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We study the van der Waals interaction between Rydberg alkali-metal atoms with fine structure (n2Lj ; L � 2)
and heteronuclear alkali-metal dimers in the ground rovibrational state (X 1�+; v = 0, J = 0). We compute
the associated C6 dispersion coefficients of atom-molecule pairs involving 133Cs and 85Rb atoms interacting
with KRb, LiCs, LiRb, and RbCs molecules. The obtained dispersion coefficients can be accurately fitted to a
state-dependent polynomial O(n7) over the range of principal quantum numbers 40 � n � 150. For all atom-
molecule pairs considered, Rydberg states n 2Sj and n 2Pj result in attractive 1/R6 potentials. In contrast, n 2Dj

states can give rise to repulsive potentials for specific atom-molecule pairs. The interaction energy at the LeRoy
distance approximately scales as n−5 for n > 40. For intermediate values of n � 40, both repulsive and attractive
interaction energies of the order of 10–1000 μK can be achieved with specific atomic and molecular species.
The accuracy of the reported C6 coefficients is limited by the quality of the atomic quantum defects, with relative
errors �C6/C6 estimated to be no greater than 1% on average.
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I. INTRODUCTION

Rydberg atoms with high principal quantum number have
exaggerated properties such as orbital sizes of thousands of
Bohr radii, long radiative lifetime exceeding microseconds,
and extreme sensitivity to static electric fields. The latter is
due to their giant dipole moment and electric polarizability.
These exotic features have made Rydberg atoms a widely
studied platform for fundamental studies and applications
such as quantum information processing [1], quantum non-
linear optics [2], and precision measurements [3]. There is
a growing interest in the preparation and study of ultralong-
range Rydberg molecules [4–7], which emerges from the
binding of an alkali-metal atom to a Rydberg atom as a con-
sequence of the elastic collisions of the Rydberg electron with
the alkali-metal atom, and may lead to promising applications
[8,9].

Ultracold Rydberg atoms can be trapped with high densi-
ties [10], enabling studies of strong long-range interactions
[11,12] and many-body physics [13–15]. Rydberg atoms can
resonantly exchange their excitation energy via Foster pro-
cesses [16], which has been exploited in studies of gas-phase
energy transfer [17] and the formation of ultracold plasmas
[18–20]. Rydberg atoms can also exchange excitation energy
in the microwave regime with molecular gases via Foster pro-
cesses, which has been proposed as a tool for the nondestruc-
tive detection of molecular states in hybrid molecule-Rydberg
systems [21,22]. Simultaneous trapping of ultracold Rydberg
atoms and polar molecules may also be used for direct sym-
pathetic cooling of molecules intro the ultracold regime—a
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longstanding goal in ultracold physics—through elastic van
der Waals atom-molecule collisions [23,24]. In comparison
with dipole-dipole processes, van der Waals collisions do not
require molecules to be confined in low-dimensional traps in
the presence of static electric fields for shielding detrimental
attractive collisions that lead to trap loss [25]. Moreover,
van der Waals interactions can be strong even if the relevant
transition energies in the collision partners are not resonant,
as opposed to Foster processes. Understanding the feasibility
of these promising applications of molecule-Rydberg systems
requires an accurate knowledge of the van der Waals interac-
tion potentials.

For an atom-molecule system at low kinetic energies, the
relevant scattering properties at distances beyond the LeRoy
radius [26] are determined by the long-range interaction be-
tween particles [4]. For R being the distance between the
center of mass of the molecule and the atom, the long-range
interaction potential can be written as an expansion of the
form V (R) = ∑

n Cn/Rn, with n � 3 for neutral particles.
Since we consider atom-molecule interactions for molecules
in their rovibrational ground state (J = 0), the lowest non-
vanishing van der Waals coefficient is C6 [27–29]. Dipole-
dipole contributions to the long-range potential scaling as
1/R3 can be ignored because rotational states do not have
dipole moments in the laboratory frame. Energy-exchange
dipole-dipole contributions do not vanish in principle for J =
0 molecules, but can also be ignored by choosing atomic
levels that do not allow the resonance conditions for energy
transfer.

In this work, we report a large set of van der Waals C6 coef-
ficients that determine the long-range interaction between se-
lected heteronuclear alkali-metal dimers (LiCs, RbCs, LiRb,
and KRb) in their electronic and rovibrational ground state
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TABLE I. Parameters for the fitting C6 = γ0 + γ4 n4 + γ6 n6 + γ7 n7, for selected atom-molecule pairs involving 133Cs atoms in Rydberg
states n2Lj , interacting with LiCs and RbCs molecules in the ground electronic and rovibrational state. � = m is the total angular momentum
projection of the collision pair. C6 is in atomic units (a3

0). The fitting is accurate in the range n = 40–150. The notation A[x] means A × 10x .

Molecule L j |�| γ0 γ4 γ6 γ7

S 1/2 1/2 1.518[11] −1.035[5] −30.94 0.1630
P 1/2 1/2 2.104[12] −1.984[6] 162.1 −1.606

3/2 1/2 2.307[12] −2.366[6] 238.2 −2.375
3/2 2.149[12] −2.186[6] 225.5 −2.236LiCs

D 3/2 1/2 −1.428[12] 1.708[6] −226.6 1.879
3/2 −5.864[11] 7.756[5] −134.4 1.090

5/2 1/2 −1.431[12] 1.909[6] −289.5 2.469
3/2 −1.081[12] 1.462[6] −234.1 1.973
5/2 −3.809[11] 5.716[5] −123.2 0.9800

S 1/2 1/2 −2.907[10] 2.757[4] −13.25 0.05058
P 1/2 1/2 −3.542[11] −1.737[5] −3.808 −0.4723

3/2 1/2 4.866[11] −2.753[5] 18.15 −0.7826
3/2 4.425[11] −2.588[5] 19.43 −0.7408RbCs

