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We report on experimental elastic differential and integral cross sections for electron scattering from bismuth.
The energy range of those measurements is 10–100 eV, while the scattered electron angular range in the
differential cross section data is 10◦–150◦. We also supplement our experimental results with theoretical data
from our optical potential approach, in this case applying two different sets of scattering potentials to the
problem. Good overall qualitative accord is typically observed between our measured and calculated results,
particularly when allowance is made for the dimer contribution in the experimental atomic beam.
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I. INTRODUCTION

Interest in studying the properties of bismuth (Bi) arises
from both fundamental and applied reasons. From a funda-
mental perspective Bi is a heavy atom so that relativistic
effects in the electron-scattering process might be anticipated.
Indeed both measurements and calculations that look at the
polarization of elastically scattered electrons, thereby allow-
ing a detailed study of spin-dependent interactions during the
scattering process, have been undertaken [1,2]. Additionally,
with its open shell structure (a ground-state configuration of
[Hg] 6p3 4S3/2), Bi represents a stringent test in describing
both its valence-electronic structure and then employing the
results of those structure calculations in electron-scattering
theoretical computations [3]. The presence of bismuth lines
in stellar spectra has been reported in several different types
of chemically peculiar stars [4–6]. Quantitative modeling of
those spectra require [7,8], in part, both electron- and photon-
driven cross sections, transition probabilities, astrochemical
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reaction rates, and so on. This modeling can in turn lead
to remote sensing opportunities being uncovered, such as
described in past work by Campbell and colleagues [9–11].
From an applied perspective, bismuth has also generated some
interest in the field of nanotechnology [12,13].

There is currently in the literature only a few available
papers containing results for calculations of differential cross
sections (DCSs) for elastic electron scattering from the bis-
muth atom. Schonfelder [14] used a relativistic Hartree ap-
proximation to calculate an elastic DCS at 100 eV incident
electron energy, while Fink et al. [15] and Fink and Yates [16]
solved the Dirac equation, with a Kohn-Sham representation
for the target states, to determine the elastic DCS in the
100–1500 eV energy range. Somewhat more recently, Neerja
and Tripathi [3] employed a semirelativistic approach, in the
energy range 2–500 eV, in order to report elastic DCSs, elastic
integral cross sections (ICSs), and momentum transfer cross
sections (MTCSs). Given this sparsity of available theoretical
results, one rationale behind this investigation was to employ
our optical potential (OP) approach [17] to this scattering sys-
tem in order to at least partially alleviate that deficiency. From
an experimental perspective, the first measured data were
the relative elastic angular distributions of Haug [18]. That
work was undertaken over the scattered electron angular range
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θe = 30◦–155◦, and for incident electron energies between
5–1200 eV. The only absolute elastic DCS measurement
currently available is from Williams et al. [19], at the single
incident electron energy of 40 eV and for θe = 10◦–130◦. It
is understood in the electron-scattering community that the
ground-breaking electron-metal vapor measurements, made at
the Jet Propulsion Laboratory (JPL) from the early 1970s–
1980s, for both elastic and discrete inelastic processes, have
not stood the test of time and are inaccurate. There are many
examples confirming that assertion, including for sodium [20],
magnesium [21,22], and zinc [23]. Thus a further rationale
behind this submission was to check that scenario explicitly
for bismuth [19] and, just as importantly, to extend the avail-
able experimental elastic cross section data base beyond the
single 40-eV measurement. This is absolutely crucial in terms
of providing a serious benchmark to test theory against. For
completeness, we also note the work from the Belgrade group
on electron impact excitation of the inelastic 6p27s 4P1/2 level
of bismuth [24] and on its autoionizing states [25].

The remainder of this paper is structured as follows. In
Sec. II we present a brief discussion of our experimental
methodology, while in Sec. III a précis of our OP method is
provided. Our results and discussion are given in Sec. IV, with
some conclusions from this study thereafter being drawn.

II. EXPERIMENTAL CONSIDERATIONS

The apparatus and measurement procedures for this study
are very similar to those we employed in our recent work
with zinc [23], and so only a brief précis of the features
specific to bismuth need to be addressed here. A conventional
crossed-beam electron spectrometer and atomic-beam source
was employed, with both the electron beam and atomic beam
being highly stable (to better than ∼2% in each case) through-
out our experiments.

