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Self-energy-corrected Dirac wave functions for advanced QED calculations in highly charged ions
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The procedure for the calculation of the self-energy-corrected wave function of the bound electron in the
field of the nucleus is discussed. We present the related formulas and discuss the numerical difficulties and the
methods used to overcome them. The results of the calculation are presented for a wide range of ions. Possible
applications of the numerically obtained wave functions are discussed.
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I. INTRODUCTION

Highly charged ions are commonly studied in research on
fundamental physical systems. They can be used for high-
precision tests of quantum electrodynamics (QED) [1–5],
for the precise determination of fundamental constants [6–10],
and in the search for the possible variation of the
latter [11–13]. For these high-precision tests, very accurate
experimental and theoretical results are both needed. In partic-
ular, for accurate calculations of the bound-electron g factor,
QED corrections should be included not only in the first
order [so-called self-energy (SE) and vacuum-polarization
(VP) corrections], but also beyond the first order. The leading
contribution of the VP correction can be described in the
Uehling approximation by a relatively simple short-range po-
tential, allowing one to estimate two-loop diagrams containing
VP loops in a straightforward way. The SE cannot be well
represented by a local potential and thus has to be calculated
rigorously, and therefore the corresponding corrections have
be calculated straightforwardly, which is a more difficult
problem.

In the current paper, we describe the procedure for the
numerical calculation of the SE-corrected bound-state wave
function (in the following SE-WF) in detail. Similar calcula-
tions were presented in Ref. [14] for heavy hydrogenlike ions.
Here, we report on SE-WF calculations for the ground 1s state
of hydrogenlike ions in a wide range of nuclear charges Z =
2–92. The tabulated SE-WFs, given in both coordinate and
momentum representations, can be used for the calculations of
numerous QED corrections. Specifically, these include, e.g.,
the irreducible part of the first-order QED corrections to the
hyperfine splitting, g factor, transition probabilities, and other
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physical quantities [see Fig. 1(a)]; several two-loop QED
corrections to the binding energy (the so-called Lamb shift)
[see Fig. 1(b)]; and, finally, some of the two-loop QED cor-
rections to the hyperfine splitting, g factor, etc. [see Fig. 1(c)].

The paper is organized as follows. In Sec. II, we present
the analytical formulas for the different contributions to the
SE-WF, and in Sec. III we discuss the numerical evaluation
of these contributions and connected problems. In Sec. IV
we present our calculated SE-WFs and discuss their current
numerical uncertainties. Also, our SE-WFs were used for the
calculation of some SE corrections, presented already in the
literature, such as the irreducible part of the SE correction to
the g factor and the loop-after-loop (LAL) SE contribution to
the Lamb shift. Our results for these corrections and compar-
ison with earlier works [15–17] can be found in Sec. V.

The relativistic system of units (h̄ = m = c = 1) and Heav-
iside charge units (α = e2/(4π )) are used throughout the
paper. Bold letters are used for 3-vectors, the components of
3-vectors are listed with Latin indices, whereas Greek letters
denote 4-vector indices.

II. SELF-ENERGY WAVE-FUNCTION CONTRIBUTIONS
FOR SECOND-ORDER QED CORRECTIONS

The SE correction for the bound electron in highly charged
hydrogenlike ions was calculated for the first time in Ref. [18]
by the method proposed in Ref. [19]. Precision calculations
were performed in Refs. [20,21], and later improved [22,23].
The calculation procedure is described in detail in
Refs. [24,25], and successfully used in later works [26–29].
The same method is also used in the present paper for the
calculation of the SE-WF for the ground state of hydrogenlike
ions.

Let us start with the definition of the unperturbed wave
function of an electron in the field of the nucleus. For the state
a with the energy εa, the wave functions are determined as
solutions of the Dirac equation with a spherically symmetric
nuclear potential as [30]

ψa(r) =
(

gnaκa (r)�κama (̂r)

i fnaκa (r)�−κama (̂r)

)
. (1)
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(a) (b) (c)

FIG. 1. Examples of QED corrections which can be calculated with the SE-WFs. (a) The self-energy loop is combined with an interaction
with an arbitrary external field. (b) Two different two-loop QED-corrections diagrams, containing a self-energy loop, to the energy levels.
(c) Diagrams for the two-loop QED corrections to the external field interaction of a bound electron, containing a self-energy loop. The SE
loop here, and in the following figures, can be assumed to represent the renormalized SE operator �R. Double lines represent bound-electron
wave functions or propagators; the wavy line represents a virtual photon. A wavy line terminated by a triangle represents the interaction with
an arbitrary external field.

Here, n is the principal quantum number; κ is the relativistic
angular quantum number, which specifies both the total angu-
lar momentum quantum number j = |κ| − 1/2 and the orbital
angular momentum quantum number l = |κ + 1/2| − 1/2; m
is the projection of the total angular momentum. �κm (̂r) are
the spherical spinors which are expressed as functions of
r̂ ≡ r/|r|, and the radial components are normalized as∫ ∞

0
dr r2 [g2(r) + f 2(r)] = 1.

