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Pairing in two-dimensional Fermi gases with a coordinate-space potential
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In this work we theoretically study pairing in two-dimensional Fermi gases, a system which is experimentally
accessible using cold atoms. We start by deriving the mean-field pairing gap equation for a coordinate-space
potential with a finite interaction range and proceed to solve this numerically. We find that for sufficiently short
effective ranges the answer is identical to the zero-range one. We then use diffusion Monte Carlo to evaluate
the total energy for many distinct particle numbers; we employ several variational parameters to produce a good
ground-state energy and then use these results to extract the pairing gap across a number of interaction strengths
in the strongly interacting two-dimensional crossover. Extracting the gap via the odd-even energy staggering,
our microscopic results can be used as benchmarks for other theoretical approaches.
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I. INTRODUCTION

The study of ultracold atomic gases has witnessed tremen-
dous progress over the last two decades [1–3]. Historically,
the interactions between different species of particles were
fixed by nature; when the binding was strong enough to pro-
duce bosonic dimers, one was faced with Bose-Einstein con-
densates (BECs), whereas when the interaction was weaker
(but still attractive) one dealt with Bardeen-Cooper-Schrieffer
(BCS) theory. This all changed with the development of Fes-
hbach resonances, which use magnetic fields to tune particle
interactions and allow direct experimental measurements of
cold Fermi gases in the intermediate BEC-BCS crossover
region.

This has enabled a detailed study of the BEC-BCS
crossover with direct comparison between theory and exper-
iment, leading to the discovery of the existence of a unitary
regime displaying scale-invariant properties deep within the
crossover region. The BCS theory is not expected to give
quantitatively reliable results for ground-state properties in
this crossover region. Instead, many-body approaches that
describe the system from first principals are used. Some of the
most successful such approaches applied to three-dimensional
(3D) Fermi gases are quantum Monte Carlo (QMC) methods,
used at both zero and finite temperature [4–13].

Reduced dimensionality—specifically, two-dimensional
(2D) systems—are a rich area which has been at the forefront
of research more recently, as they display distinct and unique
properties compared to those of 3D gas systems. Experimen-
tally, cold Fermi gases are produced in quasi-2D pancake-
shaped gas clouds [14–30]. Both preceding and following
the experimental breakthroughs, a number of theoretical ap-
proaches have been brought to bear on the subject of lower-
dimensional Fermi gases [31–48].

In addition to being experimentally accessible and there-
fore interesting in their own right, cold Fermi atomic gases
can also help shed light on the physics of superfluidity in
neutron-star crusts [49–51]. In a sense, neutron matter is an
attractive Fermi gas where one needs to take the effective

range into account, in addition to the scattering length. While
the neutron-neutron interaction is fixed by nature, one can
envision cold-atomic experiments which probe the regime
of relevance to neutron stars [52]. More generally, two-
dimensional cold gases can also help us understand nuclear
“pasta” phases, where nucleons end up populating highly
deformed quasi-one-dimensional or quasi-2D systems.

In earlier works, we employed diffusion Monte Carlo
[42,44] (DMC) to evaluate two-dimensional cold-gas prop-
erties such as the equation of state and the pairing gap.
These involved, first, the use of a finite-range two-particle
interaction and second, the use of only N = 26 particles in
a periodic area. In the present paper, we investigate the effects
of both of these choices in more detail. Specifically, we start
from investigating the effect of a finite effective range in
the context of another many-body approach, namely, mean-
field BCS theory; generally speaking, this allows us to use a
simpler theory to study effects which would be much harder
to tackle in the context of DMC. Then, we turn to our new
DMC results for the energy and the pairing gap which result
from using larger-N values; as part of this process, we try to
systematize our understanding of the finite-size effects along
the 2D crossover.

