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The long-range interactions among two- or three-atom systems are of considerable importance in the cold and
ultracold research areas for many-body systems. For an ion and an atom, the long-range interaction potential
is dominated by the induction (or polarization) potential resulting from the (classical) effect of the ion’s
electric field on the atom and the leading term of the induction potential is much stronger than the (quantum
mechanical) dispersion (or van der Waals) interaction. The present paper focuses on the long-range interaction
of the Li(2 2S)-Li(2 2S)-Li+(1 1S) system, to see what changes this induction effect (originating in the electric
field of the Li+ ion) yields in the long-range additive and nonadditive interactions of this three-body system.
Using perturbation theory for energies, we evaluate the coefficients Cn in the potential energy for the three
well-separated constituents, where n refers to the corresponding order in inverse powers of distance, obtaining
the additive interaction coefficients C4, C6, C7, C8, C9 and the nonadditive interaction coefficients C7, C9. The
obtained coefficients Cn are calculated with highly accurate variationally generated nonrelativistic wave functions
in Hylleraas coordinates. Our calculations may be of interest for the study of three-body recombination and for
constructing precise potential energy surfaces. We also provide precise evaluations of the long-range potentials
for the two-body Li(2 2S)-Li+(1 1S) system. For both the two-body and three-body cases, we provide results
for the like-nuclei cases of 6Li and 7Li.

DOI: 10.1103/PhysRevA.101.032702

I. INTRODUCTION

Considerable attention has been given to the study of the
Axilrod-Teller-Muto interaction between three S-state atoms
[1–7], for which the leading nonadditive (not expressible as
a sum of pairs) term in the mutual potential energy occurs
in third-order perturbation theory and contains a geometrical
factor depending on the relative orientation of the three atoms.
This kind of nonadditive interaction has shown its importance
recently in, for example, the study of cold collisions [8–14],
three-body recombination [3,15,16], and Efimov effects
[17–19].

Experimentally, the multibody interactions have been ob-
served as inelastic loss resonances in three- and four-body
recombinations of atom-atom and atom-molecule collisions
[20,21]. With recent experimental advances in manipulating
ultracold atoms and ions, there is a growing interest in study-
ing such a few-body hybrid system containing an ion [22,23].
The long-range part of the ion-atom interaction is well known
to be especially important for cold and ultracold physics
and chemistry; see, for example, Refs. [24,25]. The highly
successful use of a single ion in three-body reaction in an
ultracold atomic gas has renewed theoretical interest in study-
ing long-range interactions of many-body systems with cold
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trapped ions [26]. Recently, three-body recombination rates
were measured for Rb+-Rb-Rb [26] and for Ba+-Rb-Rb [27].

Theoretically, long-range additive and nonadditive interac-
tions for two- or three-neutral-atom systems, including ground
states [1,2,5,6] and excited states [28,29], have been fully
characterized and given very clear explanations. The long-
range interactions for two-body atom-ion systems have also
been widely studied and deeply analyzed [22,23]. The inter-
action between ionic and neutral particles is dominated by the
induction component, which can be understood in terms of the
interaction of the charge of an ion with the electronic cloud
of a neutral partner [30,31]. For example, recently a method
of utilizing Rydberg molecules to initialize the ultracold ion-
atom scattering event for the lithium ion-atom ( 6Li+ - 6Li,
7Li+ - 7Li) system has been proposed by Schmid et al. [32];
further improvement may need a highly accurate calculation
of the long-range interactions for these two systems, which
we will describe below.

The main purpose of the present paper is to investigate the
influence of an ion on the long-range interaction in a three-
body system. Indeed, we find that the presence of an ion will
lead to new types of nonadditive induction interactions in the
third- or higher-order energy corrections. In the present work,
we will start with the second-order induction and dispersion
forces. Also, we will demonstrate the third-order additive and
nonadditive interactions.

Using perturbation theory up to fourth order, we derive
the formulas for the long-range interaction coefficients for the
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Li(2 2S)-Li(2 2S)-Li+(1 1S) system, and evaluate these co-
efficients with highly accurate, variationally determined wave
functions in Hylleraas coordinates. Defining “additive” to
mean pairwise amongst the three particles, and “nonadditive”
to mean collectively amongst the three particles, we present
the second-order additive interaction coefficients C(IJ )

4 , C(IJ )
6 ,

C(IJ )
8 ; the third-order additive interaction coefficients C(23)

7 ,
C(31)

7 , C(23)
9 , C(31)

9 ; and the fourth-order additive interaction co-
efficents C(23)

8 , C(31)
8 . The nonadditive interaction coefficients

C(12,23)
9 , C(31,12)

9 , C(12,23,31)
7 , and C(12,23,31)

9 contain dependen-
cies on the geometrical arrangement of these three particles.
We will give general formulas, which can be used to evaluate
their numerical values in any geometrical configuration. The
numerical values of these nonadditive coefficients for an
equilateral triangle configuration will be given as an example.
We also give, as a consequence of our accounting for additive
effects, a highly accurate result for the long-range potential of
the Li(2 2S)-Li+(1 1S) system.