The self-energy operator �(E ) can be written in terms
of its matrix elements in the Feynman gauge as (see, e.g.,
Ref. [29])

〈a|�(E )|b〉 = i

2π

∫ ∞

−∞
dω

∑
n

〈an|I (ω)|nb〉
E − ω − εn(1 − i0)

, (2)

I (ω, x1, x2) = α
(1 − α1α2) exp (i

√
ω2 + i0x12)

x12
. (3)

Here, x12 is the relative distance x12 = |x1 − x2|, and the
summation in Eq. (2) goes over the full spectrum of the Dirac
equation, including negative- and positive-energy states. This
expression suffers from ultraviolet divergences, and has to be
considered together with a mass counterterm (see Fig. 2):

�(E ) → �R(E ) = �(E ) − γ 0δm.

Here and below αi and γ μ are Dirac matrices, δm originates
from the counterterm diagram, and �R stands for the renor-
malized SE operator.

→ −
FIG. 2. Furry-picture Feynman diagram representing the renor-

malization of the self-energy diagram by the counterterm diagram.
The cross indicates the mass counterterm.

With the notations introduced above, one can write the SE-
WF for the state a as

|δSEa〉 =
∑

n,n �=a

|n〉〈n|�R(εa)|a〉
εa − εn

≡
′∑
n

|n〉 �Ena

εa − εn
. (4)

This expression has the form of the standard quantum-
mechanical first-order perturbation of the wave function |a〉
by the self-energy operator �(εa) and thus is termed the
SE-WF. We stress that the SE-WF delivers only a part of
the total contribution induced by the electron self-energy.
Corrections beyond the SE-WF arising within a rigorous QED
perturbation theory should be taken into account separately
within different approaches, which are beyond the scope of
the present paper. In particular, this stands for the term with
n = a, excluded from the summation in Eq. (4), which leads
to the so-called reducible contributions. Please note that the
SE operator is diagonal in the relativistic angular quantum
number κ and the angular momentum projection m, therefore
the summation over n in Eq. (4) goes only over the principal
quantum number. Therefore, also, the spin-angular structure
of the SE-WF is the same as that of the unperturbed Dirac
wave function given in Eq. (1):

|δSEa〉 =
(

δSEgnaκa (r)�κama (̂r)

iδSE fnaκa (r)�−κama (̂r)

)
. (5)

In the following, even if it is not indicated explicitly, we imply
that �Ena ∝ δκa,κnδma,mn .

Let us discuss how the SE-WFs, determined by Eq. (4), can
be used for practical calculations. As a first example, we con-
sider the diagram in Fig. 1(a). If a triangle on this diagram cor-
responds to the interaction with an external magnetic field B,
the diagram describes the irreducible part of the SE correction
to the bound-electron g factor. The corresponding energy shift
can be written as

�ESE,irred = 2
′∑
n

〈a|(−eα · A)|n〉〈n|�R(εa)|a〉
εa − εn

, (6)

where e < 0 is the electron charge, A is the vector potential
corresponding to the magnetic field B, and the factor of 2
is due to the fact that there are two equivalent diagrams.
The usual approach to calculate this contribution is based on
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introducing the magnetic-field corrected WF

|δBa〉 =
′∑
n

|n〉〈n|(−eα · A)|a〉
εa − εn

, (7)

and expressing the irreducible SE correction as a nondiagonal
element of the SE operator, namely,

�ESE,irred = 2〈δBa|�R(εa)|a〉. (8)

However, this contribution can be also calculated with the use
of the SE-WF (4) as

�ESE,irred = 2〈a|(−eα · A)|δSEa〉. (9)

As a second example, let us consider the loop-after-loop SE
contribution to the Lamb shift, given by the first diagram in
Fig. 1(b). Following the Feynman rules, the energy shift is
determined by

�ELAL =
′∑
n

〈a|�R(εa)|n〉〈n|�R(εa)|a〉
εa − εn

, (10)

or, using the SE-WF (4), as

�ELAL = 〈a|�R(εa)|δSEa〉. (11)

Calculations for the SE correction to the g factor [10,31,32]
and hyperfine splitting [13,33,34] [Fig. 1(a)], as well as for the
two-loop QED corrections to the energy levels [16,17,35–38]
[Fig. 1(b)], were performed in the past. In our current paper,
we used the results of these calculations as a consistency
check for our SE-WFs (see Sec. V). However, our main aim
is to use the SE-WFs for calculations of the SE-SE loop-
after-loop and the irreducible part of the SE magnetic loop
two-loop QED corrections to the g factor, corresponding to the
diagrams in Fig. 1(c). Some of these diagrams were already
calculated with our SE-WFs, and the results are presented in
Refs. [39,40].

As we can see from Eq. (4), the SE-WF can be written
as a sum of renormalized nondiagonal elements of the SE
operator. Therefore, the ultraviolet divergence can be treated
with the standard dimensional regularization approach [29].
To separate this divergence, let us expand the Green’s function
for the bound electron in powers of the potential:

1

ω − H
= 1

ω − H0
+ 1

ω − H0
V

1

ω − H0

+ 1

ω − H0
V

1

ω − H
V

1

ω − H0
. (12)

Here, H0 is the free Dirac Hamiltonian, the operator V de-
scribes the electromagnetic interaction between the bound
electron and the nucleus, and H = H0 + V is the total Hamil-
tonian. The corresponding diagrams are presented in Fig. 3.
The three terms in Eq. (12) give three corresponding con-
tributions to the SE-WF determined by Eq. (4): the zero-
potential, one-potential, and many-potential terms, which will
be described in detail in the following subsections.

