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Modulation spectroscopy of Rydberg atoms in an optical lattice
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We develop and study quantum and semiclassical models of Rydberg-atom spectroscopy in amplitude-
modulated optical lattices. Both initial- and target-state Rydberg atoms are trapped in the lattice. Unlike in
other spectroscopic schemes, the modulation-induced ponderomotive coupling between the Rydberg states
is spatially periodic and perfectly phase-locked to the lattice trapping potentials. This leads to a type of
sub-Doppler mechanism which we explain in detail. In our exact quantum model, we solve the time-dependent
Schrödinger equation in the product space of center-of-mass (COM) momentum states and the internal-state
space. We also develop a perturbative model based on the band structure in the lattice and Fermi’s golden
rule, as well as a semiclassical trajectory model in which the COM is treated classically and the internal-state
dynamics quantum-mechanically. In all models we obtain the spectrum of the target Rydberg-state population
versus the lattice modulation frequency, averaged over the initial thermal COM momentum distribution of the
atoms. We investigate the quantum-classical correspondence of the problem in several parameter regimes and
exhibit spectral features that arise from vibrational COM coherences and rotary-echo effects. Applications in
Rydberg-atom spectroscopy are discussed.
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I. INTRODUCTION

The interaction of an electron with an electromagnetic field
consists of a term eÂ · p̂/m and a term e2Â

2
/(2m), with elec-

tron mass m, elementary charge e, the field’s vector potential
Â(r), and electron position and momentum operators r̂ and
p̂, respectively [1,2]. Under certain conditions, periodically
modulated and inhomogeneous fields can drive electronic
transitions via a ponderomotive interaction, e2Â

2
/(2m). These

transitions can occur in Rydberg atoms immersed in light
fields, a case in which the field frequency (hundreds of THz)
exceeds the Rydberg atom’s evolution frequency (tens to
hundreds of GHz) by several orders of magnitude. Due to
the quasifree nature of the Rydberg electron on optical time-
and energy scales, the Rydberg-atom ponderomotive effect is
related to free-electron Kapitza-Dirac scattering [3–5]. Fur-
ther, ponderomotive level shifts in high-intensity laser fields
were observed in atoms [6,7] and in molecules [8], as well as
in high-intensity multiphoton ionization [9], in high-intensity
zero-kinetic-energy photoelectron spectroscopy [10], and in
optical [11,12] and microwave [13,14] above-threshold ion-
ization. Ponderomotive forces on atomic electrons are impor-
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tant in atom dynamics in high-intensity laser pulses [15–17].
Ponderomotive effects are also known from Paul ion traps,
where the ponderomotive force drives the secular motion,
while the micromotion occurs at the trap’s radio-frequency
drive [18].

In Rydberg atoms, ponderomotively driven transitions
[transitions driven by the e2Â

2
/(2m) operator] are free of

multipole selection rules [19] that govern traditional methods
of laser and microwave spectroscopy (which are based on
the properties of the eÂ · p̂/m operator in first or higher
orders). For ponderomotive spectroscopy to be effective, the
field must be modulated at (a sub-harmonic of) the transition
frequency, and the field intensity must vary within the extent
of the electron wave function. These conditions are quite
naturally satisfied by Rydberg-atom transitions in amplitude-
or phase-modulated optical lattices [19], because Rydberg
atoms have sizes on the order of typical optical-lattice periods
[20]. Further, microwave amplitude and phase modulators
for optical-lattice lasers are readily available. In addition to
driving microwave transitions, the ponderomotive interaction
can serve as a tool to trap the Rydberg atoms in a pondero-
motive optical lattice (POL) [21–25]. Hence, the modulated
POL can satisfy two functionalities at once: it can trap the
Rydberg atoms and, at the same time, serve as a spectroscopic
probe for a wide variety of Rydberg transitions [26]. POLs
also offer great flexibility in designing Rydberg-state-mixing
properties [23,27,28] and magic-transition traps, where two
or more states have (near-) identical trapping potentials [29].
In these applications perturbing effects from Rydberg-atom
photoionization [30–34] are typically irrelevant, in particular
for S-type Rydberg states of rubidium and for high-angular-
momentum Rydberg states of any species.
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FIG. 1. Band structures and even-parity transitions between
Rydberg states labeled |1〉 (left) and |2〉 (right) in identical, mod-
ulated, ponderomotive optical-lattice potentials. The spectrum con-
sists of a Doppler-free central peak (change in vibrational quantum
number �ν = 0) and vibrational sidebands (�ν = ±2). In the de-
picted case, the anharmonicity-induced substructure of the sidebands
is spectroscopically resolved. The COM oscillation frequencies in
the initial- and final-state POL potentials are denoted f1 and f2,
respectively.

The combination of the aforementioned features enables
high-precision spectroscopy on long-lived circular-state
Rydberg atoms trapped in optical lattices [35], utilizing a
scheme in which the transition frequency between the circular
Rydberg levels is measured via resonant POL-modulation
at microwave frequencies. This experimental platform may
also be useful for quantum simulators [36] that are based on
circular-state Rydberg-atom arrays. For such applications, the
effects of lattice-potential-induced level shifts and interaction-
time broadening on the achievable spectroscopic resolution
have to be reduced. To that end, it is important to quantita-
tively model vibrational sidebands, anharmonic corrections,
and vibrational quantization and tunneling in POL modulation
spectroscopy. This necessitates a fully quantized description
of the center-of-mass (COM) and internal-state dynamics of
the atoms. In the present paper we develop such models,
investigate quantum-classical correspondence in POL modu-
lation spectroscopy, and exhibit the quantum features in the
spectra.

II. OVERVIEW OF LATTICE
MODULATION SPECTROSCOPY

In Fig. 1 we illustrate several quantum aspects of POL
modulation spectroscopy. The curves with the light-gray drop
areas visualize the sinusoidal COM lattice potentials versus
position for a pair of Rydberg states |1〉 and |2〉; the figure
shows the case of a magic POL transition for a lattice depth of
500 kHz. The depicted band structure of the COM dynamics is
for 85Rb atoms in a POL formed from two counterpropagating
beams of 1064 nm wavelength. Amplitude modulation (AM)
of the lattice drives electronic transitions, the Rabi frequencies
of which have previously been calculated [19]. While POL
modulation spectroscopy has no selection rules for l ′ − l

(l and l ′ are the angular-momentum quantum numbers of
Rydberg states |1〉 and |2〉, respectively), for even-parity tran-
sitions (|l ′ − l| = 0, 2, . . .) the vibrational quantum number ν

of the COM motion can be changed only by even numbers,
whereas for odd-parity transitions (|l ′ − l| = 1, 3, . . .) it can
be changed only by odd numbers. The case depicted in Fig. 1
is for even-parity transitions. The spectrum, sketched on the
right, shows the transition probability from |1〉 into |2〉 as a
function of the detuning of the POL modulation frequency, δ,
from the atomic transition frequency. The spectrum has red-
shifted (�ν = ν ′ − ν = −2), unshifted (�ν = 0), and blue-
shifted (�ν = 2) spectral components, which arise from tran-
sitions of the lattice-trapped atoms. The substructure of the
�ν = ±2 components is a COM quantum effect that results
from the anharmonicity of the POL potential and that requires
sufficient spectral resolution to be observed. For odd-parity
transitions, the spectrum would have two major components,
corresponding to changes of the vibrational quantum number
by �ν = ±1.

