trajectories and then averaging over initial conditions.
However, the trajectories can be quite difficult to find due
to the nonintegrability of the potential. To show this we
constructed a Poincaré map: in Fig. 3, we see that there are
both chaotic and quasi-integrable regions. A study of the
gas starting from its individual trajectories would be quite
complex analytically. For this reason, it is easier to study not
the potential (1) but cases that might contain the same physics
but in which all or nearly all trajectories are integrable or
quasi-integrable. For example let us consider the family of
potentials

Vε(x, y, z) =
√

x2 + y2 + (1 + ε)z2. (15)

When ε = 3 we get the quadrupole potential (1). But if we
take ε = 0 the potential becomes spherically symmetric and
therefore integrable. Alternatively, if ε � 1 then we are left
with a highly confined potential along the z direction (a
pancake) so that the motion simplifies again and an effective
motion in the x-y plane can be studied.

We will begin with the study of the spherical potential in
Sec. III, which, surprisingly, exhibits many of the phenomena
of the quadrupole potential, including the anisotropy of the
momentum distribution. After this we will analyze the pan-
cake case in Sec. IV, comparing both of these limits with the
quadrupole potential.

1We also investigated anisotropic potentials, finding very similar
behavior.
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III. SPHERICAL LIMIT

The simulations in the quadrupole potential suggest that
after perturbing an equilibrium gas along a particular direc-
tion, the ensemble average of the momentum widths 〈p2

i 〉t

converges to a stationary distribution in the long time limit
t → ∞. In particular, we observed that 〈p2

x〉∞ = 〈p2
y〉∞ and

in general 〈p2
x〉∞ �= 〈p2

z〉∞.
Calculating the final momentum widths 〈p2

i 〉∞ for a gas
of atoms in the quadrupole potential from first principles
is difficult without understanding the individual trajectories.
Therefore, as mentioned above, it is a natural simplification to
consider instead the case where we remove the anisotropy in
the quadrupole potential:

Vε=0(x, y, z) =
√

x2 + y2 + z2 = r, (16)

where r is the radial coordinate (for the rest of this section
we will drop the subscript ε = 0). Naïvely, one would expect
that perturbing a gas along any direction in such a spherical
potential will lead to an isotropic distribution at long times:
〈p2

x〉∞ = 〈p2
y〉∞ = 〈p2

z〉∞. However, as we shall see, the final
momentum width along the direction of the perturbation will
be different to that along perpendicular directions. To antici-
pate some of the conclusions of this section: this is intuitively
plausible; in a spherical potential all three components of
angular momentum are conserved, so the motion of each atom
is confined to a plane passing through r = 0 and perpendicular
to its angular momentum. The population of each plane is
therefore constant during the motion. In thermal equilibrium,
this population is the same for all planes but a momentum
kick will cause a transfer of atoms between planes, so that
the population of each plane will depend on its angle relative
to the kick direction. This anisotropy in populations in the
distribution is preserved at long times again due to conser-
vation of angular momentum and translates into different final
temperatures along the different directions.

A. Averages over the motion in planes

With a particle in a central field [22,23], the trajectory stays
on the plane perpendicular to its angular momentum L, which
includes the origin r = 0. Using polar coordinates (r, θ ) for
the plane, the energy E is given by the usual expression:

E = 1

2
(ṙ2 + r2θ̇2) + V (r) = 1

2

(
ṙ2 + L2

r2

)
+ V (r), (17)

where L = |L| = r2θ̇ = constant. In a potential such as (16),
the motion is confined between two values of the radial coor-
dinate rmin � r � rmax, which are solutions of ṙ = 0. During
the time in which r varies from rmax to rmin and back, the
radius vector turns through an angle �θ . The condition for the
path to be closed is that this angle should be a rational fraction
of 2π , i.e., that �θ = 2πm/n, where m and n are integers.
But according to Bertrand’s theorem [23] the only central
potentials for which all paths are closed are Kepler’s (∝ − 1

r )
and the harmonic potential (∝r2). For all other potentials (and
excluding the particular case of trajectories with zero angular
momentum), the trajectory will behave as in Fig. 4: it will
become dense everywhere, filling the allowed annulus region

x

z

x

z

x

z

FIG. 4. Orbit of atom in a plane with a central potential V (r) = r
after increasingly long times from left to right. Since the trajectory
never closes, according to Bertrand’s theorem, it fills the annular
region between rmax and rmin in an isotropic, dense fashion as t → ∞.

isotropically so that the orbital density is only a function of
the radius r as the propagation time tends to infinity.

Using Bertrand’s theorem, we would like to analyze the
long time behavior of trajectories, in particular the time av-
erages of different quantities. For a quantity A(t ), the time
average of a quantity A is defined as, cf. (5):

A ≡ lim
t→∞

1

t

∫ t

0
A(t ′)dt ′. (18)

We can convert the time average to one over the orbital density
discussed above by a change of variables. We immediately
conclude that, since Bertrand’s theorem implies that the or-
bital density is isotropic, so will the time average also be:

x2 = y2 (19)

p2
x = p2

y. (20)

We will use this fact to calculate 〈p2
i 〉∞ for a gas of atoms.

B. Calculation of momentum averages
in terms of integrals of planes

Although our purpose is to study the potential V (r) = r
as a limiting case of the family (15), it is straightforward to
consider in this section a more general potential than (16),
namely

V (r) = rα (21)

with 0 < α �= 2. This will allow us to examine qualitatively
different behavior as a function of α. The case α = 2 corre-
sponds to the isotropic harmonic potential for which in general
(19) and (20) are not true. For α = 1 we recover (16).