The incident electron energies (E0) in this investigation
were 10, 20, 40, 60, 80, or 100 eV, with typical electron-beam
currents in the range 1–10 nA, as measured with a standard
Faraday Cup configuration, being achieved. The overall en-
ergy resolution was ∼150 meV full width at half maximum
(FWHM), while the incident electron-beam energy scale was
calibrated against the well-known 3s3p 1P excitation threshold
of magnesium at 4.346 eV and is accurate to ∼ ± 300 meV
(FWHM). The angular resolution of the spectrometer was
estimated to be 1.5◦ (FWMH), while the uncertainty in the
angular scale, the true zero-degree scattering angle (θe) being
established by the symmetry of the elastic intensity between
−20◦ and +20◦, is ±0.5◦. Note that the scattered electron
angular range of the present DCSs was 10◦–150◦, with the
minimum angle being set by primary electron-beam interfer-
ence and the maximum angle being defined by the physical
sizes of the electron monochromator and electron analyzer.

The bismuth atomic beam, formed from pure Bi granules,
was generated using a resistively heated oven fabricated from
titanium. Note that water cooling of the oven shield, in con-
junction with thermal insulation from ceramic components,
minimized the potential effects of the high oven temperature
(T ) on all components of the apparatus including the channel
electron multiplier detector. The oven nozzle aspect ratio was
0.075, a small enough value that should assist in minimizing

any possible effective-path-length correction factor effects
on the measured angular distributions even for a single-tube
capillary such as here [26,27] (see below). Monitoring of
the oven temperature was crucial to ensure a stable atomic
beam, with a somewhat higher temperature at the top of the
crucible ensuring the nozzle did not clog and a somewhat
lower T (∼1000 K) at the bottom providing the effusive flow
of the Bi beam. The corresponding metal vapor pressure (P)
was approximately 10 Pa, while the background pressure in
the chamber was better than 5 mPa. Under those operating
conditions (T, P) bismuth is known to cluster [28], with an
estimate of 80% monomer and 20% dimer being determined
here. In 1963 Nesmeyanov [28] published a book in which
he reviewed the variation of vapor pressure of different
species (atoms and molecules) with temperature including
their cluster compositions. For bismuth his review covered
several ranges of temperature, overall from 480 to 2500 K,
while the dimer percentage was determined by means of
mass spectrometry analyses. Nesmeyanov [28] started with
the paper of Barus [29] and then covered several different
methods for elucidating the dependence of P on T including
the Knudson effusion method [30] and Langmuir vaporization
technique for liquid phase vapor pressure and partial pressure
measurements [31]. He obtained the following relation:

log(P) = A − B/T + C × T + D log(T ), (1)

where T is in Kelvin and P in Torr and the coefficients
are determined for liquid bismuth as A = 11.48875; B =
9217.28; C = −0.000061149; and D = 0.95933. In his book
the relevant table presents, as a function of temperature, the
total Bi vapor pressure, atomic partial pressure (Pa), and dimer
partial pressure (Pm). For a temperature ∼1000 K, and by
applying gas kinetic theory, the ratio of the number density
of dimers (nm) to the total number density (n), as given by

nm/n = 1

/(
1 +

(
Pa

Pm

))
, (2)

which leads to a value of nm/n ∼ 0.20 with the values of Pa =
0.216 Torr and Pm = 0.055 Torr. The estimated uncertainty
on that value of nm/n depends on the uncertainty in the model
P versus T curve and the uncertainty on our measured value
of T . Here this overall uncertainty was thought to be of
the order of 10%, giving the value of nm/n = 0.20 ± 0.02.
Note that this estimate is consistent with the 15%–30% dimer
contribution from Kaussen et al. [1] at their higher working
temperature of 1500 K. Further note that this is a crucial
point to remember when we compare our theoretical and
experimental cross section results in Sec. IV.