The theory leading to spectra as sketched in Fig. 1 is
developed and discussed in Secs. III–V. In our models both
ground- and excited-state wave functions evolve on one-
dimensional, sinusoidal optical-lattice trapping potentials [21]
with generally different depths but fixed relative spatial phase
(the experimentally most relevant case). The ponderomotive
coupling between the electronic states that arises from lattice
modulation is described by an effective Rabi frequency, �(z),
that depends on the atom’s COM position z transverse to the
lattice planes. The features described in this work depend
critically on the fact that �(z) has a sine-like dependence on
z, with the same spatial period as the lattice itself [19]. The
spatial phase between the ponderomotive coupling and the
lattice depends on whether the modulation-driven transition
is between Rydberg states with same or opposite parity. The
phase of the ponderomotive coupling �(z) exhibits a quite
peculiar behavior, as it proceeds in discrete steps of π as a
function of the coordinate z. This behavior differs radically
from the optical phase of typical plane-wave or Raman cou-
plings, �k · r, which is a continuous function of position
(h̄�k is the photon momentum transfer). In Sec. VI B we
explain why the peculiar phase behavior of �(z) in modulated
POLs leads into our paradigm of sub-Doppler spectroscopy.

To obtain the spectrum of the excited-state population as
a function of lattice modulation frequency, we numerically
solve the time-dependent Schrödinger equation (TDSE) in
momentum representation of the COM. The results of these
numerical solutions are averaged over the thermal COM mo-
mentum distribution of the Rydberg atoms. In addition, we
analyze the band structure of the problem. The band struc-
ture is employed to model the POL modulation spectra with
transition rates between Bloch states, averaged over an initial
thermal momentum distribution of atoms loaded into the lat-
tice. The solutions presented in this work account for quantum
features such as band structure, vibrational quantization, band
curvature and tunneling, and rotary-echo effects. In addition,
we discuss the convergence of quantum and semiclassical
results in the appropriate limits.

In applications, the advanced modeling afforded by our
work will enable a reduction of systematic errors caused
by lattice-induced shifts of the Rydberg-atom transition fre-
quency [35].
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III. TIME-DEPENDENT SCHRÖDINGER EQUATION

A. Position representation

We consider a Rydberg atom moving in a one-dimensional
POL formed by two counterpropagating laser beams of equal
polarization, wave number k, and wavelength λ = 2π/k. The
atom is initially prepared in state |1〉. The optical lattice
is amplitude-modulated at a frequency that effects pondero-
motively driven transitions into Rydberg state |2〉. Lattice
potentials and Rabi frequencies for this scheme have been
derived in Refs. [19,21]; here we recite relevant, previously
proven findings. The lattice potentials for the two Rydberg
states can be written in the form Vi,0 + Vi cos(2kz), with
i = 1, 2 and constants Vi,0 � Vi. Here it is sufficient to con-
sider Rydberg levels |n, l, j, mj〉 without lattice-induced state
mixing [19,21]. Assuming azimuthal symmetry and choosing
the quantization axis along the direction of the laser beams,
amplitude modulation of the lattice can generally drive, in first
order, any transition |n, l, j, mj〉 ↔ |n′, l ′, j′, m′

j〉 with m′
j −

mj = �mj = 0, and with no other applicable selection rules
[19]. To drive the transitions efficiently, the lattice modulation
frequency must be close to the atomic transition frequency
[26] or a subharmonic [29]. The Rabi frequencies for pon-
deromotive transitions driven by amplitude-modulated lattices
[19] take the form � cos(2kz) for even-parity (|l ′ − l| =
0, 2, . . .) and � sin(2kz) for odd-parity (|l ′ − l| = 1, 3, . . .)
Rydberg transitions.

We define spinor wave functions �i(z) via

|ψ〉 =
∫

�1(z)|1, z〉 dz +
∫

�2(z)|2, z〉 dz, (1)

where the base kets |1, z〉 are in the product space of the
internal (Rydberg) state space {|1〉, |2〉} and the position space
{|z〉} of the z-COM degree of freedom. We further define an
effective atom-field detuning δ = δ0 + V2,0 − V1,0, where Vi,0

are the lattice-potential offsets defined above, and δ0 is the
lattice-free atomic transition frequency, ωA, minus the optical-
lattice modulation frequency, ωL, or its relevant overtone, pωL

(p = 2, 3, . . .). In the most generic case, considered here, only
the states |1〉 and |2〉 are close to resonance, while for all
other transitions � � δ. Hence, in a dressed-atom picture
the near-resonant atom-field states are |1, N0〉 and |2, N0 − p〉,
where N0 is a constant number of spectator photons/phonons
in the modulator crystal, and p is the modulation order
that drives the transition. In a holistic picture, p can be
interpreted as the number of light-modulator energy quanta
(photons/phonons) that are absorbed in the POL-modulation
transition. For the cases studied here, we neglect natural and
black-body Rydberg-atom decay.

With these definitions, the Schrödinger equation for even-
parity (|l ′ − l| = 0, 2, . . .) Rydberg transitions is

i�̇1 = p̂2

2h̄m
�1 − (δ/2)�1 + cos[2kẑ](V1�1 − ��2),

(2)

i�̇2 = p̂2

2h̄m
�2 + (δ/2)�2 + cos[2kẑ](V2�2 − ��1),

where the spinor wave functions �i(z) are now in the
dressed-atom picture (rotating frame). We write detunings and
couplings in units rad/s. For odd-parity (|l ′ − l| = 1, 3, . . .)

Rydberg transitions it is

i�̇1 = p̂2

2h̄m
�1 − (δ/2)�1 + cos[2kẑ]V1�1 − sin[2kẑ]��2,

(3)

i�̇2 = p̂2

2h̄m
�2 + (δ/2)�2 + cos[2kẑ]V2�2 − sin[2kẑ]��1.

The potential depths Vi are generally different. There exist
cases in which V1 = V2; these are “magic” lattices that lead
to particularly narrow spectral lines. Magic lattices are well
known from optical clocks (see, for instance, Refs. [37,38]).
The same concept translates to spectroscopy in modulated
POLs for Rydberg atoms. Magic transitions in modulated
POLs require a suitable combination of lattice period and
Rydberg levels; such transitions have already been demon-
strated [29]. Magic lattices are particularly useful for high-
precision spectroscopy because they minimize lattice-induced
shifts of the transition frequency to be measured. Sev-
eral examples discussed below are for magic transitions,
where V1 = V2. In Sec. VI H, we also consider a generic
case in which the lattices for |1〉 and |2〉 have different
depths, V1 �= V2.