A. Zero-potential contribution

Let us start with the zero-potential term, i.e., the part where
there is no interaction between the electron and the nucleus

= + +

FIG. 3. Expansion of the electron propagator within the self-
energy diagram in powers of interactions with the nucleus. Single
lines represent free-electron propagators; a wavy line terminated by
a cross represents an interaction with the nucleus.

inside the SE loop, corresponding to the first term in Eq. (12)
and in Fig. 3. Following the procedure described in Ref. [29],
and taking into account the mass counterterm, one can write
the following expression for the zero-potential contribution
to the nondiagonal SE matrix element (see Fig. 3) in the
momentum representation:

�E (0)
ab =

∫
dp

(2π )3
ψa(p)(�(0)(p) − δm)ψb(p). (13)

Here ψ = ψ†γ 0, and �(0) is the free SE function [29]. The
electronic wave function in the momentum representation is
determined via the Fourier transform

ψ (p) =
∫

dr e−ip·rψ (r) = i−l

(
g(p)�κm (̂p)

f (p)�−κm (̂p)

)
, (14)

with the radial wave functions g(p) and f (p), and the angular
part given by spherical spinors �κm, like in the coordinate rep-
resentation (1). The normalization integral for the momentum-
representation wave functions reads

1

(2π )3

∫
d p p2[g2(p) + f 2(p)] = 1. (15)

Note that after subtraction of the mass counterterm the
zero-potential part of the SE operator still contains a UV-
divergent contribution:

�(0)(p) − δm = − α

4π
�ε (p/ − m) + �

(0)
R (p),

within the dimensional regularization procedure with the
dimension D = 4 − 2ε. Here, p/ = pμγ μ, �ε = 1

ε
− γE +

ln 4π , ε is a small parameter, and γE is the Euler constant.
When the SE operator acts on the bound-electron wave
function, this divergent term is canceled by a matching UV
divergence in the one-potential contribution, carried by the
time-component �0 of the free vertex function:

�0(p′, p) = α

4π
�εγ

0 + �0
R(p′, p),

which will be considered in the next subsection. For the
calculation of the SE-WF, these remaining divergences in the
zero- and one-potential contributions can be ignored due to
this cancellation, and calculations can be performed for the
renormalized (finite) remainders �

(0
R and �

(0)
R .
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Finally, the renormalized operator �
(0)
R in the momentum

representation reads

�
(0)
R (p) = α

4π

[
2 + 4ρ ln ρ

1 − ρ
− /p

2 − ρ

1 − ρ

(
1 + ρ ln ρ

1 − ρ

)]
, (16)

where ρ = 1 − p2. Taking into account the following identity
obeyed by spherical spinors,

(σ · p̂)�κμ (̂p) = −�−κμ (̂p),

we can write the final expression for the nondiagonal zero-
potential term as follows:

�E (0)
ab = α

4π

∫ ∞

0

d p p2

(2π )3
{a(ρ)(gagb − fa fb)

+ b(ρ)[εa(gagb + fa fb) + p(ga fb + fagb)]}, (17a)

a(ρ) = 2

[
1 + 2ρ

1 − ρ
ln ρ

]
, (17b)

b(ρ) = −2 − ρ

1 − ρ

[
1 + ρ

1 − ρ
ln ρ

]
. (17c)

The radial wave functions are calculated at momentum p:
g = g(p), f = f (p). Please note that the SE operator is diago-
nal in κ and the angular momentum projection, and it does not
change the energy, therefore only the reference-state energy
(in our case state a) appears in the formula.

The calculation of the zero-potential contribution (17) is
completed by the numerical evaluation of the one-dimensional
integral in momentum space. The details of this calculation
are described in Sec. III B.

B. One-potential contribution

The one-potential term has one single interaction between
the electron and the nucleus inside the SE loop, corresponding
to the second term in Eq. (12) and in Fig. 3. The renormalized
expression for the one-potential term can be written in mo-
mentum representation as [25,29]

�E (1)
ab =

∫
dp′

(2π )3

∫
dp

(2π )3

× ψa(p′)�0
R(p′, p)V (p′ − p)ψb(p). (18)

Here the renormalized vertex function is

�
μ
R (p′, p) = α

4π
[Aγ μ + p/′(B1p′μ + B2pμ)

+ p/(C1p′μ + C2pμ) + Dp/′γ μp/

+ (H1p′μ + H2pμ)]. (19)

The coefficients are given as

A = C24 − 2 + p′2C11 + p2C12

+ 4(p′ · p)(C0 + C11 + C12)

− 2C0 + C11 + C12, (20a)

B1 = −4(C11 + C21), (20b)

B2 = −4(C0 + C11 + C12 + C23), (20c)

C1 = −4(C0 + C11 + C12 + C23), (20d)

C2 = −4(C12 + C22), (20e)