II. TWO-BODY BINDING ENERGY

For the two-particle problem in two dimensions [53,54],
the binding energy is

e0
b = − 4h̄2

ma2e2γ
, (1)

where a is the 2D scattering length, m is the particle mass, and
γ ≈ 0.577 215, also known as the Euler number. The Fermi
energy is

EF = h̄2k2
F

2m
, (2)

where kF is the Fermi wave number. In two dimensions the
free-gas energy per particle is simply E f g = EF /2.
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FIG. 1. Two-body binding energy vs effective range. To make
the values shown on each axis dimensionless, we are forming the
product kF re, employing the Fermi wave number, and the ratio eb/e0

b,
employing the zero-range binding energy from Eq. (1).

The expression in Eq. (1) involves the scattering length
a but not the effective range re; this is a zero-effective-
range result, i.e., it is valid for kF re → 0, where re is the
effective range of the two-particle interaction. On the other
hand, many quantum Monte Carlo calculations are carried
out using coordinate-space potentials of finite (but tiny)
range. A popular interaction is of the (modified) Pöschl-Teller
form:

V (r) = −v0 h̄2

mr

ν2

cosh2(νr)
, (3)

where v0 and ν are parameters which we tune to match the
desired scattering length a and effective range re, and mr is the
reduced mass. As is standard for this problem, we quantify the
interaction strength by defining

η = ln (kF a). (4)

While the kF which appears here and in Eq. (2) is a many-
body quantity (which therefore does not arise at the two-
body level), we find it convenient to employ it to produce
dimensionless quantities throughout.

As further discussed in Ref. [44], in two dimensions a
partial-wave expansion of the time-independent Schrödinger
equation leads to

−∂2u0(r)

∂r2
= u0(r)

[
2mr

h̄2 [eb − V (r)] + 1

4r2

]
(5)

for the l = 0 partial wave. Here u0(r) = √
rR0(r), and R0(r)

is (proportional to) the wave function. We have numerically
solved Eq. (5) to find the finite-effective-range two-body
binding energy, eb, for the two cases of η = −0.5 and η = 0.5.
The result is shown in Fig. 1: we see that for η = 0.5 the range
is largely irrelevant, since we basically get the same binding
energy for all effective ranges up to kF re ≈ 0.1. The case of
η = −0.5 is different in that the binding energy changes by
a few percent for such effective ranges. For both η values,
the figure clearly shows that the effective range we employ in
our DMC calculations, kF re ≈ 0.006, is short enough that we

do not have to worry about finite-range effects. As a result,
in what follows we will be employing e0

b and eb interchange-
ably, under the assumption that the effective range is short
enough.

III. MEAN-FIELD BCS THEORY

Bardeen-Cooper-Schrieffer theory for the two-dimensional
case was developed before the recent explosion of activity
in low-dimensional cold-atom systems [53,54]. For s-wave
pairing, which is our focus in this paper, the problem is
analytically solvable, leading to simple expressions for the
pairing gap and chemical potential. These were

�gap =
{√

2EF |eb|, μ > 0
EF + |eb|/2, μ < 0

(6)

and

μ = EF + eb/2, (7)

respectively. Crucially, the derivation in Ref. [54] involved the
two-body T matrix, in an attempt to avoid issues arising from
the use of a coordinate-space potential which involves a hard-
core repulsion. The expressions above are valid in the limit of
kF re → 0.

In our quantum Monte Carlo calculations we employ
Eq. (3); this is a purely attractive potential, so it does not
give rise to problems in momentum space. Motivated by such
studies, in this work we first derive the BCS gap equation in
2D for a finite-range potential. We then numerically solve the
gap equation, comparing to the kF re → 0 solution, thereby
testing whether the effective range to be used in later sections
(on DMC) is sufficiently small.