For even-parity transitions, the Rabi frequency and the
lattice potentials all share the same spatial modulation
∝ cos(2kz), while for odd-parity transitions the lattice poten-
tials are ∝ cos(2kz) and the Rabi frequency is ∝ sin(2kz). In
either case, the drive term �(z) is real and alternates between
positives and negatives, amounting to discrete phase jumps of
π at every π/(2k) step in z. This uncommon behavior greatly
differs from the Rabi-frequency behavior of first- and higher-
order multipole transitions effected by the eÂ · p̂/m term,
which (in one-dimensional cases) typically is �m exp(i�k z),
where h̄�k denotes the recoil momentum and �m the Rabi
frequency of the transition. We see that in the modulated-POL
case the spatial phase of the drive follows a (real-valued)
staircase function and the magnitude of the coupling varies
in z as |� cos(2kz)| or |� sin(2kz)|, whereas in the latter case
the spatial phase is a linear function with fixed slope �k and
the magnitude of the coupling, |�m|, is fixed. In Sec. VI B
we show that these facts enable a type of sub-Doppler
method that is realized automatically in modulated-POL
spectroscopy.

The Hamiltonian in the above Schrödinger equation for the
even-parity case can be conveniently written in matrix form

Ĥeven = δ

2

(−1 0
0 1

)
+ cos[2kẑ]

(
V1 −�

−� V2

)

= − δ

2
σ̂z + cos[2kẑ](V+Î − V−σ̂z − �σ̂x ), (4)

where V± = (V2 ± V1)/2, σ̂i are the Pauli operators, Î is the
identity operator, and ẑ is the position operator for the z
component of the COM motion. Similarly, for odd-parity
transitions it is

Ĥodd = − δ

2
σ̂z + cos[2kẑ](V+Î − V−σ̂z ) − sin[2kẑ]�σ̂x, (5)

B. Momentum representation

Due to the periodicity of potentials and couplings, the
TDSE is most conveniently solved in the momentum repre-
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sentation [39,40]. Using

�1,2(p) = 1

2π h̄

∫
dze−i p

h̄ z�1,2(z), (6)

we obtain the equations for the momentum-space spinor wave
functions

i�̇1(p) = p2

2h̄m
�1(p) − δ

2
�1(p)

+ 1

2
V1[�1(p + 2h̄k) + �1(p − 2h̄k)]

− 1

2
�[�2(p + 2h̄k) + �2(p − 2h̄k)],

i�̇2(p) = p2

2h̄m
�2(p) + δ

2
�2(p)

+ 1

2
V2[�2(p + 2h̄k) + �2(p − 2h̄k)]

− 1

2
�[�1(p + 2h̄k) + �1(p − 2h̄k)], (7)

for the even-parity case, and similarly for the odd-parity case

i�̇1(p) = p2

2h̄m
�1(p) − δ

2
�1(p)

+ 1

2
V1[�1(p + 2h̄k) + �1(p − 2h̄k)]

+ i

2
�[�2(p + 2h̄k) − �2(p − 2h̄k)],

i�̇2(p) = p2

2h̄m
�2(p) + δ

2
�2(p)

+ 1

2
V2[�2(p + 2h̄k) + �2(p − 2h̄k)]

+ i

2
�[�1(p + 2h̄k) − �1(p − 2h̄k)] (8)

From these equations it is seen that in momentum rep-
resentation the Hilbert space breaks up into subspaces
{|1〉, |2〉} ⊗ {|p0 + 2nh̄k〉 | n = 0,±1,±2, . . .}, with real-
valued p0 ∈ [−h̄k, h̄k] (first Brillouin zone). Subspaces with
different p0 do not couple to each other. Using the initial
condition �1(p, t = 0) = δ(p − p0 − 2n0 h̄k) and �2(p, t =
0) = 0, the evolution is restricted to the subspace for p0. We
can then set

�1(p, t ) =
∞∑

n=−∞
an(t )δ(p − p0 − 2nh̄k),

�2(p, t ) =
∞∑

n=−∞
bn(t )δ(p − p0 − 2nh̄k), (9)

and write Eq. (7) in matrix form as

i

(
Ȧ(t )
Ḃ(t )

)
=

(
HA HAB

H∗
BA HB

)(
A(t )
B(t )

)
(10)

where A(t ) = {. . . , a−1(t ), a0(t ), a1(t ), . . .}, B(t ) = {. . . ,
b−1(t ), b0(t ), b1(t ), . . .}, and

HA,B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

. . .
. . . 0

. . . E (A,B)
−1 /h̄ V1,2/2 0

0 V1,2/2 E (A,B)
0 /h̄ V1,2/2 0

0 V1,2/2 E (A,B)
+1 /h̄

. . .

0
. . .

. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(11)
For even parity we have

HAB = −�

2

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

. . .
. . . 0

. . . 0 1 0
0 1 0 1 0

0 1 0
. . .

0
. . .

. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (12)

while for odd parity we have

HAB = i�

2

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

. . .
. . . 0

. . . 0 1 0
0 −1 0 1 0

0 −1 0
. . .

0
. . .

. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

Defining p0 = β h̄k and the two-photon recoil frequency
ωk = 2h̄k2/m, the lattice-free energies in Eq. (11) can be
written as

E (A,B)
n = (p0 + n2h̄k)2

2m
∓ h̄

δ

2
= h̄ωk (β/2 + n)2 ∓ h̄

δ

2
,

(14)

where n = 0,±1,±2, . . .. For 85Rb atoms in an optical lattice
formed by a pair of counterpropagating 1064-nm laser beams,
the case studied below, the two-photon recoil frequency is
ωk = 2π × 8.300 kHz = 52.15 krad/s.

From the above analysis we observe that states with mo-
mentum p couple only to the neighboring states p ± 2h̄k for
both �1(p) and �2(p). The internal-state-conserving momen-
tum coupling strengths are V1/2 and V2/2 for states |1〉 and
|2〉, respectively. The POL modulation induces internal-state-
changing couplings between initial- and target-level momen-
tum states that also differ by 2h̄k; those couplings have a
strength determined by �.

C. Averaging over the thermal momentum distribution

For reference, we state the one-dimensional Maxwell
distribution in velocity, momentum, and our dimensionless
scaled momentum β,

f (v0)dv0 =
√

m

2πkBT
e− mv2

0
2kBT dv0,

f (p0)d p0 = 1√
2πmkBT

e− p2
0

2mkBT d p0,

f (β )dβ = 1√
2π

√
h̄ωk

2kBT
e− β2

4
h̄ωk
kBT dβ . (15)
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The scaled-momentum distribution, f (β ), can be written in
terms of the width of the energy distribution in units of
the thermal energy. Defining ωT = kBT/h̄, this is f (β ) =

1√
2π

√
ωk

2ωT
e− β2

4
ωk
ωT . For T = 1 μK, ωT = 2π × 20.8 kHz and

ωT /ωk = 2.5. Hence, lattices and atom distributions that
are about T = 1 μK deep or wide, respectively, exhibit
quantum features such as tunneling and photon-recoil ef-
fects. Conversely, for T = 100 μK, ωT = 2π × 2.08 MHz
and ωT /ωk = 250; for this temperature regime and lattice
depth we expect convergence of classical and quantum treat-
ments of the COM.