D 3/2 1/2 −3.906[11] 2.610[5] −31.40 0.5847
3/2 −2.156[11] 1.565[5] −26.86 0.3579

5/2 1/2 −4.818[11] 3.501[5] −53.47 0.8316
3/2 −3.846[11] 2.821[5] −45.57 0.6657
5/2 −1.901[11] 1.458[5] −29.63 −0.3334

(1�+, v = 0, J = 0) with 85Rb and 133Cs atoms in Rydberg
states n2Lj with 15 � n � 150, taking into account spin-orbit
coupling. n is the atomic principal quantum number, L is the
atomic orbital angular momentum, j is the total electronic
angular momentum, ν is the vibrational quantum number of
the molecule, and J is the rotational angular momentum.
We focus on molecular [30–33] and Rydberg atom species
[34,35] that are experimentally relevant. The precision of the
computed C6 coefficients is limited by the accuracy of the
semiempirical quantum defects used.

We fit the computed atom-molecule C6 coefficients as a
function of n to a polynomial of the form

C6 = γ0 + γ4 n4 + γ6 n6 + γ7 n7, (1)

which is valid in the range 40 � n � 150. The accuracy of the
fitting increases with n. We list the fitting coefficients for all
the atom-molecule pairs considered in Table I for cesium and
Table II for rubidium. The proposed n7 scaling is consistent
with the scaling of the static Rydberg state polarizability [36].
The data set of computed C6 coefficients is provided in the
Supplemental Material [37].

We describe in Sec. II the theoretical and numerical
methodology used to compute C6 coefficients. In Sec. III, we
present the dispersion coefficients for selected atom-molecule
pairs, and discuss their accuracy in Sec. IV. We conclude by
discussing the possible implications of our results.

II. METHODOLOGY

In this section, we briefly review the theory of long-range
interaction between a heteronuclear alkali-metal dimer (par-
ticle A) and an alkali-metal atom (particle B) in an arbitrary
fine-structure level n2Lj , in the absence of external static
or electromagnetic fields. Our work extends the results in

Refs. [27–29] to fine-structure states with high n, as relevant
for Rydberg states.

A. Interaction potential

Consider the charge distributions of molecule A and atom
B, separated by a distance larger than their corresponding
LeRoy radii [26]. The long-range electrostatic interaction
between a molecule (A) and atom (B) is given by the multipole
expansion [38],

V̂AB(R) =
∞∑

LA=0

∞∑
LB=0

L<∑
q=−L<

fLALBq

R1+LA+LB
Q̂LA

q (r̂A)Q̂LB−q(r̂B), (2)

where L< is the smallest of the integers LA and LB. The
multipole moments Q̂LX

q (r̂X ) associated with a particle X =
(A, B) can be written in spherical tensor form [39],

Q̂LX
q (r̂X ) =

(
4π

2LX + 1

)1/2 ∑
i

qir̂
LX
i Y LX

q (θi, ϕi ), (3)

where qi is the ith charge composing the X distribution and
Y LX

q (θi, ϕi ) is a spherical harmonics. Expectation values of
the multipole moments depend on the electronic structure of
the particle. For a two-particle coordinate system in which
the quantization axis is pointing from the center of mass of
particle A to the center of mass of particle B, the factor fLALBq

in Eq. (2) becomes [29]

fLALBq = (−1)LB (LA + LB)!√
(LA + q)!(LA − q)!(LB + q)!(LB − q)!

. (4)

B. Dispersion coefficients

In the long range, the interaction Hamiltonian V̂AB(R) in
Eq. (2) gives a perturbative correction to the asymptotic
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TABLE II. Parameters for the fitting C6 = γ0 + γ4 n4 + γ6 n6 + γ7 n7, for selected atom-molecule pairs involving 85Rb atoms in Rydberg
states n2Lj , interacting with RbCs, LiRb, and KRb molecules in the ground electronic and rovibrational state. � = m is the total angular
momentum projection of the collision pair. C6 is in atomic units (a3

0). The fitting is accurate in the range n = 40–150. The notation A[x] means
A × 10x .

Molecule L j |�| γ0 γ4 γ6 γ7

KRb

S 1/2 1/2 4.340[9] −1905 −0.5274 4.695[−4]
P 1/2 1/2 1.155[10] 27.48 −6.706 0.02190

3/2 1/2 1.429[10] −840.9 −7.419 0.02381
3/2 1.227[10] 9.555 −7.089 0.02286

D 3/2 1/2 4.907[9] −3284 0.1596 −1.883[−3]
3/2 6.531[9] −2307 −2.039 6.199[−3]

5/2 1/2 3.298[9] −2486 0.4228 −2.302[−3]
3/2 4.481[9] −2337 −0.5691 1.173[−3]
5/2 6.782[9] −2026 −2.521 8.018[−3]

LiRb

S 1/2 1/2 1.381[11] −1.085[5] 6.408 −0.04418
P 1/2 1/2 5.353[11] −4.224[5] −13.06 0.01194

3/2 1/2 6.063[11] −4.839[5] −12.77 1.718[−3]
3/2 5.598[11] −4.420[5] −14.57 0.01386

D 3/2 1/2 1.091[11] −1.040[5] 11.58 −0.06377
3/2 2.100[11] −2.024[5] 3.214 −0.03349

5/2 1/2 8.086[10] −7.309[4] 10.89 −0.05510
3/2 1.317[11] −1.237[5] 7.670 −0.04539
5/2 2.309[11] −2.225[5] 1.254 −0.02591

RbCs

S 1/2 1/2 1.316[10] −3897 −2.743 −7.242[−3]
P 1/2 1/2 −1.576[10] 5.049[4] −39.63 0.07148

3/2 1/2 −1.225[10] 5.381[4] −44.40 0.07713
3/2 −1.640[10] 5.347[4] −41.94 0.07316