For a gas in a spherical potential, the atoms belonging
to the same plane in coordinate space are also confined to
the same plane in momentum space making each plane an
independent system. So our strategy will be to treat the motion
in each plane separately and then add over all of them at the
end. For this we choose a coordinate system (see Appendix A)
where two of the coordinates (the angles θ and φ) define
the plane, and the remaining four correspond to the in-plane
coordinates (u and v) and momenta (pu and pv). Then we can
write the total energy as

〈E〉 =
∫ π

0
dφ

∫ π

0
dθ〈E〉plane, (22)

where 〈E〉plane is the average energy of all the planes lying
between θ and θ + dθ , φ and φ + dφ. Even though the
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probability density f (r, p, t ) is a function of time, the energy
of each atom is constant in time as the potential is time
independent and there is no exchange of energy between the
atoms, so the average energy is also a constant. Therefore if
we know the probability density f (r, p, t ) at any one time,
we will know the average energy for all time. This allows
us to calculate the final momentum widths 〈p2

i 〉∞ from the
distribution of energies at t = 0 after the initial momentum
kick.

Since the class of potentials (21) is homogeneous of order
α we use the virial theorem,

K = α

2
V , (23)

where K is the kinetic energy and the averages are over time
as in (18). Note that the virial theorem is valid both for each
atom individually as well as for the entire gas. If we assume
that at long times, when the gas has reached a steady state, the
ergodic hypothesis applies for such systems, we can replace
the time average with the ensemble average

〈K〉 = α

2
〈V 〉. (24)

As each plane is a closed individual system, (24) also
applies to

〈K〉plane = α

2
〈V 〉plane, (25)

and using (25), 〈E〉plane can be written as

〈E〉plane = 〈K〉plane + 〈V 〉plane

= 2 + α

α
〈K〉plane

= 2 + α

2α

(〈
p2

u

〉 + 〈
p2

v

〉)
. (26)

According to Bertrand’s theorem, Kepler’s potential V (r) =
− k

r and radial harmonic oscillator V (r) = 1
2 kr2 are the only

two types of central force potentials where all bound orbits are
also closed orbits. Therefore, if we restrict ourselves to cases
where 0 < α �= 2 where almost all orbits are open (except for
the circular orbit), we see that 〈p2

u〉 = 〈p2
v〉 as t → ∞ so that,

following the argument of Sec. III A,〈
p2

u

〉 = 〈
p2

v

〉 = α

2 + α
〈E〉plane. (27)

We can now express the averages of p2
x, p2

y, and p2
z through

〈E〉plane as shown in Appendix B (assuming that the final
distribution does not depend on φ)

Tx,y = 〈
p2

x,y

〉 = απ

2(2 + α)

∫ π

0
dθ〈E〉plane(1 + sin2 θ ) (28)

Tz = 〈
p2

z

〉 = απ

2 + α

∫ π

0
dθ〈E〉plane cos2 θ. (29)

It remains now to calculate 〈E〉plane as a function of θ and φ

after the momentum kick.

C. Momentum kick

We perturb the Maxwell-Boltzmann distribution in a po-
tential given by (21) at t = 0 by applying a momentum kick

qz along the z direction. The resulting initial distribution at
temperature kBT0 = 1 is

f (r, p, t = 0) = A exp

(
− p2

x + p2
y + (pz − qz )2

2
− rα

)
,

(30)

where

A = 3

8
√

2π5/2

(

3+α
α

) . (31)

If we transform (30) using (A3), we get:

f = A exp

(
−q2

z

2

)
× exp

(−rα
)

exp

(
− p2

r − 2prqz cos θ sin αp

2

)
. (32)

Using (32), we can calculate 〈V 〉plane = 〈rα〉, 〈K〉plane =
〈p2

r〉/2m, and finally 〈E〉plane = 〈V 〉plane + 〈K〉plane as follows:

〈V 〉plane(t = 0) = 3| cos θ |
απ

e− q2
z
2 e

q2
z cos2 θ

4

×
[

I1

(
q2

z cos2 θ

4

)
q2

z cos2 θ

4

+ I0

(
q2

z cos2 θ

4

)(
1

2
+ q2

z cos2 θ

4

)]
, (33)

〈K〉plane(t = 0)

= | cos θ |
8π

exp

(
−q2

z

2

)
exp

(
q2

z cos2 θ

4

)
×

[
q2

z I1

(
q2

z cos2 θ

4

)
cos2 θ

(
4 + q2

z cos2 θ
)

+ I0

(
q2

z cos2 θ

4

)(
6 + 6q2

z cos2 θ + q4
z cos4 θ

)]
, (34)

where I0 and I1 are modified Bessel functions of the first kind.
Since 〈E〉plane does not change with time we can use this to
obtain the 〈p2

i 〉 at t → ∞ via Eqs. (28), (29). For α = 1 the
resulting expressions read

〈
p2

x

〉 = q2
z

12
+ 5

6
+ 1

2q2
z

−
√

2

2q3
z

F

(
qz√

2

)
, (35)

〈
p2

z

〉 = q2
z

6
+ 4

3
− 1

q2
z

+
√

2

q3
z

F

(
qz√

2

)
, (36)

where F is the Dawson function. In Fig. 5 we show the
excellent agreement of the simulations with these analytical
predictions.

For a small momentum kick, we can find some illuminating
expressions. Expanding 〈E〉plane about qz = 0 up to O (q2

z ) we
obtain from (28) and (29)

Tx,y ≈ 1 + 5α − 2

20(2 + α)
q2

z (37)

Tz ≈ 1 + 2 + 5α

10(2 + α)
q2

z . (38)
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FIG. 5. Comparison of the simulation results for Ti = 〈p2
i 〉t→∞

(i = x, y, z) with the analytical predictions (35) and (36) for an
isotropic potential (21) with α = 1 for different kick strengths qz

along the z direction. Note that the predicted 〈p2
x〉∞ and 〈p2

y〉∞
are identical. The numerical errors are smaller than the size of the
symbols.

For the case α = 1 we find

Tx,y ≈ 1 + 1

20
q2

z ⇒ �Tx,y = 1

10
�E , (39)

Tz ≈ 1 + 7

30
q2

z ⇒ �Tx,y = 7

15
�E , (40)

which satisfies the virial theorem (11). Comparing with the
quadrupole experiment [point (iii). above] where �Tx,y = 0
and �Tz = 2/3�E , we see that the spherical case leads to
some increased heating in the xy plane although small.