We obtain the excited-state coefficients bn by solving the
above equations for given lattice parameters over a range of
detunings δ and over a range of initial scaled atom momenta
β. For a given β, the initial condition for solving the TDSE,
Eqs. (10), (11), and (12) or (13), is bn = 0, an = δn,n0 with
n0 = NINT(β/2) and p0 = h̄k(β − 2 n0), where the function
NINT(x) is the integer closest to x. The range of β is adapted
to temperature; we use ranges β ∈ [−10, 10] for T = 1 μK
and β ∈ [−80, 80] for T = 100 μK. For the time dependence
of the drive, �(t ), we use Gaussian pulses with durations of
tens to hundreds of μs. The drive pulse �(t ) peaks at time
tp/2, and the TDSE is integrated from t = 0 to tp. The target-
state population is evaluated at t = tp and averaged over the
Maxwell momentum distribution, yielding

Pb(δ) =
∫ ∑

n

|bn(β, δ, tp)|2 f (β ) dβ . (16)

In the calculation, the duration tp is set sufficiently large
such that the population Pb(δ) becomes independent of tp.
The population Pb(δ) is equivalent to experimental spectra in
which the Rydberg target state population is measured as a
function of lattice modulation frequency and is therefore a
main result of this paper.

IV. BAND STRUCTURE MODEL

The above described method of finding the spectrum Pb(δ)
has the advantage that drive pulses �(t ) of any time depen-
dence can be modeled. Further, the spectrum usually exhibits
some Fourier broadening, which occurs when the drive pulse
is substantially shorter than the inverse Rabi frequeny (tp �
π/�), or a certain amount of saturation broadening, which
occurs when the pulse area exceeds π (that is, if tp� � π ).
Solving the TDSE is a good way to account for these effects.

For an approximate and fast solution, we use perturba-
tion theory [Fermi’s golden rule (FGR)] to obtain transition
probabilities between the Bloch states of the initial and target
Rydberg levels in their respective optical lattices (which have
identical periods and Brillouin zones). The transition proba-
bilities are averaged over the Maxwell momentum distribution
along the same lines as described in Sec. III C. These results
are a good approximation if the transition is not saturated
(tp� < π) and if COM coherences are not important, as
discussed further below. In the following, the FGR method
is briefly outlined.

Diagonalizing the Hamiltonian in Eq. (11) for both Ryd-
berg levels |1〉 and |2〉 separately, we find the initial and target

Bloch states

|ψA,i(p0)〉 =
∑

n

ai,n,p0 |p0 + 2nh̄k〉,
(17)

|ψB,i′ (p0)〉 =
∑

n

bi′,n,p0 |p0 + 2nh̄k〉,

where A and B stand for the initial and target Rydberg levels,
respectively, i and i′ are band indices, and the quasimomentum
p0 ∈ [−h̄k, h̄k]. We typically obtain the Bloch states and
their respective band energies, Ea(i, p0) and Eb(i′, p0), on an
equidistant grid of 200 p0 values. The squares of the transition
matrix elements for a time-independent Rabi frequency � in
Eqs. (12) and (13) are

|Ve(i′, i, p0)|2 = �2

4

∣∣∣∣∣
∑

n

(b∗
i′,n+1 + b∗

i′,n−1)ai,n

∣∣∣∣∣
2

,

(18)

|Vo(i′, i, p0)|2 = �2

4

∣∣∣∣∣
∑

n

(b∗
i′,n+1 − b∗

i′,n−1)ai,n

∣∣∣∣∣
2

for even- and odd-parity transitions, respectively, and with
i′ denoting a target- and i an initial-level band index. The
p0 dependence of the a and b coefficients is suppressed for
brevity. Following FGR for the case of a harmonic drive, the
transition rate from the initial Bloch state i into the target
Bloch state i′ then is

R(i′, i, p0, δ) = 2π

h̄
|V (i′, i, p0)|2ρ(�E ),

with energy detuning �E of the lattice-modulation drive from
the transition energy between the initial and target Bloch
states, �E (i′, i, p0, δ) = Eb(i′, p0) − Ea(i, p0) − h̄δ. For the
energy density of states ρ(�E ) we use a Gaussian, ρ(�E ) =

1√
2πσE

exp[−�E2/(2σ 2
E )]. There the spectral width of the

drive is chosen in the range 1 kHz � σE/h � 100 kHz, in
accordance with the Fourier widths for our typical drive-pulse
durations.

If the drive pulse was a square pulse, the (nonsatu-
rated) FGR transition probability would be P(i′, i, p0, δ) =
R(i′, i, p0, δ) tp, with pulse duration tp. The transition rate
depends on time if the Rabi frequency � in Eq. (18) depends
on time. In the examples discussed in Sec. VI, the Rabi
frequency �(t ) has a Gaussian time dependence. In that case,
P(i′, i, p0, δ) is given by the integral of R(i′, i, p0, δ, t ) over
the duration of the pulse.

It is then assumed that the initial COM states have a
normalized thermal probability distribution for temperature T ,

W (n0, p0) ∝ exp[−(p0 + n0 h̄k)2/(2mkBT )],

with p0 ∈ [−h̄k, h̄k] and integer n0. For a sudden lattice turn
on, the thermally populated momentum base states |p0 +
2n0 h̄k〉 are projected into the basis of Bloch states, where the
expansion coefficients ai,n0,p0 are known from the diagonal-
ization of the Hamiltonian in Eq. (11). The FGR spectrum is
then obtained from

Qb(δ) =
∑

i′,i,p0

[
P(i′, i, p0, δ)

∑
n0

W (n0, p0)|ai,n0,p0 |2
]
. (19)
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The quantity Qb(δ) is the FGR transition probability per
atom, averaged over the initial thermal distribution of atoms
over free-particle momentum states, for the case that the
amplitude-modulated POL is suddenly turned on. This cor-
responds with the analysis performed in Sec. III.

V. SEMICLASSICAL MODEL

In the limit of temperatures and potential depths equivalent
to energies much larger than the lattice recoil energy, h̄ωk/4,
semiclassical and quantum results should converge in certain
aspects. To explore classical-quantum correspondence in the
system, we use a model [26,29] in which the COM dynamics
is treated classically by solving Newton’s equations with a
sixth-order Runge-Kutta routine. As the atoms move, the
internal-state dynamics in the Rydberg-state space {|1〉, |2〉}
is propagated quantum mechanically, taking the explicit and
implicit time dependence of the Rabi frequency into account.
For even-parity transitions, for instance, the Rabi frequency
in the atomic frame follows �(t ) cos[2kz(t )], where �(t ) is
the real-valued, positive Rabi frequency from Eqs. (2) and
(7), which is a Gaussian pulse in our examples, and z(t ) is
the classical COM position of the atom. Doppler effects arise
from the sign flips of the cosine function that occur when
the atoms pass through the inflection points of the cosine
function. The sign flips are equivalent to phase jumps of
π , which, when occurring at semiregular time intervals in
the moving frame of a hot atom moving through the lattice,
cause a Doppler effect similar to the usual Doppler effect (see
discussion in Sec. VI B). The internal evolution also depends
on the detuning between the atomic transition and the POL
AM modulation frequency, δ. In cases of nonmagic lattices
(V1 �= V2) in the frame of reference of a moving atom with
classical COM position coordinate z(t ), the detuning further
depends on position; in that case, the detuning for the internal
quantum evolution is δc = δ + (V2 − V1) cos[2kz(t )].