II. THEORETICAL FORMULATION

In this section, the expressions for the long-range
interactions coefficients are given specifically for the
Li(2 2S)-Li(2 2S)-Li+(1 1S) system. The detailed derivation
of these coefficients is given in the Supplemental Material
[33]; the formulas given there are readily applicable to other
ion-atom A(n0 S)-A(n0 S)-A+(n′

0 S) systems as well.

A. Hamiltonian and the zeroth-order wave function

The total Hamiltonian for the
Li(n0

2S)-Li(n0
2S)-Li+(n′

0
1S) system can be written

as

H = H1 + H2 + H+
3 + H ′, (1)

where H1 and H2 are the unperturbed Hamiltonian of the two
neutral atoms, H+

3 is the unperturbed Hamiltonian of the ion,
and H ′ is the perturbation Hamiltonian,

H ′ = V123 = V12 + V23 + V31, (2)

where V12, V23, and V31 represent the mutual electrostatic
interactions among the atom 1, 2 and the ion 3. We label the
particles by I , J , and K , respectively. When the labels I , J , or
K appear, it is understood that cyclic permutation would be
used.

The zeroth-order wave function for the nondegenerate
Li(n0

2S)-Li(n0
2S)-Li+(n′

0
1S) system is written as

∣∣� (0)
〉 = ∣∣n00; n00; n′

00
〉
, (3)

where |n00〉 and |n′
00〉 represent the wave functions of the

initial states for the Li atoms and Li+ ion, respectively.

B. The perturbation theory

According to the perturbation theory, the energy correction
for the Li(n0

2S)-Li(n0
2S)-Li+(n′

0
1S) system is

�E = �E (1) + �E (2) + �E (3) + �E (4) + · · · , (4)

where

�E (1) = 〈� (0)|V123|� (0)〉 = 0, (5)

�E (2) = −
′∑

ns;nt ;nu

∑
LsLt Lu

∑
MsMt Mu

|〈� (0)|V123|�stu〉|2
Ens;nt ;nu − En0;n0;n′

0

; (6)

�E (3) =
′∑

ns; nt ; nu

n′
s; n′

t ; n′
u

∑
LsLt Lu

L′
sL

′
t L

′
u

∑
MsMt Mu

M ′
sM

′
t M

′
u

D1(
Ens;nt ;nu − En0;n0;n′

0

)(
En′

s;n
′
t ;n′

u
− En0;n0;n′

0

) +
′∑

ns; nt ; nu

∑
LsLt Lu

∑
MsMt Mu

D2(
Ens;nt ;nu − En0;n0;n′

0

)2 , (7)

�E (4) =
′∑

ns; nt ; nu

n′
s; n′

t ; nu

n′′
s ; n′′

t ; n′′
u

∑
LsLt Lu

L′
sL

′
t L

′
u

L′′
s L′′

t L′′
u

∑
MsMt Mu

M ′
sM

′
t M

′
u

M ′′
s M ′′

t M ′′
u

(
C

F1
− δ(n′

s, n0)δ(n′
t , n0)δ(n′

u, n′
0)
C

F2

)
, (8)

where D1, D2, C, F1, and F2 are expressed as

D1 = 〈� (0)|V123|�stu〉〈�stu|V123|�s′t ′u′ 〉 〈�s′t ′u′ |V123|� (0)〉, (9)

D2 = −〈� (0)|V123|� (0)〉|〈� (0)|V123|�stu〉|2 = 0, (10)

C = 〈� (0)|V123|�stu〉〈�stu|V123|�s′t ′u′ 〉〈�s′t ′u′ |V123|�s′′t ′′u′′ 〉〈�s′′t ′′u′′ |V123|� (0)〉, (11)

F1 = (
En0;n0;n′

0
− Ens;nt ;nu

)(
En0;n0;n′

0
− En′

s;n
′
t ;n′

u

)(
En0;n0;n′

0
− En′′

s ;n′′
t ;n′′

u

)
, (12)

F2 = (
En0;n0;n′

0
− Ens;nt ;nu

)(
En0;n0;n′

0
− En′′

s ;n′′
t ;n′′

u

)2
, (13)
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FIG. 1. Coordinate for atoms 1, 2 and ion 3: the z axis is
perpendicular to the plane of the three nuclei and the x axis is parallel
to R12. The angles satisfy �12 = 0, �23 = π − β, �31 = π + α. The
nuclei lie in the x-y plane.

where the first-order energy correction is zero.
D2 = 0 is because 〈� (0)|V123|� (0)〉 = 0. En0;n0;n′

0
=

En0 + En0 + En′
0

is the total energy for the initial state
of three-body system. �stu = |nsLsMs; nt Lt Mt ; nuLuMu〉,
�s′t ′u′ = |n′

sL
′
sM

′
s; n′

t L
′
t M

′
t ; n′

uL′
uM ′

u〉, and �s′′t ′′u′′ =
|n′′

s L′′
s M ′′

s ; n′′
t L′′

t M ′′
t ; n′′

uL′′
u M ′′

u 〉 represent the intermediate

states with the energy eigenvalues Ens;nt ;nu = Ens + Ent + Enu ,
En′

s;n
′
t ;n′

u
= En′

s
+ En′

t
+ En′

u
, and En′′

s ;n′′
t ;n′′

u
= En′′

s
+ En′′

t
+ En′′

u
,

respectively. The prime in the summation indicates that
the terms with Ens;nt ;nu = En0;n0;n′

0
, En′

s;n
′
t ;n′

u
= En0;n0;n′

0
, and

En′′
s ;n′′

t ;n′′
u
= En0;n0;n′

0
should be excluded.