The BCS gap equation has the form

�(k) = −
∑

k′
〈k|V |k′〉 �(k′)

2E (k′)
, (8)

where �(k) is the pairing gap function, V is the potential
energy, and E (k) is the quasiparticle energy, given by the
relationship

E (k) =
√(

h̄2|k|2
2m

− μ

)2

+ �2(k). (9)

We are here interested only in qualitative features resulting
from a small but finite effective range; thus, we are employing
a free single-particle spectrum, as shown in Eq. (9). A more
complete study would also involve normal-state interactions.
In these equations, the gap function and potential matrix
element are given in momentum space. We would like to see
how that relates to the coordinate-space potential, which could
be of the form of Eq. (3). We have

〈k|V |k′〉 =
∫

dr
∫

dr′〈k|r〉〈r|V |r′〉〈r′|k′〉

= 1

L2

∫
dr

∫
dr′eik·r〈r|V |r′〉e−ik′ ·r′

= 1

L2

∫
dr

∫
dr′ ∑

n,m

inJn(kr)ein(θk−θr )V (r)
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× δ(r − r′)(−i)mJm(k′r′)e−im(θk′ −θr′ )

= 1

L2

∑
n,m

in(−i)meinθk e−imθk′

×
∫ ∞

0
drrJn(kr)V (r)Jm(k′r)

×
∫ 2π

0
dθrei(m−n)θr

= 2π

L2

∞∑
n=−∞

ein(θk−θk′ )Vn(k, k′). (10)

In the first equality we introduced two resolutions of the
identity. In the second equality we plugged in the appropriate
plane waves, normalized to fit inside a square of area L2. In
the third equality we employed the locality of the interaction
and used (twice) the two-dimensional expansion of a plane
wave,

eik·r =
∞∑

n=−∞
inJn(kr)einθ , (11)

where Jn is the Bessel function of order n, and θ is the angle
between the k and r vectors, or θ = θk − θr . In the fourth
equality we merely rearranged terms, and in the fifth equality
we carried out the integral over θr and used the result to
eliminate one of the sums; we also took the opportunity to
introduce Vn(k, k′) for the Bessel-transformed potential. The
result is analogous to a Fourier transform of V (r), in that when
the potential in real space is narrow and deep, the potential in
k space is wide and shallow, and vice versa. This is important
because in what follows we will be interested precisely in
extremely deep, narrow real-space potentials, making V (k, k′)
very wide.

We now carry out an analogous expansion for the gap
function:

�(k) ≡
∞∑

n=−∞
�n(k)einθk . (12)

Inserting this as well as the equation for potential matrix
element, Eq. (10), the right-hand side of the gap equation in
Eq. (8) turns into

− 2π

L2

∑
k′

∑
n,m

eimθk′ ein(θk−θk′ )Vn(k, k′)
�m(k′)
2E (k′)

= − 2π

(2π )2

∫
dk′ ∑

n,m

ei(m−n)θk′ einθkVn(k, k′)
�m(k′)
2E (k′)

= − 1

2π

∑
n,m

einθk

∫ ∞

0
dk′k′Vn(k, k′)

�m(k′)
2E (k′)

×
∫ 2π

0
dθk′ei(m−n)θk′

= −
∑

n

einθk

∫ ∞

0
dk′k′Vn(k, k′)

�n(k′)
2E (k′)

. (13)

In the first equality we canceled the L2 when converting
from sum to integral. In the second equality we wrote out
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FIG. 2. Mean-field BCS results vs interaction strength for dif-
ferent dimensionless effective ranges (kF re). As the effective range
goes towards zero, the curves more closely resemble the analytical
solution of Eq. (6).

the integral over k′, and in the third equality we used the
Kronecker δ to eliminate one of the sums.

If we now recall that the left-hand side of the BCS gap
equation of Eq. (8) will also take the form Eq. (12), we can
multiply both sides by e−ilθk and integrate to get

�l (k) = −
∫ ∞

0
dk′k′Vl (k, k′)

�l (k′)
2E (k′)

. (14)

In what follows we will be interested in taking l = 0, cor-
responding to the s-wave problem. Thus, we have arrived at
the two-dimensional BCS gap equation in the thermodynamic
limit. In practice, when carrying out the integral over k′ one
must be careful to go up to sufficiently high momenta where
V0 has died off.