As the states |1〉 and |2〉 have generally different POL
amplitudes V1 and V2, a procedure is needed to compute
a classical force. Here we average the classical force over
the two lattice potentials for the states |1〉 and |2〉, using
the time-dependent quantum-mechanical probabilities of the
atom being in |1〉 or |2〉 as weighting factors. This method
does not account for COM quantum effects such as tunnel-
ing, dispersion, and state-dependent wave-packet splitting.
This deficiency ties into the overall failure of the semiclassical
description at low energies and in certain other cases. Never-
theless, over wide swaths of parameter space the semiclassical
model is quite successful. It is noted that in magic lattices
(V1 = V2) the two coupled internal states have identical poten-
tials, in which case the classical force simplifies to F (z(t )) =
2kV1 sin(2kz(t )).

In accordance with the quantum models, in the semiclas-
sical description initial atom velocities v(t = 0) are drawn
from the Maxwell distribution given in Sec. III C, and initial
positions z(t = 0) are random. The semiclassical spectrum,
Kb(δ), is given by the transition probability at the end of the
interaction time tp, averaged over a classical thermal ensemble
of initial atoms. In this work, we average over 10 000 to
100 000 trajectories.

VI. RESULTS

In general, it is desired to strike a balance between observ-
ing a transition with high signal-to-noise ratio and avoiding
saturation broadening. Therefore, in our calculations we use
Rabi frequencies that, for a given drive pulse shape and
duration, yield a π pulse area for an atom at a COM location
z where the Rabi frequency is maximal,

∫
�(t ) dt = π . For

our Gaussian pulses, �(t ) = �0e−(t−tp/2)2/τ 2
0 . In the cases dis-

cussed below we quote the full width at half maximum of the
pulse, which is τFWHM = 2τ0

√
ln(2), and the corresponding

utilized value of �0 that leads to the π pulse.

A. Structure of POL amplitude-modulation spectra

The range of pulse durations of interest is between 1 μs
and 1 ms, as this range is accessible given the lifetimes of
typical Rydberg states [20]. Within this range, we consider
a pulse short if its Fourier bandwidth suffices to resolve the
vibrational sidebands �ν �= 0 in the spectrum from the central
�ν = 0 peak, but the bandwidth is too large to resolve the
recoil energy and anharmonic effects of the band structure of
the COM (see Fig. 1). Conversely, a pulse is considered long
if it resolves the anharmonicity-induced quantum structures
in the vibrational sidebands. For two selected cases of short
and long pulses, we will discuss spectra for several represen-
tative lattice depths and COM atom temperatures. Our initial
discussion is focused on the TDSE and semiclassical models.

In Fig. 2 we show POL modulation spectra Pb(δ), Qb(δ),
and Kb(δ), obtained by solving the TDSE, by computing
FGR transition probabilities between Bloch states, and by
performing semiclassical simulations, respectively. The tran-
sitions are even-parity and are driven by Gaussian field pulses
with τFWHM = 20 μs, corresponding to τ0 = 12.0 μs. Our
calculations are for ωk = 8.300 kHz, corresponding to 85Rb
atoms in a POL formed from two counterpropagating beams
of 1064 nm wavelength, and lattice amplitudes V1 = V2 =
2π × 1.25 MHz (a case of a magic lattice). These conditions
are similar to experimental work in Refs. [26,29]. The spectra
exhibit the lowest-order allowed vibrational sidebands, �ν =
±2, as well as a Doppler-free central band �ν = 0. Since
the COM oscillation frequency of the atoms at the bottoms
of the wells is 2k

√
h̄V1/m = 2π × 144 kHz, the frequency

separation between the �ν = ±2 vibrational sidebands is
about 69 ωk/(2π ). Inspecting Fig. 2, this corresponds to the
separation between the outer fringes of the sidebands. The
average separation is somewhat less, because atoms that are
thermally excited into vibrational states of the COM motion
above the vibrational ground state have a smaller oscillation
frequency, leading to less separation. Anharmonicity-induced
substructures are not resolved due to the FWHM width of
the spectral density of the pulse, which is 3.77ωk = 2π ×
31.3 kHz (in the case of low saturation, for the given pulse
length). Also, higher-order sidebands, �ν = ±4,±6, . . . are
too broad and weak to be observed.

For measurement and metrology purposes, the Doppler-
free peak for �ν = 0 is of particular interest, which in Fig. 2
has a FWHM of �4ωk . This is in good agreement with the
low-saturation Fourier width of the Gaussian pulse, 3.77ωk .
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FIG. 2. POL modulation spectra Pb (TDSE), Qb (FGR) and Kb (semiclassical) for V1 = V2 = 2π × 1.25 MHz, τFWHM = 20 μs, and T =
1 μK (a) and 100 μK (b).

Note that the presented case is for a π -pulse, and therefore the
central peak is slightly saturation-broadened.

B. Doppler-free spectroscopy in modulated POL

The origin of the Doppler-free nature of the central peak
becomes clear from the following semiclassical analysis.
The classical COM of an atom oscillating within the cen-
ter portion of a lattice well is approximately harmonic,
z(t ) = z1 cos(2π f1t ), with COM oscillation frequency f1 =
k
√

h̄V1/m/π and COM oscillation amplitude z1 � λ/8. Using
the Jacobi-Anger expansion, the time dependence of the Rabi
frequency in the frame of the atom is given by

�a(t ) = �(t ) cos[2kz(t )]

= �(t )[J0(2kz1)

+ 2
∑
p=1

(−1)pJ2p(2kz1) cos(4π p f1t )]. (20)

Here the explicit time dependence is contained in the Gaussian
envelope function �(t ) = �0e−(t−tp/2)2/τ 2

0 with constant �0.
The implicit time dependence in Eq. (20) arises from the
atomic motion, z(t ), and is contained in the Fourier series
in the square brackets. The atomic motion generates Fourier
components of the drive at even multiples of f1, which
correspond with the vibrational signals for �ν = 0 and ±2
in Fig. 2. For the case of Fig. 2, �(t ) is a slowly varying
real-valued envelope function with a duration of a few COM
oscillation periods of the atoms in the wells. The �ν = 0 and
±2 components are resolved in Fig. 2 because the Fourier
width of the envelope �(t ) is less than the frequency sepa-
ration 2 f1 between the components. This basic interpretation
applies if a substantial fraction of atoms is trapped within the
approximately harmonic regions of the POL wells, and if the
spectrum of the pulse envelope �(t ) is sufficiently narrow to
resolve the vibrational sidebands. The treatment based on the
band structure and FGR, visualized in Fig. 1, yields equivalent
conclusions. Importantly, in Eq. (20) it is evident that the atom
velocity plays no direct role in the spectrum. In particular,

in magic lattices as in Fig. 2 the central peak �ν = 0 is
Doppler-effect-free and is unaffected by the anharmonicity of
the lattice, making it ideal for high-precision spectroscopy of
Rydberg-atom transitions.