C. Choice of coordinates

In this work, the selection of coordinates for the
Li(n0

2S)-Li(n0
2S)-Li+(n′

0
1S) system is shown in Fig. 1.

We set the two Li atoms as particles 1 and 2 and the Li+ ion
as particle 3. Specifically, we choose atom 1 as the origin of
our coordinate system and the plane formed by the three-body
system is taken as the x-y plane. We set the x axis to be R12

and the z axis perpendicular to the x-y plane by the right-hand
convention. The interior angles of the triangle formed by the
three particles are denoted as α, β, and γ .

D. Coulomb interaction potential energy expansion

VIJ can be expanded according to Refs. [2,28,34],

VIJ =
∑
lI lJ

∑
mI mJ

TlI − mI (σ)TlJ mJ (ρ)W mI −mJ
lI lJ

(IJ ). (14)

The geometry factor W mI −mJ
lI lJ

(IJ ) is expanded as [28,29]

W mI −mJ
lI lJ

(IJ ) = 4π (−1)lJ

RlI +lJ +1
IJ

(lI + lJ − mI + mJ )!(lI , lJ )−1/2

[(lI + mI )!(lI − mI )!(lJ + mJ )!(lJ − mJ )!]1/2
PmI −mJ

lI +lJ
(cos θIJ ) exp[i(mI − mJ )�IJ ], (15)

where RIJ = RJ − RI is the relative position from particle I to particle J , and the notation (a, b, . . .) = (2a + 1)(2b + 1) · · · .
Noting that θ12 = θ23 = θ31 = π/2 in Fig. 1, the associated Legendre functions can be simplified according to

Pm
l (0) = 1

2l+1
[1 + (−1)l+m](−1)

l+m
2 (l + m)!

[(
l + m

2

)
!

]−1[(
l − m

2

)
!

]−1

. (16)

The angles �12, �23, and �31 satisfy �12 = 0, �23 = π − β, and �31 = π + α, which can be used to simplify the exponential
function exp[i(mI − mJ )�IJ ] of the geometry factor.

TlI −mI (σ) and TlJ mJ (ρ) are the multipole tensor operators, which are defined by

TlI −mI (σ) =
∑

i

Qiσ
lI
i YlI −mI (σ̂ i ), (17)

TlJ mJ (ρ) =
∑

j

q jρ
lJ
j YlJ mJ (ρ̂ j ). (18)

In the Eqs. (17) and (18), if lI = 0 or lJ = 0, we have

T00 = 1√
4π

∑
i

Qi, (19)

where
∑

i Qi represents the total charge of the system. For a neutral atom, T00 = 0. However for an ion, the nonzero T00 results
in the occurrence of an induction interaction for the Li(n0

2S)-Li(n0
2S)-Li+(n′

0
1S) system.

E. The second-order energy correction

According to the perturbation theory, the nonzero energy correction for the Li(n0
2S)-Li(n0

2S)-Li+(n′
0

1S) system starts
from the second order:

�E (2) = −
[C(12)

6,disp

R6
12

+ C(12)
8,disp

R8
12

]
−

[
C(23)

4,ind

R4
23

+ C(23)
6,ind + C(23)

6,disp

R6
23

+ C(23)
8,ind + C(23)

8,disp

R8
23

]

−
[

C(31)
4,ind

R4
31

+ C(31)
6,ind + C(31)

6,disp

R6
31

+ C(31)
8,ind + C(31)

8,disp

R8
31

]
− · · · , (20)
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where the terms C(12)
2n,disp in the first square bracket are the additive two-body long-range dispersion interaction coefficients

between two Li atoms, which were reported in Ref. [35]. The terms in the second and third square brackets represent the
long-range interaction between one Li atom and the Li+ ion. Because the diatomic Li(2 2S)-Li+(1 1S) long-range interaction
is of interest for ultracold atom-ion applications, we will discuss it in some detail in Sec. III A. The terms of C(IJ )

2n,ind appearing in
Eq. (20) are the induction interaction coefficients [30,31], which can be interpreted as the interaction between the charge of the
Li+ ion and the induced dipole moment of the Li atom:

C(23)
2n,ind = C(31)

2n,ind = 4πQ2

(2 + 1)2

′∑
ns

|〈n00‖T‖nsLs〉|2
Ens − En0

= 1

2
Q2α, (21)

where Q is the charge of the ion (here Q = 1 for the Li+ ion), and α are the 2-pole static polarizabilities α of the Li atom.
The C(IJ )

2n,disp terms, which involve the label 3, represent the additive two-body dispersion interaction coefficients between the
Li atom and the Li+ ion. They can be expressed as

C(23)
6,disp = C(31)

6,disp = 32π2

27

′∑
ns; nt

|〈n00‖T1‖ns1〉|2|〈n′
00‖T1‖nt 1〉|2(

Ens − En0

) + (
Ent − En′

0

) , (22)

C(23)
8,disp = C(31)