In addition to the BCS gap equation, one must also self-
consistently solve the constant-average-density equation:

ρ =
∫ ∞

0
dkk

(
1 −

h̄2k2

2m − μ

E (k)

)
. (15)

In practice, we solve Eq. (14) together with Eq. (15) itera-
tively; this is the fixed-point iteration for an entire function.
Given that we are dealing with a purely attractive potential,
the process converges; as part of this, we tune the chemical
potential μ to get the desired density ρ = k2

F /2π .
Results of our mean-field calculations are given in Fig. 2,

where the solid line of kF re = 0 is the analytical solution from
Eq. (6). The other two curves are new results, which match
very closely with the analytical solution for kF re = 0.006,
and even for the larger kF re = 0.1 for positive interaction
strengths. These results indicate that the choices of kF re’s
used in our DMC calculations (in Refs. [42,44] and below) are
small enough to get meaningful results. This is fully consistent
with what we discovered at the two-body level in Fig. 1.
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IV. QUANTUM MONTE CARLO

The problem we are faced with is how to tackle the
following two-component Hamiltonian in two dimensions:

Ĥ = −h̄2

2m

⎡
⎣ N↑∑

i=1

∇2
i +

N↓∑
j′=1

∇2
j′

⎤
⎦ +

∑
i, j′

V (ri j′ ) , (16)

where m is the particle mass and the particle number is N↑ +
N↓ = N . The V (ri j′ ) is taken to be of the modified Pöschl-
Teller form, Eq. (3). In what follows, we work in a periodic
simulation area, as is standard in continuum Quantum Monte
Carlo approaches. Specifically, we work with N particles in a
square of length L; allowed momentum states are governed by
the equation

kn = 2π

L
(nx, ny), (17)

where nx and ny are integers.
The first step in our study is always a variational Monte

Carlo (VMC) calculation, which provides an upper bound
on the ground-state energy. Here R denotes a walker which
represents the coordinates of all of the particles in the simula-
tion box, and is 2N dimensional. Using a trial wave function
�T (R), we determine the variational energy Ev , which is the
upper bound on the ground-state energy E0:

Ev =
∫

�∗
T (R)Ĥ�T (R)dR∫

�∗
T (R)�T (R)dR

� E0. (18)

This is nothing other than the Rayleigh-Ritz principle applied
to a many-particle system. For a “good” wave function, this
will provide a decent estimate of the ground-state energy of an
interacting system. The many-dimensional integrals involved
are carried out stochastically using a large number of walkers.

The question of what constitutes a good wave function
naturally arises at this point. Following Refs. [42,44], we
employ a Jastrow-BCS trial wave function:

�T (R) =
∏
i j′

fJ (ri j′ ) �BCS ,

�BCS = A[φ(r11′ )φ(r22′ ) . . . φ(rN↑N ′
↓ )] , (19)

where fJ (r) is a nodeless Jastrow term, A is an antisymmetriz-
ing operator, and we took N↑ = N↓. We express the pairing
function φ(r) as a sum of ten plane-wave terms, each mul-
tiplied with an unknown parameter, and we capture higher-
momentum contributions by a spherically symmetric function.
Then we employ VMC to determine the best possible set of
these ten parameter values; crucially, this is a process which
we repeat for each new particle number N . As a technical
aside we note that in 2D physics, where the kF a spans multiple
orders of magnitude, the Jastrow term is implemented using a
table with substantially more points than in the 3D problem.

The next step in our calculations is to use diffusion Monte
Carlo. This also approximates the ground-state energy using
a trial wave function but is superior in that it propagates in
imaginary time to reduce the contribution of the parts of the
trial wave function that are not the ground state (i.e., excited
states). This is done by solving the Schrödinger equation in

imaginary time. Schematically,

�(τ → ∞) = lim
τ→∞ e−(H−ET )τ�T → α0e−(E0−ET )τ�0 ,

where ET is the so-called “trial energy,” which helps us ensure
the walker number does not get out of hand. In practice, we
propagate up to sufficiently large imaginary time such that
there is no longer a decay going on.