D = 2(C0 + C11 + C12), (20f)

H1 = 4(C0 + 2C11), (20g)

H2 = 4(C0 + 2C12), (20h)

via the one-parameter Feynman integrals

C0 =
∫ 1

0

dy

(yp′ + (1 − y)p)2
(− ln X ), (21a)

(
C11

C12

)
=

∫ 1

0

dy

(yp′ + (1 − y)p)2

(
y

1 − y

)
× (1 − Y ln X ), (21b)⎛

⎝C21

C22

C23

⎞
⎠ =

∫ 1

0

dy

(yp′ + (1 − y)p)2

⎛
⎝ y2

(1 − y)2

y(1 − y)

⎞
⎠

×
(

−1

2
+ Y − Y 2 ln X

)
, (21c)

C24 = −
∫ 1

0
dy ln(y2(p′ − p)2 − y(p′ − p)2 + 1).

(21d)

We used the notations

X = 1 + 1

Y
, (22a)

Y = 1 − yp′2 − (1 − y)p2

[yp′ + (1 − y)p]2
. (22b)

Note that the denominators in Eqs. (22) can be equal to
zero. However, this does not lead to a singularity in the
expressions of Eqs. (21), since the zeros of the denominator
are also zeros of the numerator of the same power.

The final renormalized expression for the nondiagonal one-
potential contribution is

�E (1)
ab = α

2(2π )6

∫ ∞

0
d p p2

∫ ∞

0
d p′ p′2

×
∫ 1

−1
dξ V (q)

[
Fab

1 Pla (ξ ) + Fab
2 Pla

(ξ )
]
, (23)

where q2 = p2 + p′2 − 2pp′ξ , l = 2 j − l , Pl are the Legendre
polynomials, and

Fab
1 = Ag′

agb + (B1εa + B2εb)(εag′
a + p′ f ′

a)gb

+ (C1εa + C2εb)g′
a(εbgb + p fb)

+ D(εag′
a + p′ f ′

a)(εbgb + p fb) + (H1εa + H2εb)g′
agb,

(24a)

Fab
2 = A f ′

a fb + (B1εa + B2εb)(εa f ′
a + p′g′

a) fb

+ (C1εa + C2εb) f ′
a(εb fb + pgb)

+ D(εa f ′
a + p′g′

a)(εb fb + pgb) − (H1εa + H2εb) f ′
a fb.

(24b)

The momentum-representation radial wave functions have to
be calculated at points p and p′ for unprimed and primed
variables, correspondingly: g = g(p), g′ = g(p′).

For the numerical evaluation of the one-potential term, one
has to calculate a four-dimensional integral, with an integrable
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singularity at the point ξ = 1, and the artificial singularities
originating from the zeros in the denominator. Around these
points, a Taylor expansion is used, which allows us to work
with an explicitly regular expression. Further details will be
given in Sec. III C.

C. Many-potential contribution

Finally, let us consider the remaining many-potential part
with two or more interactions between the electron and the
nucleus inside the SE loop, corresponding to the third term
in Eq. (12) and in Fig. 3. The many-potential contribution is
calculated in the coordinate representation by the formula

�E (2+)
ab = i

2π

∫ ∞

−∞
dω

[∑
n

〈an|I (ω)|nb〉
εa − ω − εn(1 − i0)

− subtractions

]
. (25)

The first term corresponds to the nonrenormalized contri-
bution [see Eq. (2)], whereas the subtractions account for
G(0) and G(1), namely, correspond to the substitution of the
bound Green’s function G → G − G(0) − G(1). Here, G(0) is
a free-electron propagator, and G(1) contains one interaction
with the field V , and in the case of the Coulomb field can
be calculated as the derivative G(1) = ZG′(Z )|Z=0. In our
calculations, however, the following alternative expression
for the many-potential term was used, as it was proposed in
Ref. [41]:

�E (2+)
ab = i

2π

∫ ∞

−∞
dω

∑
n

〈an′|I (ω)|n′b〉
εa − ω − εn(1 − i0)

, (26)

|n′〉 =
∑

f

| f 〉〈 f |V |n〉
εa − ω − ε f (1 − i0)

. (27)

Here |n〉 is a bound state in the external potential V , and
| f 〉 belongs to the spectrum of the free electron. Angular
integrations can be performed via the partial wave expansion
of the interelectronic interaction operator I (ω) as follows (see,
e.g., [29]):

〈ab|I (ω)|cd〉 = α

∞∑
J=0

IJ (abcd )RJ (ω, abcd ). (28)

IJ contains the full dependence on the angular momentum
projections via 3 j symbols [42]

IJ (abcd ) =
∑

M

(−1) ja−ma+J−M+ jb−mb

×
(

ja J jc
−ma M mc

)(
jb J jd

−mb −M md

)
, (29)

and RJ are generalized Slater radial integrals:

RJ (ω, abcd )

= (2J + 1)
∫ ∞

0
dr1dr2r2

1r2
2

× [(−1)JgJ (ω, r<, r>)Wac,J (r1)Wbd,J (r2)