8,disp = 16π2

15

′∑
ns; nt

{ |〈n00‖T2‖ns2〉|2|〈n′
00‖T1‖nt 1〉|2(

Ens − En0

) + (
Ent − En′

0

) + 〈n00‖T1‖ns1〉|2|〈n′
00‖T2‖nt 2〉|2(

Ens − En0

) + (
Ent − En′

0

)
}
. (23)

F. The third-order energy correction

The third-order energy correction for the Li(n0
2S)-Li(n0

2S)-Li+(n′
0

1S) system can be written as

�E (3) = −
[C(23)

7,ddq

R7
23

+ C(31)
7,ddq

R7
31

]
−

[C(23)
9,dqo + C(23)

9,qqq + C(23)
9,rind

R9
23

+ C(31)
9,dqo + C(31)

9,qqq + C(31)
9,rind

R9
31

]

− C(12,23,31)
7 (1, 1, 0)

R3
12R2

23R2
31

− C(12,23,31)
9 (1, 1, 1)

R3
12R3

23R3
31

− C(12,23,31)
9 (1, 2, 0)

R4
12R3

23R2
31

− C(12,23,31)
9 (2, 1, 0)

R4
12R2

23R3
31

− C(12,23)
9 (1, 1, 2, 1, 1, 2)

R6
12R3

23

− C(12,23)
9 (1, 1, 1, 2, 2, 1) + C(12,23)

9 (1, 2, 1, 1, 1, 1)

R7
12R2

23

− C(31,12)
9 (1, 1, 2, 1, 1, 2)

R6
12R3

31

− C(31,12)
9 (1, 1, 1, 2, 2, 1) + C(31,12)

9 (1, 2, 1, 1, 1, 1)

R7
12R2

31

− · · · , (24)

From Eq. (24), we can find that the third-order correction include both additive and nonadditive interaction terms. Among
them, the nonadditive interaction term C(12,23,31)

9 (1, 1, 1)/R3
12R3

23R3
31 is the dispersion term; the rest are all induction interaction

terms.

1. The additive interaction

The additive two-body induction interaction coefficients C(23)
7,ddq and C(31)

7,ddq, which can also be interpreted as the interaction of
the charge of the ion and the moment of the Li atom, are expanded as

C(23)
7,ddq = C(31)

7,ddq = −8π
√

6π

125
Q3

′∑
nt ; n′

t

〈n00‖T1‖nt 1〉〈nt 1‖T2‖n′
t 1〉〈n′

t 1‖T1‖n00〉(
Ent − En0

)(
En′

t
− En0

)

− 16π
√

10π

225
Q3

′∑
nt ; n′

t

〈n00‖T1‖nt 1〉〈nt 1‖T1‖n′
t 2〉〈n′

t 2‖T2‖n00〉(
Ent − En0

)(
En′

t
− En0

) = −1

2
Q3B, (25)

where B is the static dipole-dipole-quadrupole polarizability [36,37] of the Li atom.
The additive two-body induction coefficients C(23)

9,dqo and C(31)
9,dqo, which are related to the dipole-quadrupole-octopole

polarizability, include three terms:

C(23)
9,dqo = C(31)

9,dqo = 16π
√

15π

525
Q3

′∑
nt ; n′

t

〈n00‖T1‖nt 1〉〈nt 1‖T3‖n′
t 2〉〈n′

t 2‖T2‖n00〉(
Ent − En0

)(
En′

t
− En0

) + 16π
√

21π

735
Q3

×
′∑

nt ; n′
t

〈n00‖T1‖nt 1〉〈nt 1‖T2‖n′
t 3〉〈n′

t 3‖T3‖n00〉(
Ent − En0

)(
En′

t
− En0

) + 16π
√

35π

1225
Q3

′∑
nt ; n′

t

〈n00‖T2‖nt 2〉〈nt 2‖T1‖n′
t 3〉〈n′

t 3‖T3‖n00〉(
Ent − En0

)(
En′

t
− En0

) ,

(26)
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The additive two-body induction coefficients C(23)
9,qqq and C(31)

9,qqq, which are related to the quadrupole-quadrupole-quadrupole
polarizability, include one term,

C(23)
9,qqq = C(31)

9,qqq = 8π
√

14π

875
Q3

′∑
nt ; n′

t

〈n00‖T2‖nt 2〉〈nt 2‖T2‖n′
t 2〉〈n′

t 2‖T2‖n00〉(
Ent − En0

)(
En′

t
− En0

) , (27)

and the rest of the induced (denoted by “rind”) interaction coefficients, C(23)
9,rind and C(31)

9,rind, include the following five terms:

C(23)
9,rind = C(31)

9,rind = −96π2
√

2π

1215
Q

′∑
nt ; n′

t ; nu

|〈n′
00‖T1‖nu1〉|2〈n00‖T1‖nt 1〉〈nt 1‖T2‖n′

t 1〉〈n′
t 1‖T1‖n00〉(

En′
t
+ Enu − En0 − En′

0

)(
Ent + Enu − En0 − En′

0

)

− 64π2
√

30π

675
Q

′∑
nt ; nu; n′

t

|〈n′
00‖T1‖nu1〉|2〈n00‖T1‖nt 1〉〈nt 1‖T1‖n′

t 2〉〈n′
t 2‖T2‖n00〉(

En′
t
+ Enu − En0 − En′

0

)(
Ent + Enu − En0 − En′

0

)