It is noted that Eq. (20) resembles the spectrum of
frequency-modulated fields and the spectrum seen by opti-
cally driven ions oscillating in ion traps. These similarities can
be born out more clearly in a photon picture of POL modula-
tion spectroscopy, in which the atoms scatter a photon from
one lattice-field mode into a counterpropagating field mode,
where the mode frequencies differ by the POL modulation
frequency (which equals the atomic-transition frequency and
is orders of magnitude larger than f1 and ωk). The rescattering
is a stimulated process effected by the A2-term of the atom-
field interaction. A detailed analysis of this picture is not of
interest in the present paper.

Spectral broadening akin to the usual Doppler effect arises
from atoms traversing over many lattice wells. Again, a semi-
classical picture is well suited to explain this effect. The phase
of the drive term in Eq. (2), �(t ) cos(2kz), undergoes a jump
of value π at every inflection point of the lattice potential. For
a hot atom moving at constant velocity v through the lattice,
in the reference frame of the moving atom the phase of the
drive field follows a step function that is centered around the
linear function φ(t ) ≈ 2πz(t )/(λ/2) = 2kvt , equivalent to a
Doppler shift of 2kv. This resembles the Doppler shift of stim-
ulated Raman scattering between counterpropagating beams.
It is noted, however, that POL modulation spectroscopy is
fundamentally different from Raman spectroscopy, because
it employs a first-order A2-process and not a second-order
A · p-process.

C. Temperature insensitivity of spectroscopy in modulated POL

If the lattice depth 2h̄V1 � kBT , the initial temperature has
only a minor effect on the spectrum. This is seen clearly
in Fig. 2, where the spectra for T = 1 μK and 100 μK are
quite similar. The heights and widths of the central peaks
are near-identical in both cases. The temperature insensitivity
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results from the fact that atoms initially located away from
a lattice minimum gain considerable potential energy at time
t = 0, when the lattice is suddenly turned on. If 2h̄V1 � kBT ,
the initial potential energy dominates the initial kinetic energy,
and the distributions of oscillation amplitudes z1 are not very
different (in the semiclassical model). Hence, for 2h̄V1 � kBT
the signal strengths in the vibrational sidebands, �ν = ±2,
are not very temperature-dependent. In the TDSE and band-
structure models, the temperature insensitivity follows from
the fact that the projection of a thermal ensemble of plane
waves of the COM motion into the Bloch-state basis yields
similar distributions as long as the potential energy is larger
than the thermal energy of the ensemble prior to projection,
leading to the same condition, 2h̄V1 � kBT .

D. Quantum-classical correspondence

Comparing the exact TDSE and the semiclassical spectra
in Fig. 2, it is seen that the semiclassical model does quite
well, even at a quantitative level. A leading deviation be-
tween TDSE and semiclassical results is that the vibrational
sideband structure (for magic transitions) is symmetric in
the semiclassical calculation, whereas it is asymmetric in
the TDSE result. The symmetry in the semiclassical case
directly follows from Eq. (20), where positive- and negative-
frequency components of the drive have identical amplitude.
After dropping the harmonic-COM approximation made in
Eq. (20), this symmetry still holds. It is also noted that in
the semiclassical model the red- and blue-detuned transitions
between the Rydberg states |1〉 and |2〉 have no recoil effect
on the classical COM motion, in accordance with the perfect
symmetry between blue- and red-detuned vibrational side-
bands in the semiclassical results.

In contrast, in both quantum treatments (TDSE and FGR)
the spectra are nonsymmetric. Using, for the sake of clarity,
the notion of a harmonic COM motion, the ẑ2 term in the
expansion of the cosine in the drive term, �(t ) cos(2kẑ),
causes (most of) the �ν = ±2 vibrational sidebands in the
spectrum. While the relevant matrix elements between COM
states, 〈ν − 2|â2|ν〉 and 〈ν|â†2|ν − 2〉, are symmetric, the
population difference between the initial vibrational COM
states |ν − 2〉 and |ν〉 reduces the red-shifted sideband rela-
tive to the blue-shifted one by a Boltzmann factor of about
exp[−2h f1/(kBTeff )], where Teff is an effective COM temper-
ature after the sudden transfer of the atoms into the lattice.
Generally, the vibrational spectral sidebands are the more
asymmetric the lower the temperature and the shallower the
lattices are.

E. Exact TDSE solution versus perturbative model

In Fig. 2 the perturbative FGR-model based on the band
structure reproduces the TDSE results fairly well. As our drive
pulses are near saturation of the transition, the FGR model
generally overestimates the transition probabilities. This is
qualitatively adjusted by scaling the FGR probabilities by a
factor <1. The FGR result exhibits asymmetries similar to
those in the exact TDSE solution, as expected (see Sec. VI D).
There are, however, deviations between the shapes of the FGR
and the TDSE results. This is attributed to the fact that the

FGR model does not account for any coherent transients,
which can cause strong effects in the case of short drive
pulses. This includes COM transients, which are generated
by the sudden transfer of the atoms from free space into
the lattice, which initiates a COM wave-packet motion. Due
to the position dependence of the drive term, �(t ) cos(2kz),
the COM wave packet maps onto a transient signal in the
internal-state dynamics (which is our observable). The tran-
sients are the most pronounced if the pulse duration is on the
order of the harmonic period of the COM motion, 1/ f1. The
cases discussed in the present and even more so in the next
subsection are in this regime.

The correction factor applied to the FGR spectra to match
the TDSE results varies from case to case, as evident in
Figs. 2–6. The variation is due to the varying degree of tran-
sition saturation; further, the role of COM transients differs
from case to case. While our FGR model cannot describe
the transients, the transients are reproduced in large parts in
the semiclassical model. This is not unexpected, because the
semiclassical model incorporates a classical approximation
of COM dynamics, the origin of the transients. Generally,
the transients-related deviations between the FGR and the
TDSE and semiclassical results are most visible in shallow
lattices and at high temperature. In Fig. 2 the POL is deep
enough that the deviations between the FGR line shapes and
the TDSE/semiclassical line shapes are still fairly minor.

F. POL amplitude-modulation spectra in shallow lattices

Spectroscopic data often yield better results in less deep
lattices due to a reduction in residual AC shifts, reduced
photoionization losses, etc. In Fig. 3 we show results for the
same parameters as in Fig. 2, with the exception that the
lattice is only 1/100th as deep. In this case, the POL has only
two tightly bound bands and an f1 value of only 14.4 kHz,
corresponding to a round-trip time of 70 μs.