−
∑

L

(−1)LgL(ω, r<, r>)Xac,JL(r1)Xbd,JL(r2)], (30)

where r< = min(r1, r2), r> = max(r1, r2), and gL(ω,

r<, r>) = iω jL(ωr<)h(1)
L (ωr>) with the spherical Bessel

functions jL and h(1)
L . We have used the following notations

in the radial integrals,

Wab,J (r) = CJ (κa, κb)[ga(r)gb(r) + fa(r) fb(r)], (31a)

Xab,JL(r) = ga(r) fb(r)SJL(−κb, κa)

− fa(r)gb(r)SJL(κb,−κa), (31b)

with the nonvanishing angular coefficients

CJ (κ1, κ2) =
√

(2l1 + 1)(2l2 + 1)(2 j1 + 1)(2 j2 + 1)

× (−1) j2+J+1/2

(
l1 J l2
0 0 0

){
j1 j2 J
l2 l1 1/2

}
,

(32a)

SJJ+1(κ1, κ2) =
√

J + 1

2J + 1

(
1 + κ1 + κ2

J + 1

)
CJ (−κ2, κ1),

SJJ (κ1, κ2) = κ1 − κ2√
J (J + 1)

CJ (κ2, κ1),

SJJ−1(κ1, κ2) =
√

J

2J + 1

(
−1 + κ1 + κ2

J

)
CJ (−κ2, κ1).

(32b)

Performing analytically the angular integrations and summa-
tions over the projections in Eq. (26), we obtain a significantly
simplified expression for the many-potential term:

�E (2+)
ab = iα

2π

∫ ∞

−∞
dω

∑
nJ

(−1) jn− ja+J

2 ja + 1

× RJ (ω, an′n′b)

εa − ω − εn(1 − i0)
. (33)

The sum over n in this expression corresponds to the summa-
tion over the principal and relativistic angular quantum num-
bers of the intermediate states. The details of the numerical
calculation will be discussed in Sec. III D.

III. NUMERICAL CALCULATIONS

To solve the Dirac equation numerically we used
the dual-kinetic balance (DKB) method [43] based on
B-splines [44,45]. This method provides solutions for an
arbitrary spherically symmetric potential. The solutions are
determined in a cavity, which allows one to have a finite
number of electronic states, representing the full spectrum,
including negative and positive continuum states, for a
given value of the relativistic angular momentum number
κ . Low-lying bound states can be reproduced with high
accuracy. Thanks to the availability of this discrete numerical
spectrum, it is possible to calculate sums over the spectrum
such as those featured in Eq. (4). In our calculations, we
used a homogeneously charged sphere model for the charge
distribution inside of the nucleus. The root-mean-square
nuclear radii were taken from Ref. [46].

A. Fourier transform

The calculation of the zero- and one-potential terms has to
be performed in momentum space [see Eqs. (17) and (23),
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respectively]. Therefore, the calculation of the SE-WF re-
quires electron wave functions in the momentum represen-
tation. As it turns out, this is a major difficulty. Since the
momentum-representation wave functions are determined via
the Fourier transform (14), the radial wave functions in mo-
mentum space can be calculated with a generalized Fourier
transform:

g(p) =
√

2

π

∫ ∞

0
dr r2 jl (pr)g(r), (34a)

f (p) = − κ

|κ|

√
2

π

∫ ∞

0
dr r2 jl (pr) f (r). (34b)

The spherical Bessel functions jl (x) oscillate very fast
for large arguments of x, making the numerical integration
extremely slow and poorly converging. However, the wave
functions in the DKB approach are represented by piecewise
polynomials on intervals [ri, ri+1], which allows us to use a
semianalytical approach in the calculation of the oscillating
radial integrals Eqs. (34). The integral of the Bessel function
with a monomial function on a given interval can be calculated
analytically:∫ b

a
jn(r)rmdx = Function(a, b, n, m).

Therefore, on every interval [ri, ri+1], the integrals (34) can
be calculated as a sum of the analytically calculated integrals
for the different powers of r. However, for large values of r,
the coefficients of such an expansion in monomials can be
very large, resulting in very large cancellations between dif-
ferent contributions, which leads to large numerical errors. For
this reason, we do not separate the wave functions into their
polynomial pieces. Rather, we use the full expression for the
wave functions on each of the intervals for the integration and
then add the results of each of the intervals.

As already noted, the generalized Fourier transform is
a highly oscillatory integral for large enough momenta. To
handle this complication, we express the spherical Bessel
functions in terms of sine and cosine functions. That is, we
express the generalized Fourier transforms as sums of sine and
cosine transforms on finite intervals of appropriate functions.
We then use routines from the numerical integration library
QUADPACK [47] dedicated for the computation of these kinds
of sine and cosine transforms. These routines allow us to set
target accuracy values to control the accuracy of the result.

In our calculations, we requested the relative and the
absolute accuracy of the calculations to be 10−6 and 10−15,
respectively. However, this accuracy could not always be
reached due to the complexity of the calculations, especially
for large values of integration variables. Therefore in addition
to the accuracy control in our calculations, we also carried out
a few tests to estimate the resulting SE-WF (see Sec. V for
details).