− 64π2
√

6π

135
Q

′∑
nt ; n′

t ; n′
u

|〈n′
00‖T1‖n′

u1〉|2〈n00‖T1‖nt 1〉〈nt 1‖T2‖n′
t 1〉〈n′

t 1‖T1‖n00〉(
En′

t
+ En′

u
− En0 − En′

0

)(
Ent − En0

)

− 64π2
√

10π

225
Q

′∑
nt ; n′

t ; n′
u

|〈n′
00‖T1‖n′

u1〉|2〈n00‖T1‖nt 1〉〈nt 1‖T1‖n′
t 2〉〈n′

t 2‖T2‖n00〉(
En′

t
+ En′

u
− En0 − En′

0

)(
Ent − En0

)

− 192π2
√

10π

2025
Q

′∑
nt ; n′

t ; n′
u

|〈n′
00‖T1‖n′

u1〉|2〈n00‖T2‖nt 2〉〈nt 2‖T1‖n′
t 1〉〈n′

t 1‖T1‖n00〉(
En′

t
+ En′

u
− En0 − En′

0

)(
Ent − En0

) . (28)

2. The nonadditive interaction

There are two types of nonadditive interaction terms in Eq. (24): Some of them are related to R12R23R31, the rest are related
to R12R23 or R12R31. The nonadditive three-body coefficients that are related to R12R23R31 can be expanded respectively as

C(12,23,31)
7 (1, 1, 0) = −256π3

81
Q2[cos α cos β + cos(α − β )]T3(1, 1, 0), (29)

C(12,23,31)
9 (1, 2, 0) = −64π3

75
Q2[cos α + cos α cos 2β + 2 cos(α − 2β )]T3(1, 2, 0), (30)

C(12,23,31)
9 (2, 1, 0) = −64π3

75
Q2[cos β + cos 2α cos β + 2 cos(2α − β )]T3(2, 1, 0), (31)

C(12,23,31)
9 (1, 1, 1) = −256π3

243
[3 cos α cos β cos γ + 1]T3(1, 1, 1), (32)

where C(12,23,31)
9 (1, 1, 1) is the long-range dispersion coefficient, which originates in the instantaneous dipole moment of the two

Li atoms and Li+ ion. The rest are the induction coefficients, which result from the induced effect of the Li+ ion. The reduced
matrix element T3(Ls, Lt , Lu) is expressed as

T3(Ls, Lt , Lu) =
′∑

ns; nt ; nu

|〈n00‖TLs‖nsLs〉|2|〈n00‖TLt ‖nt Lt 〉|2|〈n′
00‖TLu‖nuLu〉|2

×
(
Ens + Ent + Enu − 2En0 − En′

0

)
(
Ens + Ent − 2En0

)(
Ent + Enu − En0 − En′

0

)(
Ens + Enu − En0 − En′

0

) , (33)

where the energy factor of the above formula is same with that of the triple-dipole (Axilrod-Teller-Muto) interaction terms
[1,2,5,38–40]. The nonadditive three-body coefficients that are related to R12R23 or R12R31 can be expanded as

C(12,23)
9 (1, 1, 1, 2, 2, 1) = −96π2

√
2π

405
Q cos β

[
2
√

3D3(1, 1, 2, 1) + 3
√

5

5
D′

3(1, 1, 1, 2)

]
, (34)

C(12,23)
9 (1, 1, 2, 1, 1, 2) = −8π2

√
2π

405
Q(3 cos 2β + 1)

[
6
√

5

5
D3(1, 1, 1, 2) +

√
3D′

3(1, 1, 2, 1)

]
, (35)

C(12,23)
9 (1, 2, 1, 1, 1, 1) = −96π2

√
10π

675
Q cos β[2D3(1, 2, 1, 1) + D′

3(1, 2, 1, 1)], (36)
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where D3(Ls, Lt , l1, L′
t ) and D′

3(Ls, Lt , l1, L′
t ) are

D3(Ls, Lt , l1, L′
t ) =

′∑
ns; nt ; n′

t

|〈n00‖TLs‖nsLs〉|2〈n00‖TLt ‖nt Lt 〉〈nt Lt‖Tl1‖n′
t L

′
t 〉〈n′

t L
′
t‖TL′

t
‖n00〉(

Ens + Ent − 2En0

)(
En′

t
− En0

) , (37)

D′
3(Ls, Lt , l1, L′

t ) =
′∑

ns; nt ; n′
t

|〈n00‖TLs‖nsLs〉|2〈n00‖TLt ‖nt Lt 〉〈nt Lt‖Tl1‖n′
t L

′
t 〉〈n′

t L
′
t‖TL′

t
‖n00〉(

Ens + Ent − 2En0

)(
Ens + En′

t
− 2En0

) . (38)

The expansion of C(31,12)
9 (Ls, Lt , Lu, L′

s, L′
t , L′

u) can be obtained by replacing the interior angle β with α in Eqs. (34), (35),
and (36).