After appropriate background subtraction, two approaches,
which gave self-consistent results for the derived DCSs at
each E0 and θe, were employed to set the absolute scale
of our data [23]. In the first normalization approach, for a
given E0, the elastic angular distributions were determined by
measuring the scattered elastic count rate (i.e., at 0 eV energy
loss) at each chosen scattered electron angle θe, and then
correcting those data for the forward angle scattering effect
using the approach of Brinkman and Tramar [26]. This an-
gular distribution (elastic counts versus θe) was subsequently
placed on an absolute scale, from energy loss measurements
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(a) (b)

FIG. 1. Typical electron energy-loss spectra for electrons scattering from Bi. The relevant kinematical conditions are as follows: (a) E0 =
10 eV and θe = 30◦ and (b) E0 = 100 eV and θe = 6◦. The three features that correspond to excitations of the molecular states of Bi2 are
labeled B, C, D.

(see Fig. 1) that encompassed the elastic (4S3/2 state) and
inelastic (6p27s 4P1/2) peaks, at one or two specific normal-
ization angles. This approach, of sitting on the elastic peak
and recording the count rate as a function of θe, is relatively
quick as only 1 or 2 cross-check energy loss spectra are
then subsequently needed to set the absolute scale. From the
ratio of the elastic to inelastic intensities, and a knowledge
of the absolute 4P1/2 DCSs from Marinković et al. [24], our
angular distribution measurements at the given energy could
now be placed on an absolute scale. The only concern with this
method, particularly at the smaller incident electron energies,
is the behavior of the analyzer transmission as a function of
the scattered electron energies. For example, this follows as
for a 10-eV incident electron the outgoing scattered electron
energies will vary from 10 eV (4S3/2 state) to 6 eV (4P1/2

state) across our energy-loss spectrum. However, our analyzer
electron optics were designed to cope with this behavior so
that we believe our transmission function is uniform to better
than 23% at E0 = 10 eV and 7% at E0 = 100 eV. The second
normalization approach we utilized, again at each E0, was to
measure energy loss spectra at each chosen θe and, in the man-
ner just described, determine the elastic DCS directly from
those energy-loss spectra. This second approach is relatively
more time consuming, compared to method 1, as energy loss
spectra at all relevant θe are now required. The efficacy here,
however, is that the effective path-length correction factor
[26,27] cancels out in taking the ratio, and is thus not rele-
vant with this approach. However, the analyzer transmission
function issue remains open. Nonetheless, as noted earlier, the
elastic DCSs we determined from the two normalization tech-
niques, irrespective of E0, were always consistent to within
the uncertainties we cite. This gives us some confidence in
the utility of our experimental measurement techniques and
procedures. A summary of the current measured elastic DCSs
and their uncertainties is given in Table I, with plots of those

results and our new OP computations being found in Figs. 2
and 3.

The uncertainties in our measured DCSs stem from a
variety of contributions. As noted earlier, the stabilities of
the electron and atomic beams are both better than 2% over
the lifetime of a given experimental run. Despite the large
dynamic range of the elastic intensity over the θe we probed
(see Table I), the statistical uncertainties in our angular dis-
tributions were rarely worse than 30% and only then at the
larger scattering angles. To place the angular distributions on
an absolute scale, we carry over the intrinsic uncertainty on
the earlier 4P1/2 inelastic DCS from Marinković et al. [24]
at the normalization angle, the uncertainty in our effective
path-length correction factor (<5%), the uncertainty of ∼1%
in our energy and angular calibrations, and the uncertainty
of ∼23% at 10 eV decreasing to ∼7% at 100 eV on our
analyzer transmission functions associated with the energy-
loss measurements and our determination of the elastic to
inelastic ratios. When combining all these contributions in
quadrature, we found that the overall uncertainties on our
elastic DCSs typically lay in the range 15%–55%, with the
exact uncertainties at each E0 and θe being found in Table I.

Having determined our elastic DCSs, we now need to ex-
trapolate them to θe = 0◦ and 180◦, perform an interpolation,
and then undertake the appropriate integrations in order to
derive the elastic ICSs and MTCSs at each energy. Three
approaches were utilized to achieve that aim. In the first a “by
eye” empirical procedure was used, while in the second the
shape of our OP theory results, after allowance was made for
the monomer or dimer mixture in our experimental beam, was
employed. Finally, the complex phase-shift analysis of Allen
and co-workers [32,33] provided our final self-consistency
check. In all cases the ICSs and MTCSs we obtained, from
each of the aforementioned approaches, were found to be
consistent with one another to within our uncertainty estimate
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TABLE I. Differential cross sections for elastic electron scattering from bismuth. The last two rows are the integrated elastic ICS (QI) and
momentum transfer cross sections (QMTCS) in units of 10−20 m2. The absolute uncertainties are indicated in parentheses.