D 3/2 1/2 2.285[10] −1.490[4] 1.265 −0.01663
3/2 9.039[9] 7469 −12.55 0.01839

5/2 3/2 5.808[10] −1.796[4] −1.099 −0.01126
5/2 5.978[10] −2261 −13.17 0.01667

energies of the collision partners. This energy shift is the
interaction potential VAB(R), which can be evaluated us-
ing second-order degenerate perturbation theory to read
[40,41]

VAB(R) =
∑

n

Cn

Rn
, (5)

where Cn are the dispersion coefficients. Values of Cn are
obtained by defining the zeroth-order eigenstates of the col-
lision pair. In the absence of external fields, these are given
by product states of the form |
(0)

AB〉 = |� (0)
A 〉 |� (0)

B 〉, where
in our case |� (0)

A 〉 ≡ |X 1�+〉 |v = 0, J = 0〉 is the absolute
ground state of an alkali-metal dimer and |� (0)

B 〉 ≡ |(n2L) jm〉
is a general fine-structure state of an alkali-metal atom, with m
being the projection of the total electronic angular momentum
along the quantization axis.

The nondegenerate rovibrational ground state of a 1�

molecule has a definite rotational angular momentum, and
thus parity. Therefore, the lowest nonzero contribution to the
expansion in Eq. (5) is C6/R6. For molecules in an excited
rotational state J � 1, quadrupole moments can give nonvan-
ishing C5 coefficients [27–29]. In this work, we only consider
the ground rotational state (i.e., C5 = 0). The second-order
atom-molecule dipole-dipole interaction thus leads to a C6

coefficient of the form

C6 = −4
∑
A′B′

1(
E (0)

A′ − E (0)
A

) + (
E (0)

B′ − E (0)
B

)
×

∑
qq′

[〈
�

(0)
A

∣∣Q̂(1)
q

∣∣� (0)
A′

〉 〈
�

(0)
B

∣∣Q̂(1)
−q

∣∣� (0)
B′

〉
(1 + q)!(1 − q)!

×
〈
�

(0)
A′

∣∣Q̂(1)
−q′

∣∣� (0)
A

〉 〈
�

(0)
B′

∣∣Q̂(1)
q′

∣∣� (0)
B

〉
(1 + q′)!(1 − q′)!

]
, (6)

where E (0)
A and E (0)

B are the molecular and atomic asymptotic
energies at R → ∞. All projections of the dipole tensors Q̂(1)

q
are taken into account. Primed particle labels refer to inter-
mediate states in the summation. Every intermediate rovibra-
tional state |� (0)

A′ 〉 in ground and excited electronic potentials
is taken into account, as explained below. M is the projection
of the total angular momentum of the molecule along the
internuclear axis. For alkali-metal atoms, we take into account
all possible intermediate states |� (0)

B′ 〉 ≡ |(n′2L′) j′m′〉 up to
convergence of C6.

Following Ref. [42], we rewrite the sum over states in
Eq. (6) in a more convenient form using the identities

1

a + b
= 2

π

∫ ∞

0
dω

ab

(a2 + ω2)(b2 + ω2)
(7)
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and

1

a − b
= 2

π

∫ ∞

0
dω

ab

(a2 + ω2)(b2 + ω2)
+ 2a

a2 − b2
, (8)

which hold for positive real parameters a and b. For molec-
ular states, we set a = Eγ ′v′J ′ − EX 1� vJ , where γ ′ labels
an intermediate electronic state. For atomic states, we set
b = En′L′ j′ − EnL j for upward transitions (En′L′ j′ > EnL j), and
b = EnL j − En′L′ j′ for downward transitions (En′L′ j′ < EnL j).
Atom-molecule C6 coefficients can thus be written as

C6 = −
∑
q,q′

K (q, q′)
{ ∫ ωcut

0

dω

2π
αmm

−q−q′ (iω) αMM
qq′ (iω)

+
∑

n′′L′′ j′′m′′
�(−�En′′L′′ j′′ )α

MM
qq′ (�En′′L′′ j′′ )

× TnL jm(n′′L′′ j′′m′′)
}
, (9)

where K (q, q′) ≡ 4/[(1 + q)!(1 − q)!(1 + q′)!(1 − q′)!] and
ωcut is a cutoff frequency.

The arguments of the integral in Eq. (9) are the dynamic
atomic polarizability component αmm

−q−q′ (z) and the dynamic
molecular polarizability component αMM

qq′ (z), each evaluated
at the imaginary frequency z = iω. The second term in the
curly bracket represents downward transitions in the atom,
with �En′′L′′ j′′ = En′′L′′ j′′ − EnL j . The Heaviside function �(x)
enforces the downward character of the transitions that con-
tribute to this term. These terms are weighted by the product
of the atomic transition dipole integrals,

TnL jm(n′′L′′ j′′m′′) ≡ 〈(n2L) jm|Q(1)
−q|(n′′2L′′) j′′m′′〉

×〈(n′′2L′′) j′′m′′|Q(1)
q′ |(n2L) jm〉, (10)

and the molecular polarizability function αMM
qq′ (ω) evaluated

at the frequency ω = �En′′L′′ j′′/h̄. In this work, we evaluate

both the integral and the downward contributions to C6 up to
convergence within a cutoff ωcut, as described below in more
detail.