Compared with a three-body system consisting of three ground-state S atoms, the leading terms of the
Li(n0

2S)-Li(n0
2S)-Li+(n′

0
1S) system in Eq. (24) are the additive two-body induction interaction coefficients C(23)

7,ddq, C(31)
7,ddq

and the nonadditive three-body coefficients C(12,23,31)
7 (1, 1, 0) due to the induction effect of the Li+ ion. For the C9 coefficients,

the new types of the additive induction coefficients of C(23)
9,dqo, C(31)

9,dqo, C(23)
9,qqq, C(31)

9,qqq, C(23)
9,rind, C(31)

9,rind and the nonadditive induction

coefficients of C(12,23)
9 (Ls, Lt , Lu, L′

s, L′
t , L′

u) and C(31,12)
9 (Ls, Lt , Lu, L′

s, L′
t , L′

u) appear.

G. The fourth-order energy correction

The fourth-order energy correction for the Li(n0
2S)-Li(n0

2S)-Li+(n′
0

1S) system contains many more intermediate states,
and the detailed derivation is complicated. Therefore, since the leading term of the fourth-order correction is related to the eighth
power of the distance between particles, we deduce the leading term of the fourth-order energy correction, in order to guarantee
the completeness of the expansion for the interaction potential in the present paper. Thus,

�E (4) = −C(23)
8,hyp

R8
23

− C(31)
8,hyp

R8
31

− · · · , (39)

where the induction interaction coefficients of C(23)
8,hyp and C(31)

8,hyp are related to the static hyperpolarizability γ0 [35,41–43] of the
ground-state Li atom,

C(23)
8,hyp = C(31)

8,hyp = 16π2

9
Q4

[
1

9
T4(1, 0, 1) + 2

45
T4(1, 2, 1)

]
= 1

24
Q4γ0, (40)

with the expression of T4 being [35]

T4(Lt , L′
t , L′′

t ) =
′∑

nt ; n′
t ; n′′

t

〈n00‖T1‖nt Lt 〉〈nt Lt‖T1‖n′
t L

′
t 〉〈n′

t L
′
t‖T1‖n′′

t L′′
t 〉〈n′′

t L′′
t ‖T1‖n00〉(

Ent − En0

)(
En′

t
− En0

)(
En′′

t
− En0

)

− δ(Lt , 0)(−1)Lt +L′′
t

′∑
nt ; n′′

t

|〈n00‖T1‖nt 1〉|2|〈n01‖T1‖n′′
t 〉|2(

Ent − En0

)(
En′′

t
− En0

)2 . (41)

III. RESULTS AND DISCUSSION
In the present work, using accurate variational wave func-

tions for the Li atom and Li+ ion in Hylleraas coordinates

TABLE I. The additive interaction coefficients C (23)
4 , C (23)

6 , and
C (23)

8 of the Li(2 2S)-Li+(1 1S) system in atomic units. The numbers
in parentheses represent the computational uncertainties.

Coefficienta ∞Li 7Li 6Li

C (23)
4,ind = α1/2 82.056(5) 82.080(5) 82.084(5)

C (23)
6,ind = α2/2 711.631(1) 711.706(1) 711.718(1)

C (23)
6,disp 3.3208(5) 3.3227(5) 3.3229(4)

C (23)
6,ind + C (23)

6,disp 714.951(1) 715.028(1) 715.041(1)

C (23)
8,ind = α3/2 19824.64(1) 19826.85(1) 19827.22(1)

C (23)
8,disp 152.884(3) 152.948(2) 152.960(3)

C (23)
8,hyp = γ0/24 127.5(9) 117.5(9) 115.8(9)

C (23)
8,ind + C (23)

8,disp + C (23)
8,hyp 20105.0(9) 20097.3(9) 20096.0(9)

aThe polarizabilities α1, α2, α3 and the hyperpolarizability γ0, are
taken from Tang et al. [35].

[35], we evaluate the additive second-order, additive and
nonadditive third-order, and part of additive fourth-order coef-
ficients for the Li(2 2S)-Li(2 2S)-Li+(1 1S) system. As part
of the analysis, we also obtain the terms that correspond to the
Li(2 2S)-Li+(1 1S) long-range interaction potential. Finite
mass effects are treated as in Refs. [35,44]; see for example
Eq. (1) of Ref. [35]. In the present calculations, we used the

TABLE II. The additive interaction coefficients C (23)
7 and C (23)

9

of the Li(2 2S)-Li+(1 1S) system in atomic units. The numbers in
parentheses represent the computational uncertainties.

Coefficient ∞Li 7Li 6Li

C (23)
7,ddq 27143.0(2) 27153.8(1) 27155.4(2)

C (23)
9,dqo 995387.75(6) 995678.23(2) 995726.60(2)

C (23)
9,qqq 81722.20(1) 81738.36(1) 81741.05(1)

C (23)
9,rind 3643.2(1) 3645.7(1) 3646.1(1)

C (23)
9,dqo + C (23)

9,qqq + C (23)
9,rind 1080753.2(1) 1081062.4(1) 1081113.9(1)
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TABLE III. Comparison of the dipole-dipole-quadrupole polar-
izability B for the ground state 2 2S of ∞Li, in atomic units.