Scattering
angle DCS (10−20 m2sr−1)

(degrees) 10 eV 20 eV 40 eV 60 eV 80 eV 100 eV

10 135(46) 145(22) 45.5(7.7) 31.3(4.9) 19.8(3.1) 17.1(2.8)
20 60(21) 38.2 (5.9) 4.89(0.85) 3.03(0.17) 2.69(0.42) 2.62(0.43)
30 25.1(8.6) 7.93(1.19) 0.705(0.141) 1.08(0.48) 1.48(0.23) 1.85(0.30)
40 10.3(3.5) 1.65(0.26) 0.349(0.080) 0.86(0.14) 0.99(0.15) 1.01(0.17)
50 4.9(1.7) 0.665(0.102) 0.722(0.145) 0.500(0.081) 0.501(0.078) 0.310 (0.051)
60 2.81(0.96) 0.827(0.128) 0.968(0.185) 0.259(0.043) 0.242(0.038) 0.189(0.031)
70 1.54(0.53) 0.836(0.128) 0.601(0.122) 0.171(0.029) 0.195(0.031) 0.156(0.026)
80 1.02(0.35) 0.470(0.073) 0.265(0.063) 0.142(0.024) 0.251(0.039) 0.170(0.028)
90 0.57(0.19) 0.188(0.030) 0.141(0.042) 0.142(0.024) 0.247(0.039) 0.209(0.035)
100 0.48(0.16) 0.224(0.036) 0.575(0.117) 0.177(0.030) 0.229(0.036) 0.228(0.038)
110 0.56(0.19) 0.374(0.059) 1.09(0.19) 0.304(0.049) 0.228(0.036) 0.102(0.017)
120 0.72(0.25) 0.351(0.055) 1.27(0.24) 0.374(0.061) 0.183(0.029) 0.0819(0.0137)
130 0.94(0.32) 0.232(0.037) 0.668(0.136) 0.310(0.051) 0.101(0.017) 0.0455(0.0076)
140 1.20(0.41) 0.317(0.050) 0.509(0.107) 0.121(0.021) 0.0391(0.0063) 0.0916(0.0153)
150 1.40(0.76) 1.16(0.18) 0.731(0.144) 0.134(0.023) 0.0730(0.0116) 0.205(0.034)
QI 89.2(26.8) 58.9(17.7) 21.8(6.5) 12.2(3.7) 9.2(2.8) 9.1(2.7)
QMTCS 19.3(5.8) 12.1(3.6) 9.2(2.8) 3.29(1.0) 2.44(0.73) 2.49(0.75)

of ±30%. A summary of our ICS and MTCS results is given
in Table I, with the elastic ICS results also being plotted in
Fig. 4.

III. THEORETICAL DETAILS

We have recently described our standard optical potential
approach in our studies of the electron-beryllium [34] and
electron–magnesium [35] scattering systems. All the generic
details of our atomic OP method, including the forms of
the static potential, polarization potential, and the exchange
potential, that we use, were given in those papers [34,35] and
so only the key points of this method are summarized here.
The electron-atom interaction is described by a local complex
potential given by

V (r) = Vs(r) + Vex(r) + Vpol(r) + iVabs(r), (3)

where the real part comprises the following three terms. Vs is
the static term derived from a Hartree-Fock calculation [36]
of the atomic charge distribution. Vex is an exchange term
which accounts for the indistinguishability of the incident
and target electrons; it is given by the semiclassical energy-
dependent formula derived by Riley and Truhlar [37]. Vpol is
a polarization potential for the long-range interactions which
depend on the target dipole polarizability, in the form given
by Zhang et al. [38].

The imaginary absorption potential accounts for the elec-
tronically inelastic scattering events. It is based on the
quasifree model by Staszewska et al. [39] but incorporates
some improvements to the original formulation, such as the in-
clusion of screening effects, local velocity corrections, and the
description of the electron indistinguishability [40] leading
therefore to a model which provides a realistic approximation
for electron-atom scattering over a broad energy range [41].