C. Polarizability of atomic Rydberg states

The dynamic atomic polarizability αmm
−q−q(ω) in Eq. (9) can

be written for a general atomic state |k〉 as

αkk
pp′ (ω) =

∑
l

〈k|d̂†
p |l〉 〈l|d̂p′ |k〉

El − Ek − ω
+ 〈k|d̂p′ |l〉 〈l|d̂†

p |k〉
El − Ek + ω

, (11)

where ω is the frequency of the dipolar response, d̂p is the
pth component of the electric dipole operator in the spherical
basis, Ek is the zeroth-order energy of state |k〉, and the
state summation runs over all other atomic states |l〉 in the
spectrum, with l 	= k. For alkali-metal atoms, the relevant
atomic states and energies are obtained by numerically solv-
ing the radial Schrödinger equation [−∇2/2 + VL(r)]
B(r) =
EnL j
B(r) with a pseudopotential VL(r) that describes the
interaction of core electrons with a single valence electron
at distance r from the core (origin), including spin-orbit
coupling. The angular part of the atomic wave functions cor-
respond to spherical harmonics Yjm(θ, φ). We solve for the ra-
dial wave function 
B(r) as in Ref. [43], with atomic energies
given by EnL j = −hcR∞/(n − δnL j )2, where hcR∞ = 1/2 is
the Rydberg constant (in atomic units). The fine-structure
quantum defects δnL j used in this work are given in the
Appendix, in terms of the Rydberg-Ritz coefficients for 85Rb
and 133Cs atoms.

We use the atomic energies and radial wave functions
to construct the sum over states in Eq. (11), for a desired
atomic state |(n2L) jm〉. For convenience, the angular parts of
the dipole integrals are evaluated using angular momentum
algebra [39]. The nonvanishing elements of the polarizability
can thus be written as

αmm
−q−q(ω) =

∑
n′′L′′

∑
j′′m′′

(−1)2 j′′+2 j−m′′−m+q+1

[
2(En′′L′′ j′′ − EnL j )

(En′′L′′ j′′ − EnL j )2 − ω2
(2 j + 1)(2L + 1)(2 j′′ + 1)(2L′′ + 1)

×
(

L′′ 1 L
0 0 0

)2{
L j s
j′′ L′′ 1

}2(
j′′ 1 j

−m′′ q m

)2

|〈n′′L′′|er|nL〉|2
]
, (12)

where circular and curly brackets correspond to 3 j and 6 j
symbols [39], respectively. We use Eq. (12) to compute the
nonzero components of the polarizability tensor for atomic
Rydberg states |(n2L) jm〉 with n � 15, ensuring the conver-
gence of the sum over intermediate states for each imaginary
frequency iω that is relevant in the evaluation of the C6 integral
in Eq. (9).

D. Polarizability of alkali-metal dimers

The dynamic molecular polarizability needed for the eval-
uation of the C6 integral is also given by an expression as in
Eq. (11), but for eigenstates |k〉 and energies Ek describing
electronic, vibrational, and rotational state of alkali-metal
dimers. For transition frequencies (El − Ek )/h̄ up to near
infrared (∼1 THz), only states within the ground electronic

potential need to be explicitly included in the summation.
The contribution of transitions between rovibrational states in
different electronic states is taken into account separately, as
explained in what follows.

In the space-fixed frame, Eq. (11) can be given an explicit
form by introducing molecular states |γ , v, JM〉 and energies
Eγ vJ , where γ labels the electronic state. Molecular polariz-
ability components for a rovibrational state |X 1�, v, JM〉 in
the ground electronic state can thus be written as [44]

αX 1� vJM
qq′ (ω) =

∑
γ ′v′J ′M ′

[
2(−1)q(Eγ ′v′J ′ − EX 1� vJ )

(Eγ ′v′J ′ − EX 1� vJ )2 − ω2

×〈X 1
� vJM|Q̂(1)

q |γ ′v′J ′M ′〉

× 〈γ ′v′J ′M ′|Q̂(1)
−q′ |X 1

� vJM〉
]
. (13)
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As anticipated above, for transition frequencies up to the
midinfrared, the dominant contributions to the molecular
polarizability come from rovibrational transitions within the
ground electronic state. Therefore, Eq. (13) can be rewritten
as

αX 1� vJM
qq′ (ω) = αrv

qq′ (ω) + αel
qq′ (ω), (14)

where αrv
qq′ and αel

qq′ are the rovibrational and electronic polar-
izabilities, respectively, given by

αrv
qq′ (ω) =

∑
v′J ′M ′

[
2(−1)q(EX 1� v′J ′ − EX 1� vJ )

(EX 1� v′J ′ − EX 1� vJ )2 − ω2

× 〈X 1
� vJM|Q̂(1)

q |X 1�v′J ′M ′〉

× 〈X 1�v′J ′M ′|Q̂(1)
−q′ |X 1

� vJM〉
]

(15)

and

αel
qq′ (ω) =

∑
γ ′ 	=X 1�

∑
v′J ′M ′

⎡
⎣2(−1)q(Eγ ′v′J ′ − EX 1� vJ )

(Eγ ′v′J ′ − EX 1� vJ )2 − ω2

×〈X 1
� vJM|Q̂(1)

q |γ ′v′J ′M ′〉

× 〈γ ′v′J ′M ′|Q̂(1)
−q′ |X 1

� vJM〉
]
. (16)

For evaluating the molecular dipole integrals in Eqs. (15)
and (16), the space-fixed q component of the dipole operator
is written in terms of the body-fixed p components through the
unitary transformation Q̂(1)

q = ∑
p D∗(1)

qp Q̂(1)
p , where D∗(1)

qp is
an element of the Wigner rotation matrix [39]. Transforming
to the molecule-fixed frame is convenient since the electronic
and vibrational eigenfunctions are given in the body-fixed
frame by most quantum chemistry packages. The nonvanish-
ing terms of the rovibrational polarizability (q′ = q) can thus
be written as

αrv
qq(ω) =

∑
v′J ′M ′

(2J + 1)(2J ′ + 1)
2(Ev′J ′ − EvJ )

(Ev′J ′ − EvJ )2 − ω2

×
(

J ′ 1 J
0 0 0

)2(
J ′ 1 J

−M ′ −q M

)2

×∣∣〈vJ|Q̂(1)
0 |v′J ′〉∣∣2

, (17)

where a redundant electronic state label has been omitted.
The nuclear dipole integrals 〈vJ| Q̂(1)

0 |v′J ′〉 can be evaluated
directly once the rovibrational wave functions |vJ〉 are known.
These are obtained by solving the corresponding nuclear
Schrödinger equation (i.e., vibrations plus rotations) using a
discrete variable representation (DVR) as in Ref. [45], with
potential energy curves (PECs) and Durham expansions for
the energies EvJ given in Ref. [46] for the alkali-metal dimers
used in this work.