Reference B = −2C (23)
7

Maroulis and Thakkar (1989) [36] −54930
Pipin and Bishop (1992) [41] −54300
This work −54286.0(4)

nuclear mass 10961.8977 for 6Li and 12786.3916 for 7Li in
units of the electron mass.

A. The additive dispersion interaction coefficients

For the newly generated polarization terms
under the second-order energy correction of the
Li(2 2S)-Li(2 2S)-Li+(1 1S) system, since the additive
long-range dispersion coefficients of the C(12)

6,disp and C(12)
8,disp

terms between two Li atoms are listed in Ref. [35], we will
not repeat these values for simplicity. Also, for these additive
interaction terms, this three-body system can be seen as three
two-body systems and we have C(23)

n = C(31)
n . Moreover, as we

will show, these coefficients give an accurate representation
of the long-range Li(2 2S)-Li+(1 1S) interaction potential.

Table I lists the additive long-range coefficients of the
C(23)

4 , C(23)
6 , C(23)

8 terms between the Li atom interacting
with the Li+ ion, and each of their components: the in-
duction interaction terms C(23)

4,ind, C(23)
6,ind, C(23)

8,ind, the dispersion

interaction terms C(23)
6,disp, C(23)

8,disp, and the hyperpolarizability

terms C(23)
8,hyp. The induction interactions can be seen as the

interaction between the induced electric dipolar, quadrupole,
and octupole moments of the Li atom and the charge of the
Li+ ion, which are related to the static polarizability of the
atom. They always give the biggest contribution to the total
corresponding interactions. The dispersion interaction terms
describe the interaction between instantaneous dipole-dipole,
dipole-quadrupole moments of the ion and atom, which give
the next biggest contribution. The hyperpolarizability terms
result from the induced hyperpolarizability of the atoms and
the charge of the ion and give the smallest contribution to the
corresponding total interaction.

Table II lists the third-order additive interaction coef-
ficients C(23)

7,ddq, C(23)
9,dqo, C(23)

9,qqq, C(23)
9,rind and the total numeri-

cal values C(23)
9,dqo + C(23)

9,qqq + C(23)
9,rind. The induction interaction

coefficient C(23)
7,ddq is related to the dipole-dipole-quadrupole

polarizability [36,41]; C(23)
9,dqo is related to the dipole-

quadrupole-octupole polarizability; C(23)
9,qqq is related to the

quadrupole-quadrupole-quadrupole polarizability; C(23)
9,rind is

the rest of the induced (denoted “rind”) interaction terms.
For these terms of C(23)

9 in Table II, we can find that C(23)
9,dqo

gives the biggest contribution, C(23)
9,qqq gives the next biggest

contribution, and C(23)
9,rind gives the smallest contribution.

Table III shows the comparison of the dipole-dipole-
quadrupole polarizability B between our calculations and
other available results. Our calculation shows good agree-
ment, to within 0.026%, with the result of Pipin and
Bishop [41]. For the hyperpolarizability γ0 a comparison of
our calculations with other available ones was presented in
Ref. [35].

Using the data in Tables I and II, we can write
down the long-range interaction potential for the
∞Li(2 2S)- ∞Li+(1 1S), 6Li(2 2S)- 6Li+(1 1S), and
7Li(2 2S)- 7Li+(1 1S) systems, which are applicable to
scattering calculations at ultralow energies [25,45,46]. For
example, with R the internuclear distance, we have, taking the
“(23)” terms in Eqs. (20), (25), (26), (27), (28), and (39), the
result for ∞Li nuclei:

V∞Li - ∞Li+ (R) ∼ −82.056/R4 − 714.951/R6 − 27143.0/R7

− 20105.0/R8 − 1080753.2/R9. (42)

This result is expected to be substantially more accurate than
the form given in Ref. [25], where the dispersion coefficient
(our C(23)

6,disp in Table I) was estimated to be 263.5 by fitting
to an ab initio potential energy curve calculated in Ref. [45].
We note that a recent density functional theory calculation
of the dispersion coefficient [47] is in good agreement with
our calculation, yielding a value 3.37 (obtained using the
benchmark set ModelPGG_Scaled.dat provided in the supple-
mentary data of [47]). We note that the long-range potential
used in Ref. [46] does not account for the dispersion interac-
tion at O(R−6). While there has been little systematic work
on the contribution of higher-order terms to ultracold-energy
ion-atom scattering—conventionally terms beyond O(R−6)
are considered unimportant—it has been shown in the case
of quantum defect theory for Na-Na+ that an important length
scale is set by the ratio of the coefficients of the 1/R4 and
1/R6 terms [24,48]. In addition, in Ref. [49], Li and Gao

TABLE IV. Values of T3(1, 1, 0), T3(1, 2, 0), T3(2, 1, 0), T3(1, 1, 1), D3(1, 1, 1, 2), D3(1, 1, 2, 1), D3(1, 2, 1, 1), D′
3(1, 1, 1, 2),

D′
3(1, 1, 2, 1), and D′

3(1, 2, 1, 1) of the Li(2 2S)-Li(2 2S)-Li+(1 1S) system, in atomic units. The numbers in parentheses represent the
computational uncertainties.