In this study, however, different forms of the static potential
and polarization potential were also applied, with the cross

section results from using those new potentials being denoted
here as OP2. In this latter case, a relativistic formulation was
used for the calculation of the static potential. The spin-orbit
interaction is then included and the three 6p electrons give rise
to the five states 6p3 4S3/2, 6p3 4D3/2,5/2, and 6p3 4P1/2,3/2.
A linear combination of the wave functions corresponding
to these five states was then used in a five-state Dirac-Fock
multiconfiguration calculation [42] to determine the ground-
state wave function of Bi. The static potential of Bi was then
determined in the usual manner [see Eq. (9) in Chen et al.
[43]].

The asymptotic form of the polarization potential can
be expressed analytically in terms of the static multipole
polarizabilities of the atom. However, there is no such an-
alytic form for the polarization potential inside the charge
density of the atom. In order to ensure that this potential
goes to zero (or a small number) at the origin, one can use
a parametrized form for this potential as was done in Eq. (4)
in this region. However, in the polarized-orbital method for
closed sub-shell atoms [44,45], there are no such adjustable
parameters. Rather, one uses first-order perturbation theory to
calculate adiabatically, the first-order correction to the atomic
wave functions due to the charge of the incident electron
at a distance r from the origin. The polarization potential
inside the atom is then given in terms of indefinite integrals
involving the unperturbed Hartree-Fock orbitals Pnl (r) and
their first-order corrections F νν ′

nl (r) according to

Vp(r) = −2
∑

nl
νν′

1

r
Gl ′

ν ′νyν

(
Pnl (r), F νν ′

nl ; r
)
, (4)

where the parameter Gl ′
ν ′ν is given in terms of 3- j symbols by

Gl ′
ν ′ν = (2l + 1)(2ν + 1)

(2ν ′ + 1)

(
lνν ′

000

)2

. (5)
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FIG. 2. Differential elastic cross sections (10−16 cm2/sr) for electron scattering from bismuth at (a) 10 eV, (b) 20 eV, and (c) 40 eV. The
present measurements (•) and those of Williams et al. [19] (�) are compared against the current OP results for Bi (—) and Bi2 (- - - - -), our
OP2 results for Bi(– –) and Bi2 (– · – · ), and our mixed monomer and dimer OP2 results (— - —). See text for further details.

Here the variables nl are the usual principal and angular
momentum quantum numbers and ν is the order of the mul-
tipole; ν ′ is just a dummy summation variable. Furthermore,
the first-order corrections F νν ′

nl (r) are solutions of the integro-
differential Eq. (12) of Ref. [44].

As a consequence, this polarization potential actually re-
flects the internal charge density structure of the atom. In
order to improve upon the adiabatic nature of this polarization
potential, a nonadiabatic correction to this potential, called the
dynamic distortion potential, can also be included [46].

The polarized-orbital method also yields reliable estimates
of the atomic static multipole polarizabilities of the atom
[47,48]. However, the values of these static polarizabilities
are only influenced by the outermost two to three n shells
of the atom where n is the principal quantum number. It
is also the contribution of these outermost atomic n shells
to the polarization potential which are the most impor-

tant in a scattering calculation since, for relatively small
r, the total scattering potential is dominated by the static
potential.

In the case of Bi, which has an outer electron configuration
of 6p3, the overall charge density of this atom will be very
similar to that of the closed-shell atom Rn (6p6) except for the
outermost n = 5 and 6 shells. Consequently, their polarization
potentials will also be very similar, except for the outermost
distances r inside the atom. Thus, in order to approximate
an ab initio polarization potential for Bi, we have scaled
the polarization potential of Rn by the ratio of their dipole
polarizabilities. This radon polarization potential included the
first eight static multipoles (i.e., ν = 1–8) as well as the
corresponding dynamic distortion potential defined in Eq. (23)
of Ref. [46]. This overall procedure has proved highly suc-
cessful in the treatment of electron and positron scattering
from other atoms and molecules [49].
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FIG. 3. Differential elastic cross sections (10−16 cm2/sr) for electron scattering from bismuth at (a) 60 eV, (b) 80 eV, and (c) 100 eV. The
present measurements (•) are compared against the current OP results for Bi (—) and Bi2 (- - - - -), our OP2 results for Bi(– –) and Bi2 (– · – · ),
and our mixed monomer and dimer OP2 results (— - —). See text for further details.