In terms of the matrix �i j from (12), for a spherically
symmetric case we can show that

�i j =
⎛⎝θ1 θ2 θ2

θ2 θ1 θ2

θ2 θ2 θ1

⎞⎠ (41)

so that, e.g., �Tx = θ1q2
x/2 and �Tx = θ2q2

y/2. As before,
using the sum rule, we find that θ1 + 2θ2 = 2/3 so that the
matrix depends only on a single unknown parameter. Then
(37) and (38) imply that

θ1 = 2 + 5α

5(2 + α)
and θ2 = 5α − 2

10(2 + α)
, (42)

which satisfy the sum rule (13). For the case α = 1 (16) we
get θ1 = 7/15 and θ2 = 1/10.

D. Heating and cooling of transverse directions

These results allow us to answer an interesting question: If
we kick the gas along a direction, do the transverse directions
heat or cool? For an interacting gas, we know collisions will
distribute the energy along all directions, hence the transverse
directions will be heated by the same amount as the kicked

direction. For an ideal gas in, e.g., a harmonic potential, the
transverse directions will not be affected.

Using (37) and (38) we see that, for a noninteracting gas in
a spherical potential of the form (21), we can have different
types of behavior [up to O(q2

z )] for the transverse directions:

(i) for α < 2
5 : cooling;

(ii) for α = 2
5 : no change;

(iii) for α > 2
5 : heating.

This surprising result tells us that it is possible in some
cases to cool the gas along some directions while heating it
up along others. In fact, as we will see later the quadrupole
potential is of this type: it cools along the x and y directions
if kicked along z. Nevertheless, the spherical potential, which
most closely resembles it, with α = 1, behaves more conven-
tionally since it heats up.

E. Population redistribution due to kick

We would like to gain some insight into why the final
momentum widths are different 〈p2

x〉 = 〈p2
y〉 �= 〈p2

z〉 for qz �=
0. We can rewrite (28) using the fact that the total energy
of the gas Etotal(q = 0) + �E with �E given by (2), can be
expressed as the sum of the plane energies:

Etotal(q = 0) + q2
z

2
=

∫ π

0
dφ

∫ π

0
dθ〈E〉plane

= π

∫ π

0
dθ〈E〉plane. (43)

The term Etotal(q = 0) can be easily found from the qz = 0
limit of (33) and (34). It follows that:〈

p2
x,y

〉 = απ

2(2 + α)

∫ π

0
dθ〈E〉plane(1 + sin2 θ )

= α

2(2 + α)

(
q2

2
+ 6 + 3α

2α
+π

∫ π

0
dθ〈E〉plane sin2 θ

)
α=1= 1

6

(
q2

z

2
+ 9

2

)
+ π

6

∫ π

0
dθ sin2 θ〈E〉plane. (44)

We can study how each of the terms in 〈p2
x〉 varies with qz.

In Fig. 6, we can see that the contribution of the integral term
of (44) is small compared to the q2

z term and becomes less
important as qz increases.

To understand why the integral term becomes small, we
can investigate how 〈E〉plane changes as a function of θ for
different values of qz. From Fig. 7, we can see that the value
of 〈E〉plane near θ = 0 and θ = π increases with increasing
qz and the opposite happens near θ = π/2. As the integrand
multiplies this factor by sin2 θ , which is 0 at θ = 0, π and
peaks at θ = π/2 the integral will decrease as qz increases.

To make it even clearer, it is useful to plot not 〈E〉plane

but 〈E〉plane/| cos θ |, which removes the effect of the Jacobian
(A2), which simply accounts for the variation of the density of
planes as a function of θ , leaving us with the change in plane
energy as a result of the kick.

From Fig. 8, we can see that when there is no momentum
kick, the energy of all the planes are the same. When we apply
a momentum kick along the z axis, planes lying along that
direction (θ = 0 or π ) gain energy whereas directions close
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FIG. 6. Comparing the different terms of 〈p2
x〉 in (44) with 〈p2

z〉
(36) for different values of momentum kick qz with m = kBT = 1.

θ = π/2 lose it. This means that, when we project the energy
of each plane to obtain the momentum widths, 〈p2

z〉 > 〈p2
x〉.

The ratio between the two momentum widths is given by〈
p2

z

〉〈
p2

x

〉 = 2

∫ π

0 〈E〉plane cos2 θ∫ π

0 〈E〉plane(1 + sin2 θ )
, (45)

from which we conclude that 〈p2
z〉 � 2〈p2

x〉. As observed in
Fig. 9, we see that this bound is achieved large momenta (more
precisely when qz is much larger than the thermal momen-
tum). This behavior is explained by noting that for strong
excitations the energy is concentrated in planes containing
the kicking direction (θ = 0 or θ = π , see Fig. 7), yielding
〈p2

z〉 = 2〈p2
x〉 in Eq. (45) (see also Appendix B).

F. Memory loss in isotropic potentials

A natural question arising from the study of this sec-
tion is whether a gas can remember in which direction

FIG. 7. Using Eqs. (33) and (34) to plot 〈E〉plane(θ ) for different
values of momentum kick qz.

FIG. 8. Using Eqs. (33) and (34) to plot 〈E〉plane(θ )/| cos θ | for
different values of momentum kick qz.

it was kicked after a long time has passed. For exam-
ple, we could start with a gas in thermal equilibrium in
an isotropic potential, i.e., a spherically [three-dimensional
(3D)] or circularly (2D) symmetric potential, apply a mo-
mentum kick along an arbitrary direction and wait for a
very long time. Is the final gas distribution anisotropic?
That is, does it preserve a memory of the direction of the
kick?

In a collisional gas, the extra energy from the momentum
kick is redistributed along all directions equally, leading to
isotropic heating and therefore a loss of memory. A nonin-
teracting gas in a harmonic oscillator preserves this memory
because its center of mass oscillates along the kick direction
indefinitely.