B. Zero-potential contribution

The calculation of the zero-potential contribution (17) to
the SE-WF (4) can be performed in two steps. First, one
calculates the corresponding nondiagonal contributions �E (0)

na
for the full spectrum of the electronic states n. Thereafter, the

zero-potential contribution to the SE-WF can be written as a
point-by-point summation of those contributions divided by
the energy difference:

∣∣δ(0)
SE a

〉 =
′∑
n

|n〉 �E (0)
na

εa − εn
. (35)

However, this straightforward approach was found to be in-
applicable here. In addition to the oscillations in the spher-
ical Bessel functions, the wave functions corresponding to
the positive and negative continua in the discrete numerical
spectra of the B-splines also contain significant oscillations
towards the end of the cavity. Combined together, these factors
make the direct calculation of the integrals �E (0)

na impossible
with any reasonable accuracy. To overcome this obstacle, an
alternative approach based on the reduced Green’s function
has been used. The radial part of the reduced Green’s function
as a function of the reference state energy and two coordinates
can be calculated as

G′(εa, r1, r2) =
′∑
n

|n〉〈n|
εa − εn

. (36)

Then, the zero-potential contribution to the SE-WF can be
described by the expression∣∣δ(0)

SE a
〉 = G′(εa)�(0)

R |a〉. (37)

The reduced Green’s function G′(εa, r1, r2) has a smooth
dependence on radial variables which greatly simplifies the
numerical Bessel transform (34). Since all the wave functions
have piecewise polynomial structure, the Green’s function, as
a linear combination of the wave functions, also has the same
structure. Therefore, the procedure described in the previous
subsection can be applied here.

Finally, the full procedure functions as follows. For each
point of the predefined grid on r1 we calculate the radial
part of the reduced Green’s function G′(εa, r1, r2). Then we
perform the Fourier transform over the second variable as

G′(εa, r1, r2) → G′(εa, r1, p).

Finally, to obtain the zero-potential part of our SE-WF in
coordinate representation as a function of r1, we integrate over
p in Eq. (37), using the zero-potential matrix element (17) of
the SE operator. In the case of the diagonal matrix element
�E (0)

aa , a comparably sparse integration grid on p can be used.
For the SE-WF calculation, due to discontinuity of the radial
Green’s function G(εa, r1, r2) at r1 = r2, we had to break the
radial integration over r2 at this point and, therefore, different
values of r1 required different radial grids for r2. Therefore,
the integration has been performed with a DQAGI procedure
from the QUADPACK package with target accuracy values to
control the accuracy of the result.

C. One-potential contribution

The calculation of the one-potential contribution to the
SE-WF is in principle similar to that of the zero-potential
term. Again, instead of calculating the set of nondiagonal
contributions �E (1)

na and then summing point by point over
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the whole spectrum according to

∣∣δ(1)
SE a

〉 =
′∑
n

|n〉 �E (1)
na

εa − εn
, (38)

we first calculate the reduced Green’s function and
then evaluate the one-potential contribution with its help
according to ∣∣δ(1)

SE a
〉 = G′(εa)�(0)

R V |a〉. (39)

Therefore, the numerical integration in Eq. (23) has to be
performed for a given point of the reduced Green’s function
G′(εa, r1, p), and the integrals calculated independently for
the lower and upper components of the resulting SE-WF. In
comparison with the zero-potential term, the difference is that
instead of a regular one-dimensional integral we now have
a four-dimensional integrand featuring integrable singulari-
ties. The first singularities are the zeros of the denominators
of the Feynman integrals in Eqs. (17). To integrate around
these points, a Taylor expansion was used, giving rise to
analytically simplified expressions, which do not contain any
singularities anymore. The next problem arises at point q = 0,
which occurs when ξ = 1 and p1 = p2. The singularity comes
from the momentum representation of the nuclear potential,
determined as an integral:

V (p) =
∫

dr exp(−ip · r)V (r)

= 4π

∫ ∞

0
drr2 j0(pr)V (r). (40)

For the pointlike nucleus, the Fourier transform of the
Coulomb potential Vpoint (r) = −αZ/r can be used:

Vpoint (p) = −4παZ

p2
. (41)

In the case of the homogeneously charged sphere nuclear
model with the radius rN , the expression is less trivial:

Vsph(p) = −3αZ

p2

sin(prN ) − prN cos(prN )

(prN )3
. (42)

In the case of other more complicated potentials, i.e., Fermi
or any effective potentials, including electron screening or a
Uehling potential, there are no analytical formulas, and the
momentum representation of the nuclear potential has to be
calculated numerically using Eq. (40).

For the numerical integration in Eq. (17), it is more con-
venient to change the variable from ξ ∈ [−1, 1] to q = p2

1 +
p2

2 + 2ξ p1 p2, q ∈ [|p1 − p2|, p1 + p2], as it was suggested
in Ref. [29]. Then the integral contains an integrable singu-
larity of 1/q. The integrations over the Feynman parameters
and over q were performed with the DQAGS procedure. The
remaining two integrations over p1 and p2 on the infinite
intervals [0,∞) were performed again with DQAGI.