For diatomic molecules, the electronic contribution to
the polarizability in Eq. (14) is fully characterized in the
body-fixed frame by the components αel

00(ω) and αel
1,1(ω) =

αel
−1,−1(ω) [47], which define the parallel polarizability

α‖(ω) = αel
00(ω) and the perpendicular polarizability α⊥(ω) =

−αel
±1,±1(ω), with respect to its symmetry axis. For fre-

quencies up to the near infrared, the dynamic electronic

polarizability of alkali-metal dimers does not deviate signif-
icantly from their static values α‖(0) and α⊥(0). Accurate
static electronic polarizabilities for several alkali-metal dimers
can be obtained from Ref. [48]. Explicitly, the space-fixed
polarizability tensor for alkali-metal dimers in the 1� state
is given by

αel
qq(ω) =

∑
J ′M ′

(2J + 1)(2J ′ + 1)

(
J ′ 1 J

−M ′ −q M

)2

×
[(

J ′ 1 J
0 0 0

)2

α‖ + 2

(
J ′ 1 J
1 −1 0

)2

α⊥

]
. (18)

For the rovibrational ground state, Eq. (18) reduces to its
isotropic value αel

iso = (α‖ + 2α⊥)/3 for all q components. It
was shown in Ref. [46] that for frequencies up to ∼103 THz,
the isotropic electronic molecular polarizability can be accu-
rately approximated by

αel
iso(ω) = 2ω� d2

�

ω2
� − ω2

+ 2ω� d2
�

ω2
� − ω2

, (19)

where the parameters ω� and d� are the effective transition
energy and dipole moment associated with the lowest � → �

transition. The parameters ω� and d� are associated with the
lowest � → � transition. For the alkali-metal dimers used
in this work, we take the parameters listed in Ref. [46] to
estimate the electronic contribution to the molecular polariz-
ability over the frequencies of interest.

Finally, we directly compute the downward transition
terms that contribute to C6 in Eq. (9) by evaluating the total
molecular polarizability in Eq. (14) at the relevant atomic tran-
sition frequencies, with an explicit evaluation of the atomic
dipole integrals in Eq. (10).

III. RESULTS

The theoretical framework described above can be used
to obtain C6 coefficients for any alkali-metal atom-molecule
pair, provided the atomic quantum defects and the molecular
polarizability are known. In this work, we restrict the analysis
to atom-molecule pairs involving either 85Rb or 133Cs atoms,
whose Rydberg levels have been widely studied [43]. For a
given atom, we choose molecules that contain that specific
atom in their structure. Such atom-molecule pairs can be
expected to occur naturally in cotrapping experiments.

Specifically, we study the long-range interaction between
two sets of collision partners: (i) 133Cs Rydberg atoms inter-
acting with LiCs and RbCs molecules, and (ii) 85Rb Rydberg
atoms interacting with KRb, LiRb, and RbCs molecules. We
use Eq. (9) to compute the C6 coefficient of each atom-
molecule pair considered, as a function of the principal quan-
tum number n of the atomic Rydberg state n2Lj . We restrict
our calculations to atomic states with L � 2.

The total angular momentum projection along the quanti-
zation axis,

� = m + M, (20)

is a conserved quantity for an atom-molecule collision. For
molecules in the rovibrational ground state (J = 0), we thus
have � = m. Below we present C6 coefficients for each
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FIG. 1. C6 dispersion coefficients as a function the atomic prin-
cipal quantum number n for the Cs-LiCs collision pair. Results
are shown for several atomic Rydberg states n2Lj . LiCs is in the
electronic and rovibrational ground state. Panels show results for
different total angular momentum projections � = m + M: (a) |�| =
1/2, (b) |�| = 3/2, (c) |�| = 5/2. Solid lines correspond to a fitted
n7 scaling.

allowed value of |�|. C6 < 0 correspond to attractive inter-
actions and C6 > 0 describe repulsive potentials.

A. Cesium + molecule

In Fig. 1, we plot the C6 coefficients for 133Cs Rydberg
states n2Lj interacting with LiCs molecules in the rovibra-
tional ground state, as a function of the atomic principal
quantum number n, for all allowed values of �. For concrete-
ness, we restrict the atomic quantum numbers to the range
15 � n � 150, for L � 2.

For Cs Rydberg atoms in 2S1/2, 2P1/2, and 2P3/2 states,
the interaction with LiCs molecules is attractive over the
entire range of n considered. As discussed in more detail
below, this is due to the positive character of the atomic and

molecular polarizability functions at imaginary frequencies
α(iω), which determine the value of the integral term in
Eq. (9). On the other hand, Cs atoms in 2D3/2 and 2D5/2

Rydberg states give rise to repulsive 1/R6 potentials. This
repulsive character of the atom-molecule interaction is due
to the predominantly negative atomic polarizability function
α(iω), while the molecular polarizability function remains
positive. This is consistent with n2D Rydberg states having
negative static polarizabilities α00(ω = 0) [49]. For both at-
tractive and repulsive interactions, the magnitude of C6 scales
as ∼n7 over a wide range of n, as shown explicitly in Fig. 1(c).