However, quite surprisingly, a noninteracting gas in a non-
separable potential can also preserve it due to the existence of
integrals of motion, which encode the direction. For example

FIG. 9. Using Eqs. (33) and (34) to plot the ratio between 〈p2
z〉

and 〈p2
x〉 for different values of momentum kick qz.
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FIG. 10. Behavior of the final temperatures �Ti/�E as a func-
tion of the anisotropy ε near the spherical limit after a kick along x.
Temperatures are estimated as the standard deviation of a 105 parti-
cles distribution, leading to a relative error of ∼0.3%. At ε = 0, Tz =
Ty after which there is a discontinuous change in the temperatures due
to the breaking of spherical symmetry along z. Data are obtained by
numerical simulation over 100 000 atoms. Horizontal dashed, dotted,
and solid lines correspond to the theoretical expectations of the fully
isotropic (39), (40), almost isotropic (38) and (51), and quadrupole
geometries, respectively.

in a 3D spherical potential the memory is associated with the
three components of angular momentum Lx,y,z being integrals
of the motion, as we have seen.

An interesting question is: Can there be memory loss with
no interactions and a nonseparable potential? Unexpectedly
the answer is yes: for example, a gas in a 2D circular symmet-
ric potential has 〈p2

x〉 = 〈p2
y〉 due to Bertrand’s theorem, so

memory is lost (excluding harmonic and Kepler’s potential).
There is only a single component of angular momentum so
the direction cannot be encoded in the integrals of the motion.
After the kick the extra energy is redistributed to all directions,
the orbit density becomes isotropic as t → ∞, which leads to
loss of memory. This macroscopic loss of information is due
to ergodicity of the individual trajectories rather than to col-
lisions. Of course, microscopically the memory is preserved
since, if we reversed the momenta of all atoms at the same
time, we could recover the initial kicked distribution.

G. First-order transition due to breaking of the potential’s
spherical symmetry

As we have seen, if we start with an isotropic equilibrium
thermal distribution in a spherical trap (ε = 0) and we kick the
gas along the z direction then, when t → ∞, we find that Tx =
Ty �= Tz. Likewise, by spherical symmetry, kicking along the x
direction will lead to the temperatures along the perpendicular
directions being equal (Ty = Tz �= Tx, see Fig. 10).

However, this is in seeming contradiction with the experi-
mental results for the quadrupole case (ε = 3), see point (ii).
above and Fig. 1, where a kick along the x direction leads
to Tx = Ty. It seems that breaking the spherical symmetry by

setting ε > 0 and making the z direction unequal, enforces a
cylindrical symmetry of the steady-state gas distribution along
the perpendicular directions after the kick. This discrepancy
in behavior indicates a discontinuous (first-order) transition in
gas behavior as a function of ε when going from spherical to
nonspherical potentials.

To study this better we plot the three final temperatures
after a kick along x as a function of ε near ε = 0 (Fig. 10).
We see that at ε = 0, Ty = Tz < Tx, as expected. However, for
values of ε immediately above that, we find that Tx = Ty > Tz,
the behavior of the quadrupole trap. In other words, defining
〈·〉t as the statistical average at time t , we have

lim
ε→0

lim
t→∞

〈
p2

x − p2
y

〉
t
�= lim

t→∞ lim
ε→0

〈
p2

x − p2
y

〉
t
, (46)

the left-hand side being zero and the right-hand side not. We
will see that the reason for this is due to 〈p2

x − p2
y〉t relaxing

to zero with a relaxation or dephasing time scale τ , which
diverges as ε → 0.

There is a characteristic relaxation time τ̃ before the mo-
mentum widths reach their final steady state value during
which there is a gradual dephasing of the orbits of atoms with
different angular momenta and energy in each plane. This time
scale is related to the width of the thermal distribution and
does not depend on ε as ε → 0. From dimensional analysis
we see that τ̃ ∼ √

T0 ∼ 1.
However, there is a second much longer characteristic re-

laxation time τ during which Tx and Ty converge to each other
and which was not present in the perfectly spherical case.
This time scale appears because of the rotation (precession)
of the orbital planes of each atom around the z axis and is due
to the potential’s anisotropy. This phenomenon is known in
astronomy when studying the orbit of satellites around slightly
nonspherical planets, where it is called nodal precession
[23].

For sufficiently small ε and at long times t � τ , we expect
that 〈p2

x − p2
y〉t will decay at long times as some function of

t/τ , where the decay time scale is given by

τ ∼ εν. (47)

The value of ν is independent of the kick strength if it is weak
enough, and the dependence on

√
T0 sets the dimensions of τ .

We show in Appendix C that ν = −1 so that τ ∼ 1/ε; this is
confirmed in Fig. 11.

While Bertrand’s equilibrium leads to a higher temperature
along the kicked direction, the orbital precession redistributes
the energy equally between the x and y axes, leading eventu-
ally to the equilibration of Tx and Ty. The first process takes
place in about 40 time units, while the latter process is much
slower as the anisotropy is smaller, as shown in Fig. 11.

This analysis leads to quantitative predictions for the final
temperatures at small anisotropy, particular for the tempera-
ture discontinuities. For ε � 0, the imparted energy gets first
redistributed in the plane, before the orbital precession slowly
equilibrates temperatures so that we can express the final
temperatures in terms of the spherical temperatures (39), (40):

�T ε→0
x = �T ε→0

y = 1
2

(
�T ε=0

x + �T ε=0
y

)
(48)

= 17

60
�E and (49)
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FIG. 11. Equilibration time as a function of the trap anisotropy ε.
The equilibration time is defined as the time required for Ty to reach
99% of the steady Tx value. The solid line is a fit A × ε−1 following
the expression (47). The best fit leads to an R-squared value of 0.99.

�T ε→0
z = �T ε=0

z (50)

= 1
10�E . (51)

From here we can extract the matrix elements of (14) since
in the above equations �E = q2

x/2: θ1 = 17/60, θ2 = 1/10,
which means that θ3 = 7/15. This prediction is in very good
agreement with the results presented in Fig. 10 and is valid
near ε = 0 as long as τ � τ̃ .