D. Many-potential contribution

For the calculation of the many-potential contribution to
the SE-WF a straightforward approach has been used: we start

Im

Re

(ω)

(ω)

CL

CH

δx

δy

FIG. 4. The singularities of the integrand (blue and green dots
and lines) of the many-potential part Eq. (43) and the modified (in
the most general form) integration contour (red line) for the 1s state;
see the text and Ref. [17] for further detail.

from

∣∣δ(2+)
SE a

〉 =
′∑
n

|n〉 �E (2+)
na

εa − εn
. (43)

For each state n in the spectrum the nondiagonal element
defined by Eq. (26) can be calculated independently, and the
SE-WF calculated as a point-by-point summation after this.

The following numerical difficulties arise for the many-
potential contribution: First of all, the integrand in Eq. (33)
is again a highly oscillating function of ω, which makes direct
usage of that expression problematic. Additionally, in the
complex plane, the integrand has poles at points ω = εa −
εn + i0, where |εn| < mc2, and two branches starting from
the points ω = εa ± mc2(1 − i0), originating from the bound
electron’s Green’s functions, and two branch cuts starting
from the points ω = ±√−iδ, originating from the photon
propagator. A schematic picture of the analytical structure of
the integrand is given in Fig. 4 for the case of the reference
state 1s. The simplest way to suppress the oscillations is
the rotation of the integration contour as ω → ±iω, so that
the oscillating exponential function exp (iωx) turns into the
decaying exp (−ωx). However, this rotation would lead to the
appearance of pole terms for all intermediate bound states
with energies equal to or below the energy εa of the considered
state a. The integral contribution and the pole terms partly
cancel each other. Therefore, this approach is reasonable to
use for the ground or the first few excited states, where the
number of poles and cancellations are not very large yet.

For a more general approach and in order to avoid the
cancellations with the pole terms, one can carry out the
integration over the more complicated contour in the complex
plane shown in Fig. 4.

The contour consists of a low-energy part CL and a high-
energy part CH , as explained in Ref. [17]. In this case, the
integration over the upper and lower branches of the cut leads
to the following replacement in the numerical calculations of
the low-energy part:

gL(ω) → gL(ω) − gL(−ω).
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FIG. 5. Zero-potential (ZP, blue), one-potential (OP, green), and many-potential (MP, red) contributions, and the total value (gray) for the
large component of the self-energy-corrected wave function rδgSE(r) for the ground state of hydrogenlike ions with (a) Z = 2 and (b) Z = 92.

For the high energy-part, both contributions are equivalent,
therefore a simple multiplication factor 2 is applied.

The summation over n in Eq. (33) goes over the principal
quantum number and also involves an infinite summation over
the relativistic angular quantum number κ . In our numerical
calculations, the summation is terminated at the maximum
value |κ| = 18, while the residual part of the sum is evaluated
by a least-square inverse-polynomial fitting. For any given κ ,
the summation over the Dirac spectrum is performed utilizing
the DKB approach [43] involving basis functions constructed
from B-splines. For each value of ω, the integrand still con-
tains the summation over the spectrum n′, the summation
inside of it over the free-electron spectra f , and the summation
over the partial waves J . Therefore, to increase the speed of
the calculation, all wave functions, angular coefficients, and
spherical Bessel functions have to be precalculated on the
predetermined integration grid.

IV. RESULTS AND DISCUSSION

In Fig. 5 we show the results of our calculation for different
nuclear charge numbers Z for the zero-, one-, and many-
potential terms, plotting rδgSE(r), the large component multi-
plied by the radius. As can be seen, the different contributions
have different signs and partly cancel each other. As is clear
from Fig. 5(b), the total SE-WF for Z = 92 is of the same
order of magnitude as the individual contributions. In contrast,
for Z = 2 there is a very large cancellation between the
individual terms, and the total value is indistinguishable from
zero in Fig. 5(a). Therefore, for Z = 2 the absolute values of
the individual contributions and the total value of the SE-WF
are plotted in Fig. 6 on a logarithmic scale, revealing the
cancellation of individual contributions up to four orders of
magnitude.

For large radii, one can see oscillations in the SE-WF,
which appear due to several factors. First of all, the bound-
electron wave functions themselves have oscillations close to
the edges of the box, even though the analytical expressions
for the wave functions do not feature any. However, the mag-
nitude of those oscillations is very small so that normally they
do not limit the accuracy of calculations. Second, in the case
of the zero- and one-potential terms, we have an additional

numerical noise for large radial distances because of the fast
oscillations in the spherical Bessel transform. For large Z such
as Z = 92, the noise in the SE-WF is at least four orders of
magnitude smaller than its value in the nuclear region, and
it does not influence the calculations. For smaller Z , this is
not the case. In the case of Z = 2, the cancellations between
the zero-, one-, and many-potential terms concern the first
four digits. Therefore, even when these three contributions
separately are calculated accurately, the total results feature
significant numerical noise.