As a result of the experimental beam containing a compo-
nent (∼20%) of Bi2, we also needed to calculate the cross
sections for bismuth’s molecular dimer. This was achieved
with our independent atom method complemented with the
screening corrected additivity rule [50,51] and including in-
terference effects (IAM-SCAR+I) [52]. In the independent
atom method (IAM) with the additivity rule (AR), the dimer
cross sections would simply be twice those of the monomer
cross sections (at each E0 and θe). This representation is
clearly unphysical at lower incident electron energies. To
account for that Blanco and colleagues [50–52] introduced
corrections to consider the molecular geometry to account for
the overlapping of the atomic cross sections, and additionally
it now allows for interference effects [52]. This is the so-
called IAM-SCAR+I approach which has been successfully
employed, on many molecular systems, for some years now
(see, e.g., Ref. [53] and references therein).

IV. RESULTS AND DISCUSSION

In Fig. 1 we show some typical results for electron energy-
loss spectra from the current study. For atomic systems,
particularly for lower n (principal quantum number) values
of the valence shell, we would anticipate to see a series
of well-resolved lines. In this case, however, the picture is
somewhat complicated by the presence of an appreciable
Bi2 dimer contribution (∼20%) to the measured spectra. In
particular, features B, C, and D, which do not correspond to
any known atomic transitions in Bi, are highlighted in Fig. 1.
Note that there is also presumably a vibrational progression
associated with the molecular electronic states denoted by B,
C, and D and with the elastic peak. The two most important
points we can glean from Fig. 1 are that the elastic peak
is well resolved from all the inelastic features, and that the
important 6p27s 4P1/2 inelastic peak (which is used in the
normalization process) is also quite well resolved from its
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FIG. 4. Integral elastic cross sections (10−16 cm2) for electron
scattering from bismuth. The present measurements (•) and that of
Williams et al. [19] (�) are compared against the current OP results
for Bi (—) and Bi2 (- - - - -), our OP2 results for Bi(– –) and Bi2

(– · – · ), and our mixed monomer and dimer OP2 results (— - —).
See text for further details.

nearest neighbors or could be spectrally deconvolved [54]
from its nearest neighbors if required.

In Fig. 2 for 10 eV, 20 eV, and 40 eV, and Fig. 3 for
60 eV, 80 eV, and 100 eV, we present our experimental and
theoretical differential cross section results for elastic electron
scattering from bismuth. Specifically, our theory results show
the Bi DCS calculated within our atomic optical potential
approach with our usual scattering potentials (denoted as
OP) and with our modified scattering potentials (denoted as
OP2; see Sec. III for more details). In addition, corresponding
IAM-SCAR+I Bi2 DCS are also shown, calculated in each
case for the different atomic OP results, and denoted as OP
Bi2 or OP2 Bi2, respectively. Differences between our OP Bi
and OP2 Bi DCSs were subtle (see Figs. 2 and 3), and were
mainly seen in the magnitudes of the calculated cross sections
at the lower incident electron energies. However, the shapes of
the OP and OP2 monomer DCSs were very similar at all the
energies probed. A similar scenario is also observed when we
compare the dimer OP Bi2 and OP2 Bi2 DCSs. Interestingly,
and irrespective of whether we are considering the OP Bi and
OP Bi2 DCSs or OP2 Bi and OP2 Bi2 DCSs, the effect of the
molecular application is to relatively increase the magnitude
of the DCSs and to somewhat “fill-in” the pronounced angular
structure observed at all energies in the differential cross
sections. This latter behavior is entirely due to the screening
coefficients and interference terms, that have been incorpo-
rated into our molecular cross section calculations in order
to extend the validity of our approach to incident electron
energies below 100 eV where the additivity rule fails. Note
that both these corrections to the additivity rule contribute

to the observed “fill-in” effect, as was explicitly checked by
repeating our computations with them included and excluded,
as required. Further note that we consider the polarization and
static potentials that we employed in our OP2 computations to
be more accurate than those we typically use in our OP atomic
method. As a consequence, in the discussion that follows
comparing our theoretical and measured DCSs in more detail,
it is the mixed beam (80%–20%) OP2 results that best mimic
those DCSs measured experimentally. These “mixed” theory
cross sections are denoted as OP2 Mixed 80:20 in all the plots
of Figs. 2 and 3.