Coefficient T3(1, 1, 0) T3(1, 2, 0) D3(1, 1, 1, 2) D3(1, 1, 2, 1) D3(1, 2, 1, 1)
T3(1, 1, 1) T3(2, 1, 0) D′

3(1, 1, 1, 2) D′
3(1, 1, 2, 1) D′

3(1, 2, 1, 1)

∞Li 274.840(4) 6620.95(6) −21486.0(1) −35427.2(5) −29332.6(5)
8.2033(3) 6620.95(6) −14674.2(3) −17785.61(2) −14674.2(3)

7Li 275.002(4) 6623.60(6) −21497.6(1) −35447.6(6) −29348.6(4)
8.2103(3) 6623.60(6) −14682.5(2) −17795.82(1) −14682.5(2)

6Li 275.029(4) 6624.04(6) −21499.4(1) −35450.8(5) −29351.3(4)
8.2115(3) 6624.04(6) −14683.7(3) −17797.50(1) −14683.7(3)
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TABLE V. The nonadditive interaction coefficients of the Li(2 2S)-Li(2 2S)-Li+(1 1S) system, where the three nuclei form an equilateral
triangle, in atomic units. The numbers in parentheses represent the computational uncertainties.

Coefficient ∞Li 7Li 6Li

C (12,23,31)
7 (1, 1, 0) −33666.2(5) −33686.1(5) −33689.4(5)

C (12,23,31)
9 (1, 1, 1) −368.45(2) −368.77(2) −368.82(2)

C (12,23,31)
9 (1, 2, 0) −218977(2) −219064(2) −219079(2)

C (12,23,31)
9 (2, 1, 0) −218977(2) −219064(2) −219079(2)

C (12,23)
9 (1, 1, 1, 2, 2, 1) 417562(5) 417800(5) 417840(5)

C (12,23)
9 (1, 1, 2, 1, 1, 2) −21613.97(6) −21625.91(6) −21627.99(4)

C (12,23)
9 (1, 2, 1, 1, 1, 1) 288502(2) 288661(2) 288687(2)

C (31,12)
9 (1, 1, 1, 2, 2, 1) 417562(5) 417800(5) 417840(5)

C (31,12)
9 (1, 1, 2, 1, 1, 2) −21613.97(6) −21625.91(6) −21627.99(4)

C (31,12)
9 (1, 2, 1, 1, 1, 1) 288502(2) 288661(2) 288687(2)

carried out calculations on H-H+ using a long-range potential
accurate to O(R−9). Our result, Eq. (42), might enable similar
calculations for Li-Li+, especially given recent advances in
calculations of the Li+2 potential curve [45,50]. We now leave
aside the particular case of the Li(2 2S)-Li+(1 1S) interac-
tions, and complete the discussion on the evaluation of the
three-body terms.

B. The nonadditive interaction coefficients

Similarly to the triple-dipole (Axilrod-Teller-Muto)
interaction terms, the nonadditive interaction coefficients
contain a dependence on the geometrical structure of these
three particles. Table IV lists the values of T3(1, 1, 0),
T3(1, 2, 0), T3(2, 1, 0), T3(1, 1, 1), D3(1, 1, 1, 2),
D3(1, 1, 2, 1), D3(1, 2, 1, 1), D′

3(1, 1, 1, 2), D′
3(1, 1, 2, 1),

and D′
3(1, 2, 1, 1) of the Li(2 2S)-Li(2 2S)-Li+(1 1S)

system. With these values and the formulas shown in
the Sec. II F, we can evaluate the nonadditive interaction
coefficients of the Li(2 2S)-Li(2 2S)-Li+(1 1S) system in
any configurations. For example, in the case of the three nuclei
forming an equilateral triangle, we have α = β = γ = π/3.
Thus, with these given interior angles, we can obtain all
the nonadditive interaction coefficients, which are shown in
Table V.

IV. CONCLUSION

We theoretically investigated the long-range interactions
between a ground state Li+ ion and two ground state neutral
Li atoms with highly accurate variationally generated wave
functions in Hylleraas coordinates. Using perturbation theory
for the energies up to the third-order and partially to the

fourth-order, we evaluated the long-range additive interaction
coefficients C4, C6, C7, C8, and C9 and the nonadditive in-
teraction coefficients C7 and C9 for the three-body system.
For these additive coefficients C4, C6, C8, we also showed
each contributor to these coefficients: the induction interaction
terms C(IJ )

4,ind, C(IJ )
6,ind, C(IJ )

8,ind; the dispersion interaction terms

C(IJ )
6,disp, C(IJ )

8,disp; and the hyperpolarizability terms C(IJ )
8,hyp, which

enter in the fourth-order correction. In addition, some dif-
ferent new types of nonadditive interactions that are related
to R12R23, R12R31, and R12R23R31 were found to appear in
the third-order energy correction. In this paper, we give the
universal formulas to calculate these nonadditive coefficients
and demonstrate their applications using the example of an
equilateral triangle configuration. All the nonadditive interac-
tion coefficients depend on the geometrical configurations of
three particles. Our calculation may be useful in the study of
cold collisions, the three-body recombination of an ion and
two neutral atoms, and in constructing accurate three-body
potential curves. We also, as a consequence of accounting
for additive terms, give a precise result for the long-range
interactions of the Li(2 2S)-Li+(1 1S) system.
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