Apart from technical practicalities like the trial energy and
the Jastrow term, the only other consideration is the fermion
sign problem. This arises due to the presence of both positive
and negative nodal pockets in the complicated many-particle
wave function. As is standard in zero-temperature continuum
QMC algorithms, we employ the fixed-node approximation,
which does not allow walkers to change sign in the wave
function. Assuming the trial wave function has the appropri-
ate physical content (e.g., pairing properties for a superfluid
system), the effect of the fixed-node approximation ends up
being tiny. Fortunately, both our VMC and DMC results obey
a variational property, meaning that one can keep trying to
improve the answers by using a better wave function.

Even so, it is worth highlighting that one of our goals in
this work is to calculate the pairing gap via the odd-even
staggering in the energy:

�(N ) = E (N + 1) − 1
2 [E (N + 2) + E (N )]. (20)

Here E (N ) is the total energy of a closed shell N =
10, 18, 26, 42, 50, 58, E (N + 1) is the total energy of the
system of a closed shell with one extra particle that does
not have a partner particle to pair with, and E (N + 2) is one
more particle added to the system which again causes all
particles to be paired. We have explored a couple of higher
closed shells, but the statistical errors were so large that it
became impossible to trust the energy differences. Note that
QMC methods employ determinants, so the computational
cost typically scales as N3. That means that a calculation
for N = 58 (the largest particle number employed here) is
roughly 11 times more demanding than one for N = 26
(which was the particle number used in earlier works). It is
worth emphasizing that while a variational property applies to
the total energy, it does not apply to energy differences such as
in Eq. (20). That being said, similar QMC predictions for the
problem of the 3D pairing gap [49] turned out to be verified
experimentally [52].

With the systematic errors under control, the only things
left to investigate are the finite-size effects (i.e., the depen-
dence on N) as well as the placement of the (N + 1)th particle.
We discuss the former in detail in the following section; as for
the latter, we note that in Eq. (20) one must determine the
pairing gap as the minimum. For fermions in a noninteracting
gas, or in a normal gas, the placement of the next particle
is trivial: it goes onto the next available momentum state.
For the present case, where pairing correlations play a major
role, the choice of momentum states is not quite so intuitive.
This is illustrated in Fig. 3, in which the interacting system’s
optimal k state is not simply the next unoccupied shell. This
is analogous to what we saw in Eq. (9). The VMC values
can be quite close and within error, so we chose to include a
DMC run in the determination of the k states. (Incidentally, we
have encountered one case where the 27-particle energies of
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FIG. 3. DMC energy-per-particle for N = 43 particles at η = 0
vs the quantum numbers at which the 43rd particle can be placed.
A clean minimum is observed at the (1,1) momentum state, see
Eq. (17).

Ref. [42] gave different answers in VMC and DMC; we have
corrected this here, always employing the lowest possible
values.)

V. RESULTS

We start our discussion of the finite-size effects by looking
at the energy per particle in the noninteracting gas, see Fig. 4.
The red horizontal line is the thermodynamic-limit value (in-
finite volume, infinite particle number, constant density). We
see that for small particle numbers there are large deviations
from the thermodynamic-limit answer, up to 5% or more,
but these go away as the particle number is increased. Of
course, the question arises as to whether one should expect
the interacting system finite-size effects to match those of the
noninteracting gas.

The results of our DMC calculations within the strong-
coupling crossover for various interaction strengths in de-
scending order from η = 0.5 to η = 3.0 are shown in Fig. 5.
Looking at the general shape of the DMC energies, the bottom

FIG. 4. Noninteracting energy per particle as a function of the
particle number (always one unit away from a closed shell). The
horizontal line is the value at the thermodynamic limit.