The C6 coefficients for the Cs-RbCs collision pair exhibit
the same qualitative behavior as the Cs-LiCs case, with repul-
sive potentials for 2Dj states and attractive interaction for 2S j

and 2Pj Rydberg states. We provide the complete list of all C6

coefficients computed for the Cs-LiCs and Cs-RbCs collision
partners in the Supplemental Material [37].

B. Rubidium + molecule

In Fig. 2, we plot the C6 coefficients for 85Rb Rydberg
states n2Lj interacting with KRb molecules in the rovibra-
tional ground state, as a function of the atomic principal
quantum number n, for L � 2. The results resemble those of
the Cs-LiCs pair with 2S1/2, 2P1/2, and 2P3/2 atomic Rydberg
states giving rise to attractive 1/R6 potentials that scale as
∼n7, as show explicitly in Fig. 2(b) for 2P3/2 states. In this
case, 2Dj states do not give repulsive potentials.

The C6 coefficients for the interaction of Rb Rydberg atoms
with RbCs and LiRb molecules exhibit the same qualitative
behavior as the Rb-KRb case, giving attractive interaction for
2S j , 2Pj , and 2Dj Rydberg states. We provide the complete list
of all C6 coefficients computed for the Rb-KRb, Rb-LiRb, and
Rb-RbCs collision partners in the Supplemental Material [37].

C. Scaling of C6 with n

For all the atom-molecule pairs considered in this work,
we fit the computed C6 coefficients as a function of the atomic
principal quantum number n to the polynomial,

C6 = γ0 + γ4 n4 + γ6 n6 + γ7 n7. (21)

This scaling is valid in the range n ≈ 40–150, with a fit quality
that improves with increasing n. We list the fitting coefficients
for Cs-LiCs and Cs-RbCs pairs in Table I for all of the con-
sidered atomic angular momentum states. The corresponding
fitting coefficients for the collision pairs Rb-KRb, Rb-LiRb,
and Rb-RbCs are given in Table II. The n7 scaling found for
C6 is the same scaling of the static polarizability of Rydberg
atoms [36]. This suggests that the long-range interaction
potential is dominated by the giant Rydberg polarizability, as
expected.

IV. DISCUSSION

Since the C6 coefficients for the atom-molecule pairs listed
in Tables I and II have yet to be experimentally measured, we
estimate their accuracy from other considerations. The first
question to address is the importance of the contribution to
C6 of the downward transition terms in Eq. (9). We find that
for all of the considered atomic states n2Lj , the downward
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FIG. 2. C6 dispersion coefficients as a function of the atomic
principal quantum number n for the Rb-KRb collision pair. Results
are shown for several atomic Rydberg states n2Lj . KRb is in the
electronic and rovibrational ground state. Panels show results for
different total angular momentum projections � = m + M: (a) |�| =
1/2, (b) |�| = 3/2, (c) |�| = 5/2. Solid lines correspond to a fitted
n7 scaling.

transition terms represent a negligible contribution to C6 in
comparison with the integral term that involves the atomic
Rydberg polarizability function.

This conclusion is valid provided we exclude resonant
contributions to the downward transition term that involve
evaluating the molecular polarizability at the atomic transition
frequency �Ea = 2Be, where Be is the rotational constant.
High-n Rydberg states with transition frequencies that are
resonant with rotational excitation frequencies may instead
contribute to energy-exchange processes that scale as 1/R3,
which can be avoided by careful selection of n and L quantum
numbers. After removing resonant contributions (�Ea = 2Be)
from the summation, the contribution of the integral term to C6

in Eq. (9) was found to be at least three orders of magnitude

FIG. 3. Molecular polarizability function at imaginary frequency
α00(iω) for selected alkali-metal dimers in the electronic and rovibra-
tional ground state X 1�+, ν = J = M = 0.

larger than the contribution of the downward transition terms,
for all the atom-molecule pairs studied in the range n � 15.
One way to qualitatively understand this result is by com-
paring the n7 scaling of the static atomic polarizability α(0)
versus the n2 scaling of the radial dipole integrals 〈r2〉1/2 for
Rydberg states. The ratio between the integral (polarizability)
and downward transitions (dipole) in Eq. (9) can thus scale at
least as n3, which gives a ratio of the order of 104 for n = 50
and 106 for n = 100.

A. Error bounds on C6 values

After safely ignoring the atomic downward transition con-
tributions to C6 for n > 15, we now focus on estimating the
accuracy of the frequency integral contribution to Eq. (9).
The rovibrational structure and electrostatic response of most
alkali-metal dimers in the ground X 1� state is well known
from precision spectroscopy experiments and accurate ab ini-
tio studies [33,48,50]. Therefore, the molecular polarizability
function αJM

qq in Eq. (14) is assumed to be known with very
high precision in comparison with the atomic polarizability
function.1 In Fig. 3, we plot the molecular polarizability
function evaluated at imaginary frequencies αJM

qq (iω) up to the
microwave regime for KRb, RbCs, LiRb, and LiCs molecules.
The figure shows the decreasing monotonic character of all
of the studied molecular polarizability functions. As the fre-
quency ω reaches the THz regime (not shown), all molecular
functions αJM

qq (iω) tend asymptotically to their isotropic static
polarizabilities αel

iso [Eq. (19)], and remain constant over a
large frequency range up to several-hundred THz. In other
words, over a broad frequency range up to ∼100 THz, the
contribution of the molecular polarizability to C6 in Eq. (9)
is always positive and can be considered to be bounded from
above by its static value.