IV. PANCAKE LIMIT

In the previous section we analyzed the spherically sym-
metric case, which could be solved analytically. There is
another case where the motion can be solved analytically,
namely the limit when the confinement along the z direction
is strong (ε � 1). As we will see later, this case exhibits
behavior that is much closer to the quadrupole.

We consider the case of strong confinement of the gas
along the z direction of the potential (15) with ε � 1 so that

V (r) =
√

x2 + y2 + (1 + ε)z2 �
√

ρ2 + εz2, (52)

where we have used cylindrical coordinate ρ =
√

x2 + y2.
Since the potential is tightly confined, motion along the z
direction is fast compared to that in the plane. To check this we
compare tz, the period of oscillation along z, with the period
of oscillation along ρ, tρ , the characteristic time scales of the
two motions.

An atom whose motion is along the x axis experiences a
potential V = x, whereas if the atom moves along the z axis, it
sees a potential V = √

εz. Assuming that both of these atoms
have the same overall thermal energy T , then, in the first case,
its period of oscillation is ∝ √

E whereas in the second case it
is ∝ √

E/ε, so that the ratio of the two periods is ε � 1 and
therefore the approximation of considering the motion along
z to be fast compared with that in the plane is justified.

We start by analyzing the motion of a single atom. We split
up the energy as

E = p2
ρ

2
+ p2

φ

2ρ2
+ Ez, (53)

where pρ and pφ are the canonically conjugate momenta and
φ = arctan(y/x) is the angle with the x axis in the xy plane. E
and pφ are constants of the motion (the latter being the angular
momentum Lz which is always conserved due to the potential
being independent of φ). Also,

Ez = p2
z

2
+

√
ρ2 + εz2. (54)

We now replace pz, z with the action-angle variables J , η in
the usual way. In particular

J =
∮

pz
dz

2π
= 4

∫ zmax

0
pz

dz

2π

= 2
√

2

π

∫ √
E2

z −ρ2

ε

0

√
Ez −

√
ρ2 + εz2dz

= 2
√

2

π
√

ε
J0 (55)

with the definition

J0 ≡
∫ √

E2
z −ρ2

0

√
Ez −

√
ρ2 + z′2dz′, (56)

where we made the substitution z′ = √
εz to show that J ∝

1/
√

ε, since J0 does not depend on ε. Note that, for the same
reason, in (56) Ez depends implicitly only on J0 and ρ but not
on ε.

The trajectory pz(z) is determined by (54) and therefore
depends on Ez and ρ. Also, since ρ is slowly varying, by the
standard arguments, J (or J0) can be considered an adiabatic
invariant (i.e., another constant) for the motion in the plane.

A simple approximate solution to (56), which allows us to
express Ez explicitly in terms of J0 and ρ, is

Ez(J0, ρ) =
(

3

2
J0 + ρ3/2

)2/3

, (57)

which allows us to rewrite (53) as

E = p2
ρ

2
+ p2

φ

2ρ2
+

(
3

2
J0 + ρ3/2

)2/3

(58)

and we see that the effective potential for the radial motion is
a sum of the centrifugal term plus a confining term increasing
linearly at large distances.

Since we had originally three degrees of freedom, a partic-
ular trajectory is completely determined by the three integrals
of the motion E , pφ , and J0. Therefore, the time-averaged
in-plane kinetic energy

p2
ρ

2
+ p2

φ

2ρ2
(59)

is also determined by these constants. It is now clear that the
averaged kinetic energy is only a function of the constants of
the motion E , pφ , and J0 for that orbit.
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The adiabatic principle tells us that the atom executes a
motion in the plane under the effective potential Ez given by
(57). Since J0 is not the same for all atoms, each atom moves
in slightly different potentials, labeled by their value of J0.

When we apply a kick to an atom along z at a time t0, its
in-plane momenta pφ , pρ and its position ρ, z are unchanged.
What changes instead is its momentum pz and therefore its
corresponding kinetic energy p2

z/2 → (pz + q)2/2 = p2
z/2 +

pzq + q2/2. After averaging over the whole gas, the term pzq
drops out so that only the third term remains, an average
increase of kinetic energy of q2/2 per atom [and so of Ez(ρ0)
as we see from (54)]. This has two effects: it changes the
effective potential (57) and it increases the total energy E .
Since J0 is an increasing function of Ez, an increase of the
kinetic energy along z at t0 implies an instantaneous change
J0 → J0 + �J0, �J0 > 0. In the subsequent motion, the effec-
tive potential is changed Ez(J0, ρ) → Ez(J0 + �J0, ρ), trans-
forming it into a shallower effective 2D potential as we can
see from (57). On the other hand, the increased kinetic energy
also means an increased total energy E → E + �E :

�E = Ez(J0 + �J0, ρ0) − Ez(J0, ρ0). (60)

The first effect leads naturally to a reduction in speed in the
plane, i.e., a reduction in the average in-plane kinetic energy
(59). However, the increase �E has the opposite effect, that
of increasing the average kinetic energy. This latter effect
is dominant for atoms, which were near the bottom of the
potential at the moment of the kick, whereas the reduction in
�E is most felt by those that were away from the center.

To determine what happens to the gas as a whole, we use
numerical simulations. We compare the results of the pancake
case after a kick along z with a very large ε with the case of
a 2D gas in the effective potential (57), with the same number
of atoms, temperature, and kick momentum q.

For the simulation of the 2D gas, we use the same ini-
tialization of the system as for the regular pancake case,
namely the kicked Boltzmann distribution with potential (52).
Then for each individual atom we evaluate J0 via Eq. (57),
where Ez and ρ are determined by the initial position and
momentum coordinates of the atom. The subsequent time
evolution of each atom is governed by Eq. (58), where the last
term corresponds to the new effective potential (57), which
replaces the regular pancake potential (52) (J0 is assumed
constant for each atom during the time evolution). Note that
we only evaluate the movement of the gas in the xy plane in
this approximation—the position and momentum coordinates
in z direction do not appear in the equations. We are also able
to use the same method to study the change in average kinetic
energy along z due to a kick in the plane along x.