Considering Fig. 2 in more detail, then at each energy
(10 eV, 20 eV, and 40 eV) we find good qualitative accord
(i.e., in terms of the shapes of the elastic angular distributions)
between our measured data and our OP2 “mixed” calculated
cross section. In terms of the absolute magnitudes, however,
the 10 eV and 20 eV measured data tend to be somewhat
higher in value compared to our preferred theoretical result,
across all θe, with the discrepancy between them being a little
more pronounced at 20 eV compared to 10 eV. By 40 eV that
trend in the comparison of the absolute magnitudes at lower
energies has changed, with pretty good quantitative agreement
between the experimental and “mixed” theoretical DCSs now
being found for θe � 60◦. Above that scattered electron angle,
however, the theory once again predicts a DCS that is smaller
in magnitude compared to that measured experimentally. At
40 eV [see Fig. 2(c)] we can also compare our DCS against the
only other reported values in the literature from Williams et al.
[19]. While the overall shapes of the experimental angular
distributions are observed to be in quite fair accord, there is
a large mismatch in their absolute values. As noted earlier it is
well known that the pioneering early work with metal vapors
at JPL has not stood the test of time, so that the present results
supercede those from Williams et al. [19].

The trend in the comparison, between our experimental
DCSs and “mixed” theory computations, that we have just
discussed at 40 eV is equally applicable to our results at 60 eV,
80 eV, and 100 eV (see Fig. 3). Namely, at the more forward
scattered electron angles there is good quantitative accord
between measurement and the “mixed” theory calculation but
at higher θe the experimental data is somewhat stronger in
magnitude than the theory. For all of the cross sections in
Figs. 2 and 3, we believe that the observed discrepancies be-
tween our measured and calculated results are, at least in part,
due to the “flux competition” in the theory between the open
elastic, discrete inelastic, and ionisation channels at a given
incident electron energy. Assuming our measured DCSs are in
fact correct, then Figs. 2 and 3 suggest that more flux is going
into the discrete inelastic and ionization channels, compared
to the elastic channel, than should be the case. However, it
is worth noting that the elastic DCSs at 40 eV, 60 eV, and
100 eV, in particular, all have very small magnitudes at middle
and backward electron-scattering angles. Therefore, it would
only require a very small misapportionment of flux into the
discrete inelastic and ionization channels to lead to what we
find in Figs. 2(c) and 3. This highlights just how challenging
these sorts of computations are, so that the level of accord that
we achieve here between the “mixed” theory and experiment
in Figs. 2 and 3 is actually pretty good. Note that the effects
of flux competition were previously elucidated upon by us in
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our recent work with electron scattering from zinc [23], and
are also found in electron-molecule collision systems [55].

One of the key features from the present study is the
strong oscillatory nature of the angular distributions in Figs. 2
and 3. The oscillatory nature of any elastic DCS arises from
the interference, both constructive and destructive, between
the various partial waves. At very low energies where the s
wave dominates, the DCS is almost effectively structureless.
At higher energies, where the p wave becomes important,
the DCS will have a single minimum [related to the zero
in P1(cos θ )]. Similarly, as the energy further increases and
the d wave becomes important the angular distribution of
the DCS can have two minima [related to the two zeros
of P2(cos θ )]. One sometimes gets three minima, but this is
rare as the higher order phase shifts are relatively small and
primarily contribute to the magnitude and not the structure
of the DCS. While not being strictly relevant to our Bismuth
results between 10–100 eV, for completeness we also note that
if there is a resonance structure, due to a particular phase shift
going through π/2 radians, then the angular structure of the
DCS can be dominated by the structure of the corresponding
Legendre polynomial.

At the foot of Table I and in Fig. 4 we present our derived
elastic integral cross sections for electron scattering from
bismuth. Also plotted in Fig. 4 are the results of our Bi OP and
OP2 computations, Bi2 OP and OP2 IAM-SCAR+I computa-
tions, and our preferred OP2 ICS results that mimic the mixed
80% monomer and 20% dimer experimental-beam composi-
tion. The first point we can glean from Fig. 4 is the existence
of a strong low-energy resonance feature at around 1.4 eV
in both our OP and OP2 Bi calculations. While our atomic
optical potential method has been successfully benchmarked
against corresponding results from a sophisticated B-spline
R-matrix method in atomic iodine [41], we would suggest
that further relativistic convergent close-coupling and B-spline
R-matrix calculations are required to confirm the existence of
this feature. Similarly, we know of no experimental studies
into negative-ion atomic resonances in Bi and certainly none
are captured in the comprehensive review of Buckman and
Clark [56]. Thus experimental verification of this low-energy
feature (see Fig. 4) would also be very desirable.