The accuracy of our computed atomic polarizability func-
tions αmm

qq (iω) is limited by the precision of the quantum

1Our computed static molecular polarizabilities differ from the
results in Ref. [46] by less than 2%.
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FIG. 4. Dynamic polarizability function at imaginary frequen-
cies (iω) for (a) 85Rb and (b) 133Cs, for selected n2Lj states with
n = 80.

defects that are used, which we take from spectroscopic
measurements [43]. For the considered atomic Rydberg states,
the polarizability functions obtained from Eq. (12) are pre-
dominantly monotonic as a function of frequency, although
we found specific states n2Lj with nonmonotonic frequency
dependence. We illustrate this in Fig. 4, where we show the
polarizability functions αmm

00 (iω) for several n2Lj Rydberg
levels of Rb and Cs atoms in the n = 80 manifold. Figure 4(a)
shows that for the projection m = 1/2 of the 80 2D3/2 Rydberg
state of Rb, the function α(iω) is negative in the static limit,
then has a maximum at ω ≈ 6.5 GHz, from where it decays
to a positive asymptotic value up to a cutoff frequency ωcut of
a few THz. This value at cutoff is five orders of magnitude
smaller (not show) than the maximum in the microwave
regime. In general, for all of the considered atomic states, we
find that |αmm

qq (iω)| is always bounded from above by its value
at ω = 0.

The error of the computed C6 coefficients can thus be
estimated for n � 15 as follows. Ignoring the downward
transition terms and the error in the molecular polarizability
function, Eq. (9) can be written as C̃6 = C6 ± �C6, where C̃6

is the dispersion coefficient obtained in our calculations and

the error is approximately given by

�C6 ≈ −
∑
q,q′

K (q, q′)
2π

∫ ωcut

0

dω

2π
�αmm

qq′ (iω) αMM
−q−q′ (iω),

(22)
where �αmm

qq′ (iω) is the error in the atomic polarizability
function evaluated at imaginary frequencies. We can assume
that the order of magnitude of C6 and �C6 is dominated
by the 00 components of the atomic and molecular polar-
izability functions. If we also assume that the relative error
�αmm

qq (iω)/αmm
qq (iω) remains constant over all frequencies up

to the cutoff ωcut, and use the fact that |α(iω)| is bounded from
above by its static value in the atomic and molecular cases, we
can estimate an approximate error bound for C6 as∣∣∣∣�C6

C6

∣∣∣∣ �
∣∣∣∣�αmm

00 (0)

αmm
00 (0)

∣∣∣∣. (23)

In other words, the accuracy of our C6 calculations cannot be
expected to be better than the accuracy of the static atomic
polarizability. The static polarizabilities of several Rydberg
states of 85Rb and 133Cs are known from laser spectroscopy
measurements in static electric fields [51–53], and also from
precision calculations using state-of-the-art ab initio pseu-
dopotentials [49]. Therefore, we can estimate �αmm

00 (0) for
several atomic Rydberg states n2Lj by comparing with the
available data. It proves convenient for comparisons to rewrite
the atomic polarizability in Eq. (12) such that the Stark shift
�E(nL) jm of the Rydberg state |(n2L) jm〉 in the presence of the
electric field E in the Z direction can be written in the standard
form [47],

�E(nL) jm = −1

2

[
α0( j) + α2( j)

3m2 − j( j + 1)

j(2 j − 1)

]
E2, (24)

where α0( j) is the scalar polarizability and α2( j) is the tensor
polarizability. The factor in square brackets is equal to αmm

00 (0)
in Eq. (12).

In Fig. 5, we plot the the static polarizability of 133Cs atoms
in selected angular momentum states, as a function of the
principal quantum number n. As a standard, we use ab initio
results from Ref. [49]. Our computed values agree with the
standard with very high accuracy. For example, the average
relative errors over the range 15 � n � 50 are −0.02% for
2S1/2 states [Fig. 5(a)], +0.27 % for 2D5/2 states with m =
5/2 [Fig. 5(b)], and +0.13 % for 2D3/2 states with m = 3/2
[Fig. 5(c)]. For other Rydberg states of 133Cs, we obtain
similar accuracies.

In Fig. 6, we plot the the static polarizability of 85Rb
atoms in selected angular momentum states, as a function of
n. For 85Rb atoms, all the static polarizabilities that we com-
pute show excellent agreement with reference values (errors
smaller than 1%), except for the Rydberg state n 2D3/2 with
m = 1/2. For this atomic state, our results for α00(0) have
large relative errors around n = 45, as Fig. 6(c) shows. We
can understand this by noting that for j = 3/2 and m = 1/2,
Eq. (24) reads �E = −(α0 − α2)E2/2. For the n 2D3/2 states
of 85Rb, experiments show that α0 ≈ α2 in the range n = 30–
60 [54], with α0 � α2 in the higher end of this range. This is
confirmed by the ab initio results in Ref. [49], which predict
a change of sign in the static polarizability at n = 46, from
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FIG. 5. Static polarizability of 133Cs atoms in selected angular
momentum states (in units of a3

0), as a function of the principal
quantum number n, for 133Cs atoms in selected angular momentum
states: (a) α00 component for 2S1/2, (b) α00 component for 2D5/2,
m = 5/2, (c) α00, α11, and α−1−1 components for 2D3/2 m = 1/2.
Results for α00 from Ref. [49] are also shown.

positive to negative. By separately comparing our results with
experimental and theoretical values for α0 and α2 (not shown),
we observe that our errors are of the same magnitude as the
difference α0 − α2 in the range 30 < n < 60, which makes the
atomic polarizability calculations unreliable for this particular
tensor component (α00) and atomic quantum numbers. Errors
can be traced to the empirical quantum defects that are used.
We also show in Fig. 6(c) that over the same range of n in
which α00(0) exhibits large relative errors, other polarizability
components that do not change sign behave smoothly.