FIG. 5. Exploration of the finite-size effects on the DMC energy
per particle. From top to bottom, the panels correspond to η =
0.5, 1.0, 1.5, 2.0, 3.0.

three panels follow roughly the same trend: the N = 10 is
large, then a local minimum occurs at N = 18 and a local
maximum at N = 26, which proceeds to have a slight dip
at N = 42 and then small increase to N = 58. This trend
closely follows the shape of the free-gas plot of Fig. 4. These
results imply that the pairing correlations on the BCS side of
the crossover region (η greater than or equal to 1.5) have a
small effect on the energy dependence on particle number.
This suggests that even for other observables one could get
guidance from the noninteracting gas behavior.

Turning to the stronger interaction strengths (the top two
panels in Fig. 5), we find fewer similarities with the nonin-
teracting gas trend. Going from N = 10 to N = 18 there is a
drop, but the commonalities largely end there. The panel that
is the most different from Fig. 4 is that corresponding to η =
0.5, where N = 18 does not display a local minimum. Overall,
we can say that the trend (as a function of N) is “flatter” for
the top two panels, i.e., the results for N = 50 and N = 58
are very close to each other; this is a result of stronger pairing
correlations. It is crucial to note that for small η the finite-size
effects are less significant: for η = 0.5 the fluctuation from the
largest to the smallest value is roughly 5%, to be compared
with the corresponding change of approximately 15% in the
noninteracting gas. In short, for even smaller η (say, 0 or −1)
the finite-size effects become irrelevant.

Since we will be computing the pairing gap from the
odd-even staggering of Eq. (20), we now spend some time
discussing the energies of systems with N , N + 1, and N + 2
particles. Similarly to what we did in Fig. 4, we first go over
the finite-size effects in the noninteracting gas, to possibly
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FIG. 6. The pairing gap of Eq. (20) applied to the noninteracting
gas problem. This is zero in the large-system limit; the finite values
for smaller systems are finite-size artifacts.

some guidance about how to interpret our DMC results. In
Fig. 6 we show the result of applying the odd-even staggering
formula to the noninteracting gas. Since there is no pairing in
the absence of interactions, one would expect the pairing gap
to be zero. However, this figure clearly shows that at lower
particle numbers � f g is largest and decreases as N increases.
This tells us that from the particle numbers we are employing,
N = 50 and N = 58 should have the least amount of error. Of
course, this fact should be combined with our earlier finding,
namely, that the finite-size effects of the interacting gas are
insignificant for small η (but track those of the noninteracting
gas for large η).

We now turn to the energies of strongly interacting systems
with N , N + 1, and N + 2 particles; we show results for η = 1
and η = 3 in Figs. 7 and 8, respectively (statistical errors are
smaller than the symbols shown). In both cases, we observe
the same general pattern: the three adjacent-in-N values are
quite far apart from each other for small N but then get
closer as N is increased, leading to the characteristic odd-even
staggering pattern. One should not confuse this trend with the
conclusion that the gap decreases as N increases, since the
even partners are not placed symmetrically for small N values.
This is not surprising given what we saw in Fig. 4. Looking
back at the odd-even staggering prescription of Eq. (20), it is

FIG. 7. DMC energies at η = 1.0 for the closed-shell values N =
10, 18, 26, 42, 50, 58 and (N + 1), (N + 2) in each case. Dashed
lines connect each triple.

FIG. 8. DMC energies at η = 3.0 for the closed-shell values N =
10, 18, 26, 42, 50, 58 and (N + 1), (N + 2) in each case. Dashed
lines connect each triple. Comparing to Fig. 7, we see quite different
behavior of each adjacent set of points.

important to realize that the energies plotted are per particle,
so these need to be multiplied by the appropriate particle
numbers before the difference is taken. Another similarity
between the two plots is that the results at around N = 50
and N = 58 behave in roughly the same way. It is also worth
discussing the differences between Figs. 7 and 8. In Fig. 7
the result for N + 1 is always higher than its neighbors, a fact
which is not always true in Fig. 8.