At T = 1 μK, quantum and semiclassical results still agree
fairly well. The asymmetry of the TDSE result is much larger
in the shallow lattice (Fig. 3) than it is in the deep one (Fig. 2).
The asymmetry is somewhat reproduced in the FGR result,
whereas the semiclassical spectra are perfectly symmetric and
show a hint of resolving the �ν = ±2 sidebands. These trends
in overall agreement and asymmetry behavior are expected
from the discussions in the previous sections. Deviations
between TDSE and FGR results are again attributed to the
effects of COM-induced transients in the internal-state dy-
namics.

At T = 100 μK, the TDSE and semiclassical results
[Fig. 3(b)] agree very well, as the atoms are comparatively hot,
leading to essentially classical COM dynamics. It is notewor-
thy that both results exhibit a central dip with a width near the
Fourier limit. The dip is attributed to a rotary-echo behavior,
which is most significant when τ0 ∼ 1/(4 f1), as is the case
in Fig. 3(b). To explain the rotary-echo effect, we consider
a drive-pulse duration on the order of 1/(4 f1). In that case,
the classical motion of a large fraction of atoms covers about
one half of the lattice period, over the duration of the drive
pulse. Due to the cosine dependence of the Rabi frequency,
the atoms spend similar amounts of time in spatial regions
with positive and with negative-valued Rabi frequencies. The
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FIG. 3. POL modulation spectra Pb (TDSE), Qb (FGR) and Kb (semiclassical) for V1 = V2 = 2π × 12.5 kHz, τFWHM = 20μs, and T =
1 μK (a) and 100 μK (b).

resultant rotary-echo effect [41–44] can drastically reduce the
excitation probability, as is most clearly seen Fig. 3(b).

The FGR model entirely fails to produce the echo-induced
dip seen in the exact TDSE solution and the semiclassical
result. This is due to the fact that our FGR model does not
account for COM wave-packet dynamics and COM coher-
ences at all. Any rotary-echo effects induced by COM motion
and position-dependent sign flips of the Rabi frequency can
therefore not be described with the FGR model. The absence
of a dip in the FGR spectrum in Fig. 3(b) signifies that in
certain cases the rotary-echo effect is critical in understanding
POL modulation spectra.

We notice that the width of the peak in the lower-
temperature case [Fig. 3(a)] is substantially larger than the
width of the echo-induced dip in the high-temperature spec-
trum [Fig. 3(b)]. Thus, suitable combinations of lattice depth
and drive-pulse duration yield high-temperature spectra that
are more suitable for high-precision spectroscopy than their
low-temperature counterparts.

G. POL amplitude-modulation spectra at long interaction times

A prominent prospect of using POL modulation spec-
troscopy is to perform high-precision measurements with
cold, long-lived, circular-state Rydberg atoms. To that end,
we now consider several cases of moderately deep magic
and nonmagic POLs and drive pulses with a FWHM field-
pulse length of 400 μs. While this is still about an order
of magnitude short of typical circular-state lifetimes in a
300-K thermal-radiation environment, it suffices for a discus-
sion of quantum structures of COM vibrational sidebands,
and of vibrationally resolved Doppler-free spectroscopy in
lattices that are nonmagic. Here we choose a 10 μK tem-
perature, a value attainable in rapid-cycle optical-molasses
cooling [45].

In Fig. 4 we consider an even-parity magic transition in
a moderately deep POL with V1 = V2 = 250 kHz. As before,
the Rabi frequency is chosen such that atoms pinned at a
spatial Rabi-frequency maximum experience a π -pulse. It is

seen that all models produce a Fourier-limited central peak,
with virtually no signal background at detunings δ � 5ωk .

Since in Fig. 4 the drive pulse is much longer than in
Figs. 2 and 3, the ratio between pulse length and vibrational
period is much larger (τFWHM f1 = 26), and the Rabi frequency
is smaller. Therefore, the case in Fig. 4 is deeper within
the validity range of FGR perturbation theory. As a result,
in Fig. 4 the agreement between the exact solution of the
TDSE and the FGR approximation is quite good. Both quan-
tum models show a substructure of the �ν = ±2 vibrational
sidebands that arises from level shifts of the excited COM
levels. The reduced Fourier width afforded by the 400-μs
long pulse length allows for the observation of the ν-resolved
substructure, with each subpeak of the sidebands character-
ized by a single ν value. The vibrational splittings within the
�ν = ±2 sidebands arise from the anharmonicity and are,

FIG. 4. POL modulation spectra Pb (TDSE), Qb (FGR) and Kb

(semiclassical) for V1 = V2 = 2π × 250 kHz, τFWHM = 400μs, and
T = 10 μK.
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unsurprisingly, well represented by both the TDSE and the
FGR-band-structure models.

Due to the softening of the POL potential near its max-
ima, the �ν = ±2 transitions for larger ν values occur at
smaller absolute values of the detuning δ. Defining νmin as
the minimum of the coupled states ν and ν ′, it is seen in
Fig. 4 that for νmin � 4 the change in transition frequency is
proportional to νmin. This trend is easily confirmed by consid-
ering the effect of the lowest-order nonharmonic correction
of the trapping potential, which is ∝ − ẑ4, on the transition
frequencies within the �ν = ±2 sidebands. We also see that
the lines for larger νmin are broadened according to the widths
of the corresponding lattice bands, as visualized by the square
boxes in Fig. 4 for the ν =7 → ν ′ =9 and ν =8 → ν ′ =10
transitions and their conjugates. Due to the ensemble average
that is being taken, the extrema of the band-energy differ-
ences, Eb(p0) − Ea(p0), which occur at p = 0 and p = ±h̄k,
produce enhanced signals near the edges of the corresponding
spectral features.

The behavior of the strengths of the vibrationally resolved
lines in the quantum results for the �ν =±2 sidebands is
given by thermal populations and the squares of the COM
matrix elements of 〈ν ′, p0| cos(2kẑ)|ν, p0〉. For conditions as
in Fig. 4, the thermal populations in the lowest few tightly
bound states drop off slowly. Over the spatial range of
their vibrational COM wave functions one may approximate
cos(2kẑ) ≈ 1 − ẑ2/2. Considering the usual expansion of ẑ in
raising and lowering operators, it is seen that the line strength
scales as (νmin + 1)(νmin + 2) ≈ ν2

av, where νmin is the smaller
of ν and ν ′ and νav is the average vibrational quantum number,
(ν + ν ′)/2. Classically, according to Eq. (20) the line strength
of the �ν =±2 transitions is ∝[J2(2kz1)]2, which for small
oscillation amplitudes z1 scales as z4

1, which in turn scales
as the square of the quantum-mechanical vibrational quantum
number ν. We see that quantum and classical analysis give the
same line-strength scaling ∝ν2

av for the vibrationally resolved
sublines within the �ν =±2 sidebands. The height-above-
base of the lowest few of the sublines in Fig. 4 clearly follows
this trend; the scaling also explains why the νmin = 0 sublines
are so weak.

The semiclassical spectrum Kb(δ) for the �ν =±2 side-
bands in Fig. 4 shows excellent qualitative agreement with the
δ-averaged quantum spectra, averaged over the ν-quantization
in the sidebands. Since in the classical treatment the vibra-
tional COM energy is not quantized, this type of agreement
between quantum and classical analyses accords well with our
expectations.