Our findings are in Fig. 12. We see that there is excellent
agreement between the 3D pancake gas and the 2D case,
especially for the heating along the direction of the kick.
Although both show cooling of the transverse directions, the
agreement is less good there, a fact that we attribute to the
inexact ansatz (57).

So the physical interpretation of the pancake case is clear:
there is a slight overall cooling of the transverse directions
when the gas is kicked along the z direction due to the
effective potential becoming shallower for the atoms closer to

(a)

(b)

FIG. 12. Comparison of the 2D potential given by (57) and
the pancake potential. Here ε = 100, but larger ε values produced
consistent results. The plots show Tx = 〈p2

x〉 as a function of q2
z (top),

and as a function of q2
x (bottom). Solid and dashed lines represent

guides to the eye. The numerical errors are smaller than the size of
the symbols. Note that the two potentials give almost identical results
for the heating along the kick direction and a small discrepancy for
the orthogonal cooling.

the center of the trap. This effect dominates over the heating
of the atoms near the edges of the gas, although not by much
so that the overall cooling is very small.

V. COMPARISON OF THE POTENTIALS

In Fig. 13 we compare the quadrupole potential with the
two others we have discussed, the spherical and the pancake.
It is clear that the quadrupole behavior is much closer to
that of the pancake so that, in this respect, it seems that the
ε = 3 is already very close to the limit of ε = ∞. There is
a remarkably good quantitative agreement between the two
cases. For example we obtain approximately the same heating
and cooling in both the kicked and transverse directions. We
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(a)

(b)

FIG. 13. Comparison of the three types of potentials: spherical
(ε = 0), quadrupole (ε = 3) and pancake (ε = 100) showing the
much better agreement between the quadrupole and the pancake
compared with the spherical case. The top panel shows Tz = 〈p2

z〉
and the bottom panel Tx = 〈p2

x〉 as a function of the momentum kick
q2

z in z direction. The blue solid lines are the analytical predictions
(35) and (36) for the spherical potential. Dashed and dotted lines for
the other potentials are guides to the eye. The numerical errors are
smaller than the size of the symbols.

find for the pancake �xx = 0.38 and �zx = −0.09, which can
be compared with the very similar values for the quadrupole
�xx = 0.36 and �zx = −0.05 mentioned in Sec. II.

In Sec. II we mentioned two puzzles: one was the
anisotropy of the temperatures along the kicked and orthog-
onal directions in the quadrupole potential. Both the spherical
and pancake potentials exhibit this. For the spherical case this
is due to a geometric reason, the fact that the kick redistributes
the atoms into planes that are more aligned with the direction
of the kick. They will subsequently remain there due to the
conservation of angular momentum. In the pancake case this is
due to strong potential anisotropy coming from the large value
of ε. This latter reason is responsible also for the anisotropy
in the quadrupole potential.

Also, in the spherical case we saw that the temperatures of
the kicked direction and of the plane orthogonal to it were
different. In the quadrupole case we find generally in all
simulations that Tx = Ty �= Tz. This was interpreted in terms
of the 2D effective description where Bertrand’s theorem
applies; it leads naturally to the isotropy of the distribution
in the xy plane. Clearly the quadrupole gas has this behavior
for the same reason.

The second puzzle was the apparent (near) separability
of the kicked and orthogonal directions, i.e., that the kick
energy is not redistributed into the momentum distributions
of all directions but rather it is concentrated only in the kick
direction. As we see from Fig. 13, the spherical and pancake
potentials behave very differently: the pancake reproduces
closely the quadrupole’s separability (in fact a slight cooling
of the orthogonal directions) while the spherical potential
shows a clear heating of those directions. The reason for the
separability in the quadrupole case can be traced to the 2D
model where it is due to a near cancellation of the contribu-
tions of the atoms, which, at the moment of the kick, are close
to the center of the trap and are cooled and that of the atoms
at the periphery, which are heated.

VI. CONCLUSION

We began this analysis with some puzzling experimental
results for a noninteracting classical gas in a quadrupole trap
whereby momentum kicks along one spatial direction were
found to mostly affect only that direction, despite the fact
that the potential is non-separable. By analyzing the extreme
case of the spherical potential (ε = 0) we understood that, in
3D, the constants of the motion (e.g., the angular momentum
components) can allow the system to retain a memory of the
direction of the kick. Consequently, the long time momentum
distribution can remain anisotropic in this isotropic system.
However, this effect strongly depends on the dimensionality of
the problem, and the situation is completely different in two
dimensions, where Bertrand’s theorem leads to an isotropic
distribution. Furthermore, as soon as the potential becomes
slightly anisotropic (0 < ε � 1), the competition between
the in-plane isotropic behavior and the symmetry-induced
precession of orbital planes results in a qualitatively different
steady state, which we were able to characterize analytically.
Finally, we investigated the pancake limit (large ε), which
was shown numerically to be much closer to the experimental
situation (i.e., the quadrupole potential). We were able to
explain analytically, based on an effective potential, most of
its characteristic features, including the peculiar cooling effect
experienced by the transverse degrees of freedom with respect
to the kick direction. For future analysis we would like to
investigate the apparent thermalization of the gas after the kick
as discussed in Sec. II A as well as studying more in detail the
region between the spherical to pancake limits.