To recap, it is certainly plausible to use a small N and
then employ a correction on the closed-shell energies as per,
say, Fig. 4, i.e., from the noninteracting gas; this would allow
one to make the interacting BCS-side results closer to the
thermodynamic limit. We have already seen in Fig. 5 that
the closed-shell interacting results bear this interpretation out.
Something analogous could be done when trying to extract a
thermodynamic-limit value for the pairing gap, in which case
Fig. 6 would be relevant. Of course, that would still leave open
the question of how to handle finite-size effects away from the
deep BCS regime. Instead, we have chosen to approximate
the thermodynamic-limit value, throughout the crossover, as

FIG. 9. DMC pairing gaps throughout the strongly interacting
regime.
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FIG. 10. Rescaled DMC pairing gaps (squares) compared with
the result of Eq. (6) (solid curve), as well as the values of Vitali et al.
[45] (triangles) and the prediction of the theory of Gorkov and Melik-
Barkhudarov [55,56] (dotted curve).

the average of our best two sets of points, namely, N = 50
and N = 58 and their neighbors. Beyond simply following
from Fig. 6, this is an attempt to estimate finite-size effects
more generally. Our overall DMC thermodynamic limit for
the pairing gap is shown in Fig. 9. We can see that the energy
of the gap sharply increases as the BEC regime is approached,
and correspondingly, a much reduced pairing gap in the BCS
regime.

Another choice of dependent variable, which is commonly
made in the literature, is to show �gap + eb/2 vs the in-
teraction strength; this is, the same plot as in Fig. 2 and
effectively produces a “zoomed-in” version of what is going
on. In Fig. 10 we compare our results to the mean-field BCS
value from Eq. (6). Overall, we find a consistent suppression
with respect to the mean-field BCS result. Crucially, this is
different from our pairing gap values in Ref. [42] (or those of
Ref. [34]), which tended to become larger than the mean-field
value on the BCS side. In Ref. [42], our N = 26 DMC pairing
gaps were explicitly described as “finite-size uncorrected”
(the same could be said about the pioneering calculations of
Ref. [34]); in the present work we carried out considerably
more DMC calculations to approximate the thermodynamic
limit better. Our consistent suppression is similar to what

one finds using the theory of Gorkov and Melik-Barkhudarov
[55,56]; in two dimensions this gives suppression by a factor
of e with respect to the mean-field BCS result. We also com-
pare with the values produced in a recent work which employs
imaginary-time Green’s functions and analytic continuation
[45]. For the intermediate region, where these results were
produced, the two sets of points are qualitatively similar,
though the agreement is not perfect.

VI. CONCLUSION

In summary, we have discussed pairing in two dimensions
employing a number of formalisms. We started from mean-
field BCS theory, which was solved for a finite interaction
range; this confirmed that the effective ranges employed in the
rest of this work were sufficiently short so as not to impact the
final extraction of pairing gaps. We then proceeded to discuss
finite-size effects in the strongly interacting crossover and
their impact on the extraction of the pairing gap via odd-even
staggering. More specifically, we used DMC to determine the
ground-state energy at various interaction strengths within the
BEC-BCS crossover. We then determined the energy pairing
gap for closed-shell values. As part of this process, we carried
out an investigation of the effect of finite simulation sizes
at various interaction strengths. We saw that the finite-size
effects closer to the BCS regime closely followed the trend
predicted by the noninteracting gas model, and deep into the
BEC regime as the attractive interaction became increasingly
strong, finite-size effects decreased in relative magnitude and
followed less closely the trend of the noninteracting gas. The
main result is that as we go toward the BCS regime we find
a suppression with respect to the mean-field BCS pairing gap
prediction, qualitatively similar to that found using the theory
of Gorkov and Melik-Barkhudarov.
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