Another possible source of error in our C6 calculations is
the choice of the high-frequency cutoff ωcut in the numerical
integration of Eq. (9). For every atomic Rydberg state that is
considered, we tested the numerical convergence of the inte-
gration by increasing the value of the cutoff until the relative

FIG. 6. Static polarizability of 85Rb atoms in selected angular
momentum states (in units of a3

0), as a function of the principal
quantum number n: (a) α00 component for 2S1/2, (b) α00 compo-
nent for 2D5/2, m = 5/2, (c) α00, α11, and α−1−1 components for
2D3/2 m = 1/2. Results for α00 from Ref. [49] are also shown.

change δC6/C6 was smaller than a predefined tolerance value
ε. For atom-molecule pairs involving both 85Rb and 133Cs
atoms, the polarizability integral converges faster with in-
creasing cutoff for intermediate and high values of n � 30,
in comparison with low-n states. The latter result in slower
integral convergence. We converged all our n ≈ 15 integrals
at ωcut = 3 THz with a tolerance ε = 0.01, which ensures
convergence over an entire range of n.

B. Effect of the molecular dipole moment

In Fig. 7, we show the increase in the magnitude of C6

as the permanent dipole moment of alkali-metal dimers in-
creases, for selected states n 2P1/2 of 85Rb. The C6 coefficient
for the Rb-LiRb pair is larger than the corresponding values
for RbCs and KRb, which have a smaller dipole moment. The
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FIG. 7. Bar plots log10|C6| for n = 15, 50, 80 for atom-molecule
pairs involving 85Rb atoms in the n 2P1/2 state with KRb, RbCs, and
LiRb molecules in the rovibrational ground state. The permanent
dipole moment of each molecule is shown in parentheses on the
horizontal axis [48].

same trend also holds for other n2Lj states of 85Rb, and for
atom-molecule pairs involving 133Cs atoms.

V. CONCLUSION

The characteristic length scale for the van der Waals in-
teraction between a Rydberg atom and a ground-state alkali-
metal dimer is the LeRoy radius RLR [26], given by the
average root-mean-square electron radius of the collision pair.
For alkali-metal atoms in low-lying Rydberg states (n ≈ 15–
20), the typical mean atomic radius can be of the order of
100–1000 a0, where a0 is the Bohr radius, thus exceeding by
orders the typical size of the electron radius of ground-state
molecules of only a few Bohr radii. The ratio between atomic
and molecular radial distances further increases with n. For
the atomic states that are considered in this work, the van
der Waals length is thus dominated by the LeRoy radius
of the Rydberg atom, RnL ≡ 〈n2L|r2|n2L〉1/2. Given the n2

scaling of the Rydberg radius and the n7 scaling of the atom-
molecule C6 coefficients, the van der Waals energy should thus
approximately scale as UvdW ≡ C6/R6

nL ∼ n−5. We find this
scaling to be most accurate for n � 50.

From the values of C6 listed in Tables I and II, the van der
Waals energy UvdW can be estimated in absolute units. For
example, for the LiCs–Cs system with 133Cs in the n 2D5/2

state and � = 5/2, the van der Waals potential is repulsive
[Fig. 1(c)], with a collisional barrier reaching UvdW ≈ 38 MHz
for n = 20. This should be sufficient to avoid short-range
collisions for atom-molecule pairs with relative kinetic energy
up to 1.82 mK. By increasing the atomic quantum number to
n = 40, the potential barrier drops to UvdW ≈ 0.43 MHz for
the same collision pair. Our results thus suggest that given
a specific atom-molecule system of experimental interest, it
is possible to find an atomic Rydberg state that gives an
attractive or repulsive potential with a desired interaction
strength.

TABLE III. Rydberg-Ritz coefficients for 85Rb.

Lj a b c d nmin

S1/2 3.1311804(10) 0.1784(6) −1.8 14
P1/2 2.6548849(10) 0.2900(6) −7.9040 116.4373 11
P3/2 2.6416737(10) 0.2950(7) −0.97495 14.6001 13
D3/2 1.34809171(40) −0.60286(26) −1.50517 −2.4206 4
D5/2 1.34646572(30) −0.59600(18) −1.50517 −2.4206 4
Fj 0.016312 −0.064007 −0.36005 3.2390 4

We can extend the formalism in this work to also obtain
van der Waals coefficients for excited rovibrational states of
alkali-metal dimers. In this case, C5 coefficients do not vanish
in general [29]. The interplay between C5 and C6 with opposite
signs at long distances can possibly lead to long-range po-
tential wells that can support Rydberg-like metastable bound
states accessible in photoassociation spectroscopy [4,27–29].

Repulsive van der Waals interactions may be used for
sympathetic cooling of alkali-metal dimers via elastic col-
lisions with ultracold Rydberg atoms. Since inelastic and
reactive ultracold collisions [55,56] can lead to spontaneously
emitted photons carrying energy away from a trapped system
[23], it should be possible to measure the elastic-to-inelastic
scattering rates and follow the thermalization process of a
cotrapped atom-molecule mixture. Attractive van del Waals
potentials can be exploited to form long-range alkali-metal
trimers via photoassociation [7].
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APPENDIX: QUANTUM DEFECTS

The quantum defects used in this work are collected from
Ref. [43] in terms of the expansion

δnL j = a + b

(n − a)2
+ c

(n − a)2
+ d

(n − a)2
+ e

(n − a)2
,

(A1)
where the Rydberg-Ritz coefficients (a, b, c, d ) are given in
Table III for 85Rb and Table IV for 133Cs atoms, together with
the minimum value of n for which the expansion is estimated
to be valid.

TABLE IV. Rydberg-Ritz coefficients for 133Cs.

Lj a b c d nmin

S1/2 4.049352(38) 0.238(7) 0.24044 0.12177 6
P1/2 3.5916(5) 0.36(1) 0.34284 1.23986 6
P3/2 3.5590(7) 0.38(1) 0.28013 1.57631 6
D3/2 2.475454(20) 0.010(4) −0.43324 −0.96555 5
D5/2 2.466308(30) 0.015(6) −0.43674 −0.74442 5
F5/2 0.033587 −0.213732 0.70025 −3.66216 4
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