APPENDIX A: COORDINATE TRANSFORMATION FOR
THE SPHERICAL CASE

In a spherical potential the motion of each atom is confined
to a plane through the origin and perpendicular to its angular
momentum. To treat the gas in each plane as a separate system
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it is convenient to choose coordinates where the motion in
each plane is described by in-plane 2D coordinates along
orthogonal axes labeled (u, v) with corresponding momenta
(pu, pv ). To relate these to the rectangular coordinates we
define two angles θ and φ. θ is the angle between the z axis
and the v axis. φ is the angle between the x axis and the
projection of the v axis onto the x-y plane. Both angles are
in the interval [0,π ]. The coordinate transformation is thus:

x = u sin φ + v sin θ cos φ

y = −u cos φ + v sin θ sin φ

z = v cos θ

px = pu sin φ + pv sin θ cos φ

py = −pu cos φ + pv sin θ sin φ

pz = pv cos θ. (A1)

Note that it is not a canonical transformation since the Jaco-
bian is

J1 = |(puv − pvu) cos θ |. (A2)

The cos θ term has a simple interpretation: the angular density
of planes having an angle θ with the z axis is largest for small
θ and drops to zero when θ = π/2 since then there is only one
plane perpendicular to the z axis. In most cases, the calculation
becomes simpler if we use polar coordinates in the plane:

u = r cos αr

v = r sin αr

pu = pr cos αp

pv = pr sin αp,

where αr and αp are in the interval (0, 2π ]. The transformation
(A1) becomes:

x = r cos αr sin φ + r sin αr sin θ cos φ

y = −r cos αr cos φ + r sin αr sin θ sin φ

z = r sin αr cos θ

px = pr cos αp sin φ + pr sin αp sin θ cos φ

py = −pr cos αp cos φ + pr sin αp sin θ sin φ

pz = pr sin αp cos θ. (A3)

The Jacobian for the transformation (A3) is

J2 = r2 p2
r | sin(αr − αp) cos θ |. (A4)

As the Boltzmann function f (x, y, z, px, py, pz, t ) is normal-
ized to unity, if we apply the transformations (A1) or (A3), the
following quantities will also normalize to unity either in the
(u, v, pu, pv, θ, φ) or in the (r, αr, pr, αp, θ, φ) coordinates:

1 =
∫ π

0
dφ

∫ π

0
dθ

∫ ∞

−∞
d pu

∫ ∞

−∞
d pv

∫ ∞

−∞
du

∫ ∞

−∞
dvJ1 f

=
∫ π

0
dφ

∫ π

0
dθ

∫ 2π

0
dαp

∫ ∞

0
d pr

∫ 2π

0
dαr

∫ ∞

0
drJ2 f .

The average energy 〈E〉 is given by

〈E〉(t ) ≡ 〈E〉t =
∫

d3r
∫

d3p f (r, p, t )E (r, p). (A5)

It is useful to define an energy 〈E〉plane(θ, φ) which is the
average energy of all the planes lying between θ and θ + dθ ,
φ, and φ + dφ

〈E〉plane(θ, φ) ≡
∫ 2π

0
dαr

∫ 2π

0
dαp

∫ ∞

0
d pr

∫ ∞

0
drJ2 f E

(A6)

so that the total energy is, cf. (22),

〈E〉 =
∫ π

0
dφ

∫ π

0
dθ〈E〉plane. (A7)

Note that, after the kick, 〈E〉plane is independent of time as the
number of atoms on each plane is constant.

APPENDIX B: AVERAGES OVER MOMENTA

Using the transformation (A1), we can write the averages
of p2

x, p2
y, and p2

z as:〈
p2

x

〉 = 〈
p2

u sin2 φ
〉 + 〈

p2
v sin2 θ cos2 φ

〉
+ 2〈pu pv sin θ sin φ cos φ〉, (B1)〈

p2
y

〉 = 〈
p2

u cos2 φ
〉 + 〈

p2
v sin2 θ sin2 φ

〉
− 2〈pu pv sin θ sin φ cos φ〉, (B2)〈

p2
z

〉 = 〈
p2

v cos2 θ
〉
. (B3)

The first term of (B1) can be written in terms of 〈E〉plane using
(27),

〈
p2

u sin2 φ
〉 =

∫ π

0
dφ sin2 φ

∫ π

0
dθ

∫ ∞

−∞
dv

∫ ∞

−∞
du

∫ ∞

−∞
d pv

×
∫ ∞

−∞
d puJ1 f (u, v, pu, pv, θ, φ, t )p2

u

=
∫ π

0
dφ sin2 φ

∫ π

0
dθ

mα

2 + α
〈E〉plane. (B4)

Using similar technique, (B1), (B2), and (B3) can be written
as:

〈
p2

x

〉 = mα

2 + α

∫ π

0
dφ sin2 φ

∫ π

0
dθ〈E〉plane

+ mα

2 + α

∫ π

0
dφ cos2 φ

∫ π

0
dθ sin2 θ〈E〉plane

+ 2〈pu pv sin θ sin φ cos φ〉 (B5)〈
p2

y

〉 = mα

2 + α

∫ π

0
dφ cos2 φ

∫ π

0
dθ〈E〉plane

+ mα

2 + α

∫ π

0
dφ sin2 φ

∫ π

0
dθ sin2 θ〈E〉plane

− 2〈pu pv sin θ sin φ cos φ〉 (B6)〈
p2

z

〉 = mα

2 + α

∫ π

0
dφ

∫ π

0
dθ cos2 θ〈E〉plane. (B7)
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The third term in (B5) and (B6) when written explicitly is

〈pu pv sin θ sin φ cos φ〉

=
∫ π

0
dφ sin φ cos φ

∫ π

0
dθ sin θ

∫ ∞

−∞
dv

∫ ∞

−∞
du

×
∫ ∞

−∞
d pv

∫ ∞

−∞
d puJ1 f (u, v, pu, pv, θ, φ, t )pu pv.

(B8)

If f (u, v, pu, pv, θ, φ, t ) is independent of φ then (B8) equals
to zero. If 〈E〉plane is also independent of φ, (B5), (B6), and
(B7) will be reduced to:〈

p2
x

〉 = mαπ

2(2 + α)

∫ π

0
dθ〈E〉plane(1 + sin2 θ )

〈
p2

y

〉 = mαπ

2(2 + α)

∫ π

0
dθ〈E〉plane(1 + sin2 θ )

〈
p2

z

〉 = mαπ

2 + α

∫ π

0
dθ〈E〉plane cos2 θ.