In his seminal review, Schulz [57] noted that resonances in
electron-atom scattering systems can arise from the temporary
capture of the incident electron by excited states of the atom
(so-called core-excited or Feshbach resonances) or by the
ground state of the atom (so-called shape resonances). In
the latter case the potential forms a penetrable barrier which
traps the incident particle near the target, where that barrier
is formed by the angular momentum of the electron. Thus
for shape resonances we expect p-, d-, f-wave resonances but
generally not s-wave resonances, since they have l = 0 and
thus produce no barrier. In the present case the 2D3/2 and 2D5/2

excited states of Bi at 1.4158 eV and 1.915 eV, respectively,
are very close in energy to the peak of the calculated structure
(∼1.5 eV) in Fig. 4. However, Schulz [57] also noted that
Feshbach-type resonances are usually long lived so that their
energy widths are narrow whereas the structure in Fig. 4 is
rather broad (∼0.3 eV) in width. On the other hand shape
resonances typically have a shorter lifetime so that they have
a wider energy profile, which is consistent with what we

observe in Fig. 4. To unambiguously interpret this feature we
have decomposed our calculated elastic ICS into the various
scattering channels (i.e., s wave (l = 0), p wave (l = 1), d
wave (l = 2), and so on) that contribute to its overall profile.
On doing this we clearly find that the origin of this structure
is in the l = 2 scattering channel, so that the observed low-
energy structure in Fig. 4 can be assigned as a d-wave shape
resonance. Note that our preference for a shape-resonance
assignment over a Feshbach resonance is simply based on the
broad width of the observed feature.

In Fig. 4 we observe a good level of quantitative accord,
to within the measurement uncertainties, between our exper-
imental ICS and the OP2 “mixed” 80:20 theory ICS at all
E0 � 40 eV. Given our recent discussion at the DCS level,
that latter observation might appear a little counterintuitive
at first sight. However, it can be understood as follows.
Most of the contribution to the integrand of the ICSs, even
allowing for the sin θ weighting factor, comes from the more
forward electron-scattering angles of the DCSs and this is
precisely where, between 40 eV and 100 eV, the experimental
DCSs are in largely good accord with our OP2 “mixed” ICS
computations. At lower energies, however, the experimental
ICSs are stronger in magnitude compared to our preferred
theoretical result, although in this case that observation is
entirely consistent with our earlier DCS-level discussion at
10 eV and 20 eV. Nonetheless, the qualitative trend in the ICS
versus energy behavior, for incident electron energies between
10 and 100 eV, between our measured and calculated data, is
in good accord (see Fig. 4) with the quantitative differences
between them being again (mainly) likely due to the “flux
competition” effect.

V. CONCLUSIONS

We have reported on experimental and theoretical results
for elastic electron scattering from bismuth, and in doing so
we have significantly extended the available cross section data
base for this scattering system. Strong interference effects,
both constructive and destructive, in the scattering phase
shifts describing the elastic collision process were clearly
observed in our angular distributions, as were their energy
dependence. In addition, through our OP and OP2 theoretical
calculations and a comparison between them, the pivotal role
the target polarization plays in the scattering dynamics here
was manifest. Furthermore both those computations predicted
the temporary capture of the incident low-energy electrons (at
∼1.5 eV) by the target, leading to a resonance enhancement
in the magnitude of the integral elastic cross section, after
autodetachment, at that energy. The width of this rather broad
feature was found to be ∼0.3 eV, and we have assigned it
to be a d-wave shape resonance. When allowance was made
for the Bi2 dimer contribution in the experimental target
beam, the overall comparison between our most accurate
OP2 computation and the measured differential and integral
cross sections is typically qualitatively good. Indeed at some
energies we might characterize the level of accord between
our experiments and calculations as being semiquantitative.
Nonetheless it is clear that further experimental and theoret-
ical investigations into this collision system are required, in
particular relativistic-level B-spline R-matrix and convergent
close-coupling calculations would be highly desirable.
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