In order to solve this problem, we analyze the asymptotic
behavior of the SE-WF for large radii r. By analyzing the SE-
WFs we found that they are proportional to the wave functions
of the unperturbed state multiplied by r:(

δSEgnaκa (r)

δSE fnaκa (r)

)
∼ α

π

(
rgnaκa (r)

r fnaκa (r)

)
. (44)

Therefore, the SE-WF obtained through our methods, even for
small values of Z , still can be used. Fitting the SE-WF with
the unperturbed wave functions multiplied by r in a region
where the SE-WF displays a smooth behavior, we were able to
find a proportionality coefficient, and replace the SE-WF with
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FIG. 6. Absolute values of the zero-potential (blue), one-
potential (green), and many-potential (red) contributions, and of
the total value (gray) for the large component of the self-energy-
corrected wave function |rδgSE(r)| for the ground state of hydrogen-
like ions with Z = 2 in logarithmic scale.
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FIG. 7. Absolute values of the large component of the total self-energy-corrected wave function rδgSE(r) (gray) and its extrapolation (red)
according to Eq. (44) for the ground state of hydrogenlike ions with (a) Z = 2 and (b) Z = 92.

the corresponding asymptotic equivalent in the region where
the numerical noise becomes too large. The total SE-WFs and
their asymptotic extrapolation are shown in Fig. 7.

With these SE-WFs, we can also calculate the SE-WFs
in the momentum representation, following the procedure
described earlier in Sec. III A. The resulting SE-WFs are
plotted in Fig. 8.

V. CONSISTENCY TESTS

A. One-loop g factor

To check the accuracy of our SE-WFs, we used them to
compute the irreducible part of the SE correction to the bound-
electron g factor [see Fig. 1(a)]. This correction is usually
computed in the literature following Eq. (8), as the matrix
element of the SE operator between the bound electron’s
wave function and the wave function perturbed by a constant
homogeneous magnetic field B. Rewriting Eq. (9) for the g
factor, we computed the correction using the SE-WF instead,
according to

gSE,wf,irred = − 8

eB
〈a|(−eα · A)|δSEa〉. (45)

Here, we assume the angular momentum projection to be 1/2,
and the prefactor −8/eB comes from converting from the
energy shift to the g factor.

In Table I, we compare our results, obtained with Eq. (45),
with the values given in Ref. [15]. We used Ref. [15] for com-
parison because in that work, just as in our case, calculations
were performed for extended nuclei. Typically, we found a
three- to four-digit agreement both with the coordinate and
the momentum space representations of our SE-WFs.

B. SE loop-after-loop correction

We also computed the SE LAL contribution to the Lamb
shift [first diagram in Fig. 1(b)]. Using the SE-WF, the energy
shift according to Eq. (11) reads

�ELAL = 〈a|�R|δSEa〉. (46)

The SE operator in Eq. (46) needs to be split again into
the zero-, one-, and many-potential parts. The evaluation
of the zero- and one-potential contributions to �ELAL requires
the momentum representations of the bound-electron wave
function and the SE-WF. The many-potential contribution to
�ELAL can be computed in coordinate space. Table II shows
a comparison of our calculation of �ELAL with values taken
from Refs. [16,17].

We observe that for low and middle Z our result agrees
well with the values in Refs. [16,17], while there is a slight
disagreement for Z = 92. This discrepancy is due to the fact
that, in our case, the SE-WF was obtained for extended nuclei,
while the calculations in Ref. [17] are based on the pointlike
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TABLE I. gSE,wf,irred contribution to the ground-state 1s bound-
electron g factor in units of 10−6. The first and second column contain
our results according to Eq. (45), obtained with the coordinate and
momentum representations of the SE-WF, respectively. The third
column contains the values from Ref. [15].

Z Coord. repr. Momen. repr. Ref. [15]

2 5.211(19) 5.198(11) 5.2065(4)
10 78.748(8) 78.746(5) 78.7434(4)
18 199.765(8) 199.764(8) 199.7635(4)
36 576.522(11) 576.522(6) 576.469(2)
54 1074.31(7) 1074.30(7) 1074.185(2)
92 2694.62(5) 2694.63(5) 2694.56(1)

nuclear model. With a smaller radius in our calculations, our
results converge to those presented in Ref. [17].

VI. CONCLUSIONS AND OUTLOOK

In this paper, we calculated the self-energy-corrected
ground-state wave functions for a number of hydrogenlike
ions. The general formulas, the numerical procedure, the
problems encountered, and the methods employed to solve
them are discussed in detail in the paper. Our tests show
good agreement with previously published results and demon-
strate that our self-energy-corrected wave functions can be
used for further calculations of one- and two-loop quantum-
electrodynamic corrections, including heretofore uncalculated

TABLE II. Comparison of our values for �ELAL obtained ac-
cording to Eq. (46) (first column) and the values from Refs. [16,17]
(second column) for the ground-state 1s electron. With an asterisk we
mark the values obtained by an interpolation of the results presented
in Refs. [16,17]. We write �ELAL = ( α

π
)2(Zα)4F (Zα). For high Z ,

the difference between the results is caused by the finite nuclear size
effect.

Z F (Zα), Eq. (46) F (Zα), earlier works

10 −0.36(3) −0.358 [16]
18 −0.561(2) −0.562∗

36 −0.828(2) −0.827∗

54 −1.013(2) −1.016∗

92 −1.680(2) −1.734 [17]

ones. The results of our calculations in coordinate and mo-
mentum representations are tabulated in the Supplemental
Material [48] and can be used for various calculations.
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