We can see that 〈p2
x〉 and 〈p2

y〉 are equal. If we look at the ratio
between 〈p2

x〉 and 〈p2
z〉:〈

p2
z

〉〈
p2

x

〉 = 2

∫ π

0 〈E〉plane cos2 θ∫ π

0 〈E〉plane(1 + sin2 θ )
, (B9)

as 〈E〉plane(θ ) � 0, the ratio of the integrals will be between 0
and 1, therefore we can derive an inequality:〈

p2
z

〉
� 2

〈
p2

x

〉
. (B10)

APPENDIX C: CALCULATION OF DEPHASING RATE

1. Initial distribution

We wish to study〈
p2

x − p2
y

〉
t =

∫
dr3d p3(p2

x − p2
y

)
f (r, p, t ). (C1)

However, since the gas is noninteracting, we can find time-
dependent averages by following the position of individual
atoms starting from an initial distribution of the gas and then
averaging over that distribution. For example, to find 〈p2

x −
p2

y〉t , instead of finding the time dependence of the Boltzmann
distribution f , we calculate the quantity p2

x(t ) − p2
y(t ) for each

atom starting at the initial position (r0, p0) and then average
over r0, p0 weighted by the initial distribution:〈

p2
x − p2

y

〉
t =

∫
dr0dp0

[
p2

x(t )−p2
y(t )

]
r0,p0

× f (r0, p0, t = 0).

(C2)

We take the initial distribution from (6) and expand in
powers of q:

f (t =0) ∝ exp

(
− (px − q)2 + p2

y + p2
z

2T

)
exp

(
−V (x, y, z)

T

)

=
(

1 + pxq

T
− q2

2T
+ 1

2

( pxq

T

)2
+ O(q3)

)
fq=0.

(C3)

The first and third terms in the brackets do not contribute
to (C2) since they are spherically symmetric and remain so
during time evolution. The second term ∝pxq is odd under
the parity transformation x, px → −x,−px . Since this parity
is preserved under time evolution, the integral of this term is
zero for all times. The only term that contributes to (C2) is
the one proportional to (pxq)2. Therefore keeping the lowest
nonzero term we obtain:

f (t = 0) = 1

2

( pxq

T

)2
fq=0. (C4)

2. Precession of the orbital planes

To find this contribution we will make the crucial assump-
tion that its orbital plane precesses slowly around the z axis
compared with the fast motion in each plane so that we are
allowed to use the virial theorem to calculate averages in the
plane as in Sec. III A. An orbital plane that is precessing
will be characterized by a constant angle θ and a rate of
precession φ̇. To find this rate we consider a perturbation
of the planar orbit in the limit of a small correction to the
spherical potential. Since |ε| � 1, we expand the potential in
(15) to order O (ε):

V =
√

x2 + y2 + (1 + ε)z2 � r + �H (C5)

with

�H ≡ z2

2r
ε (C6)

being the perturbation of the Hamiltonian.
The rate of rotation of the orbital plane φ̇ is given by [23]:

φ̇ = 1

l

∂�H

∂ cos i
, (C7)

where i is the inclination of the orbital plane and is related to θ

via i = π
2 − θ , l is the magnitude of angular momentum. �H

is the time-averaged value of �H calculated using the orbits
of the unperturbed Hamiltonian.

If the orbit in the plane were closed, the averaging would
be over the period of the unperturbed orbit. In our potential,
almost all orbits are open so the period is not well defined.
However, if we average over a time on the order τ̃ , then we
can assume that the plane of the orbit (i.e., θ ) remains fixed
during that time but that the time average over the motion in
the plane has achieved a stationary value:

�H ≡ 1

τ̃

∫ τ̃

0
�Hdt (C8)

and applying the co-ordinate transformation in (A1):

z2√
x2 + y2 + z2

= v2 cos2 θ√
u2 + v2

(C9)

= v2

√
u2 + v2

cos2 θ. (C10)

The last step uses the fact that the angle of the plane θ has not
changed appreciably after a time t .

Assuming that the averages over the time τ̃ are well
reproduced using the virial theorem (since the unperturbed
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potential is simply Vε=0 = r), we know that:

E = 3

2
Vε=0

= 3

2

√
u2 + v2

= 3

2

(
u2

√
u2 + v2

+ v2

√
u2 + v2

)
. (C11)

If we assume

u2

√
u2 + v2

= v2

√
u2 + v2

(C12)

we get

v2

√
u2 + v2

= E

3
. (C13)

Therefore the perturbed Hamiltonian averaged over τ̃ is

�H = εE

6
cos2 θ

= εE

6
sin2 i (C14)

and the rotation rate of the orbital plane is

φ̇ = εE

6l

∂

∂ cos i
(sin2 i)

= −εE

3l
cos i = −εE

3l
sin θ (C15)

so that the plane precesses at a constant rate. For a single atom
on a plane θ , φ (similarly to the calculations in Appendix B)〈

p2
x

〉 = 〈
p2

u

〉
sin2 φ + 〈

p2
v

〉
sin2 θ cos2 φ

+ 2〈pu pv〉 sin θ sin φ cos θ (C16)

and similarly for 〈p2
y〉. The last term is zero 〈pu pv〉 → 0

because of the isotropy due to Bertrand’s theorem. Using (28)
with α = 1 we get

〈
p2

x − p2
y

〉
t
= E

3
cos2 θ (sin2 φ − cos2 φ) (C17)

Here, θ is a constant whereas φ(t ) = φ0 + φ̇t .
To find the total value, we use (C2):

〈
p2

x − p2
y

〉
t =

∫
dr0dp0

[
p2

x(t ) − p2
y(t )

] ×
( px0q

T

)2
fq=0(r0, p0)

=
∫

dr0dp0
E (r0, p0)

3
cos2 θ0[sin2 φ(t )−cos2 φ(t )]

×
( px0q

T

)2
fq=0(r0, p0). (C18)

We see that 〈p2
x − p2

y〉t is a function of εt so τ ∼ 1/ε since
the only time dependence is through φ̇. So we conclude that
in (47), ν = −1.
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