H. POL amplitude-modulation spectra in nonmagic lattices

As seen in the previous section, long drive-pulse durations
combined with moderately deep POL potentials allow us to
resolve vibrational quantization in the �ν =±2 sidebands. In
nonmagic lattices, this feature also extends to the �ν =0 cen-
tral band. This makes nonmagic lattices with a homogeneous
lattice-laser intensity distribution suitable for high-precision
spectroscopy. As an example, in Fig. 5 we consider a case
with parameters identical to those of Fig. 4, except that V2 =
0.8V1. From the quantum results it is seen that the central
peak, �ν =0, splits up into lines at frequencies δ/(2π ) ≈

FIG. 5. POL modulation spectra Pb (TDSE), Qb (FGR) and Kb

(semiclassical) for a nonmagic lattice with V1 = 2π × 250 kHz,
V2 = 2π × 200 kHz, τFWHM = 400μs, and T = 10 μK. The detun-
ing δ is measured relative to the energy difference between the
minima of the initial- and target-state adiabatic potentials, divided
by h̄ωk .

(νmin + 1/2)( f2 − f1), with νmin = 0, 1, 2, . . . and using the
harmonic approximation. To find the unshifted atomic reso-
nance in a high-precision measurement, one may plot δ/(2π )
against x = νmin + 1/2. Extrapolation to x = 0 yields a y
intercept that marks the unshifted atomic resonance. Also,
the measured line spacing f2 − f1 allows for a calibration of
lattice depths V1 and V2.

The TDSE and FGR results agree very well in line posi-
tions, as expected, with considerable deviations in the line
strengths for the reasons discussed in Sec. VI E. The semi-
classical result agrees with the frequency-averaged TDSE
spectrum fairly well, but the agreement appears less good than
in Fig. 4. This may be due to the fact that the semiclassical
model requires a procedure of how to average forces due to
different adiabatic potentials, when the internal Rydberg-state
wave function is split (see Sec. V). This issue does not occur
in magic lattices, but it arises in nonmagic ones.

Figures 4 and 5 show that magic and nonmagic POL mod-
ulation spectra can, in principle, be modeled in great detail.
Thereby, the only narrow spectral feature that is suitable
for Doppler-free high-precision spectroscopy and that is, at
the same time, insensitive to lattice-depth inhomogeneities
is the central (�ν = 0) peak in magic lattices. All other
Fourier-limited features in Figs. 4 and 5 are Doppler-free, but
exhibit shifts that scale with linear combinations of the COM
vibration frequencies, which in turn scale with the square
root of lattice power. Assuming that the lattice intensity in
the atom-field interaction region can be stabilized to within
∼1%, one may expect to be able to resolve the sublines within
the various vibrational sidebands. In that case, the only free
parameters to fit an entire experimental spectrum with a set of
calculated spectra will be the lattice depths V1 and V2, and a
detuning offset of δ. As the ratio V1/V2 is known (it depends
only on the Rydberg levels, the lattice-laser wavelength and
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FIG. 6. POL modulation spectra Pb (TDSE), Qb (FGR) and
Kb (semiclassical) for odd-parity transitions and V1 = V2 = 2π ×
250 kHz, τFWHM = 400μs, and T = 10 μK.

the beam angles [21]), there are only two independent fit
parameters. Hence, a two-parameter fit should simultaneously
yield a detailed match of all sub-Doppler lines. The two-
parameter fit yields a lattice-depth calibration and a result for
the δ offset. The latter amounts to an accurate measurement
of the lattice-free atomic transition frequency that is corrected
for lattice-induced transition shifts.

I. POL amplitude-modulation spectra for odd-parity transitions

In Fig. 6 we finally consider a case of a magic lattice with
odd-parity drive. In this case, the vibrational selection rules
are �ν = ±1,±3, . . ., with corresponding vibrational shifts.
This can be seen by noting that the Rabi frequency for odd-
parity drive in a POL trapping potential that is ∝ cos[2kz(t )]
has the form � sin[2kz(t )]. A semiclassical analysis equiv-
alent to that presented in Sec. VI B, with an atom whose
COM oscillates according to z(t ) = z1 cos(2π f1t ), with COM
oscillation frequency f1 and amplitude z1, then results in
a Jacobi-Anger expansion with frequency components that
are odd-integer multiples of f1. This implies that the central
Doppler-free feature (which in magic lattices is insensitive
to lattice-depth variations) is forbidden, and the lowest-order
allowed vibrational bands are �ν = ±1. These are separated
in frequency by 2 f1. Given a drive pulse with a narrow enough
spectrum, the bands are split into vibrational sublines due
to the anharmonicity of the lattice. For a sufficiently well-
controlled lattice intensity, POL modulation spectroscopy
of odd-parity transitions could also be employed in high-
precision spectroscopy work.

VII. CONCLUSION

We have presented three models of modulation spec-
troscopy of Rydberg atoms in ponderomotive optical lattices
(POL), an application that harnesses the often-ignored A2

term in the atom-field interaction. Foremost, it has been
stressed that the modulation-induced drive term generates a
spatially periodic Rabi frequency with a step-function phase
dependence on position. This peculiar phase behavior of the
drive enables a type of sub-Doppler spectroscopy suitable
for applications in high-precision measurement in Rydberg-
atom systems. The vibrationally resolved lines rely on the
quantum entanglement between electronic and COM mo-
tion, as well as the peculiar couplings afforded by POL
modulation.

In our case studies we have used modulation functions
with a Gaussian time dependence, because the spectra are
free of Fourier sidebands (that would arise in square-pulse
drives, for instance). It is, in principle, fairly straightforward
to realize modulation drive pulses with a time-dependent
Rabi frequency. This can be done by implementing time-
dependent POL amplitude modulation with electro-optic fiber
modulators.

We have developed a picture of quantum-classical corre-
spondence between the quantum and semiclassical models.
We have found a rotary-echo phenomenon that arises from
the interplay between the center-of-mass motion of the atoms
and the spatial dependence of the modulation-induced Rabi
frequency. Our perturbative quantum model fails to reproduce
the rotary-echo effect, as expected. The rotary-echo effect can
improve spectral resolution in some cases.

A variety of Fourier-limited, Doppler-free vibrational tran-
sitions is seen in fairly deep lattices, even at temperatures in
the range of 100 μK. Magic Rydberg-atom optical lattices
lead to the most robust spectroscopic structure. However,
nonmagic lattices with differences on the order of 20% be-
tween the lower- and upper-state potential depths should yield
equivalent spectroscopic accuracy and precision, when using
suitable fitting methods. Ponderomotive transitions can also
be driven by spatial “shaking” of the lattice; this is possible by
phase modulation of a lattice beam (as opposed to amplitude
modulation of the entire lattice, the case studied in the present
paper). In any case, POL modulation spectroscopy is expected
to yield line widths in the kHz-range, opening venues for
Rydberg-atom-based high-precision spectroscopy [35] and
quantum simulators [36].
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