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Highly charged ion systems play an important role in simulation and diagnostics of astrophysical and fusion
plasmas. Due to dominant strong Coulomb interactions from the nuclear charge, electron correlations are
generally thought to be less prominent than relativistic effects and other effects in HCIs. In this paper, we
demonstrate the importance of strong intrashell electron correlations from the quasidegeneracy of 2s, 2p orbitals
in highly charged B-like Ar13+ ions. Such strong intrashell electron interactions manifest as an atomic system
with many channel interactions, which will ultimately form a much more complex atomic spectrum than the
neutral B atom in the isoelectronic sequence. As a typical example, the relativistic eigenchannel R-matrix method
(R-R-eigen code) was successfully applied to investigate the complex spectrum of Ar13+ ions with Jπ = 1.5+

symmetry in discrete and autoionization regions. Calculated results obviously show interesting behaviors of
strong intrashell electron correlations in HCIs. Additionally, it is also beneficial to understand discrepancies in
the low-energy electron-ion recombination spectra of Be-like Ar14+ ions between experimental observations at
the main cooler-storage ring of the Heavy Ion Research Facility in Lanzhou and distorted wave calculation.

DOI: 10.1103/PhysRevA.101.032508

I. INTRODUCTION

Highly charged ions (HCIs) play an important role in
astrophysics and fusion plasmas. Related atomic data on
energy levels, autoionization widths, oscillator strengths, and
collision rates (electron impact excitation, electron-ion recom-
bination, etc.) are required to numerically simulate temporal-
spatial motions for plasmas in astrophysical objects or con-
trolled fusion facilities. They are also needed for diagnostic
analysis of plasma parameters [1–6]. For example, argon
(Z = 18) is one of the most abundant heavy elements in the
universe. Emission lines from argon have been observed and
were applied for plasma diagnostics [6,7].

Comparing with relativistic effects (scale as Z2 and
higher), the electron correlation effects (scaling as Z) are gen-
erally less prominent in HCIs than that in lowly charged ions
along the isoelectronic sequence. However, considering the
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strong Coulombic field within HCIs, their orbitals are gener-
ally similar to orbitals of hydrogenlike ions with the same ion-
ization degree, i.e., orbital energies for orbitals with the same
principal quantum number n are almost degenerate. Thus, it
is reasonable to believe that intrashell electron correlations
would play an important role in HCI energy-level structures,
which may show more complicated structures and different
features compared to lowly charged ions. As an illustrative ex-
ample, we show in Fig. 1 the excited energy structure of the B-
like neutral B atom and Ar13+ ion to display different electron
correlation features in lowly and highly charged ions, respec-
tively. For the open-shell B atom with one active electron in a
specific Jπ (left), bound-state levels below the first ionization
threshold (2s2)1Se (at zero of the scaled energy) all belong
to the single channel (2s2) 1Se nl . In contrast, for Ar13+ ions
(right), all channel states squeeze together, which indicates a
strong mixing among these channels, including (2s2) 1Se nl ,
(2s2p) 3Po nl, 1Po nl , (2p2) 3Pe nl, 1De nl, 1Se nl . Similar
differences also exist in autoionization resonant states above
the first ionization threshold. Such features of HCI energy
levels raise another challenge for theoretical treatments in
addition to electron correlations. Specifically, the density of
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FIG. 1. Schematic diagram of 2l2l ′nl ′′ Rydberg states in the
1/(q + 1)2 scaled energy of neutral B atom (left) and B-like Ar13+

ion (right), with q the ionization degree. The first threshold (2s2) 1Se

is chosen as the zero energy for the scaled energy. Both systems show
the similar Rydberg series (2s2) 1Se nl , (2s2p) 3Po nl, 1Po nl and
(2p2) 3Pe nl, 1De nl, 1Se nl , represented by solid lines converging
to the associated six thresholds (dashed lines). The Ar13+ system
obviously shows quasidegeneracy of the thresholds, giving rise to
complex electron-electron interactions.

states of HCIs in energy regions containing these intrashell
states is much larger than that of lowly charged ions. Then
with the same experimental energy resolution, many more
bound or resonant states are required to be considered for
relevant physical processes. Based on the discussion above,
one is not surprised by recent precision electron-ion recombi-
nation experiments of Be-like Ar14+ ions at the main cooler-
storage ring (CSRm), where substantial discrepancies existed
between measured recombination rates and theoretical results
calculated by the distorted wave (DW) method [7]. Thus, a
theoretical method which can treat these intrashell electron
correlations adequately and provide accurate resonance posi-
tions as well as autoionization rates efficiently is urgently re-
quired for a better understanding of measured recombination
spectra of HCIs.

Based on analytical continuation properties of short-range
scattering matrices, we have developed the relativistic eigen-
channel R-matrix method (R-R-eigen code) [8–14], which has
been successfully applied for many atomic processes, such as
electron impact excitations [8,9], photoionizations [10,11,14],
etc. In this method, we first calculate short-range scattering
matrices, i.e., physical parameters associated with the mul-
tichannel quantum defect theory (MQDT) [15–21], and re-
lated wave functions for both discrete and continuous energy
regions of interest. Then, various physical quantities can be
derived from a straightforward application of the MQDT pro-
cedure [15–21]. Since short-range scattering matrices in the
discrete energy region can be examined stringently by precise
spectroscopic data using analytical properties of short-range
scattering matrices, scattering matrices in the continuum en-
ergy region can be readily obtained with desired accuracies.
Note that short-range scattering matrices vary smoothly with
energy because of their analytical continuation properties.

Therefore, the excited bound states and adjacent continua can
be treated in a unified way. One only needs to calculate short-
range scattering matrices in a few energy grid samples over the
energy regions of interest, which is one unique merit of this
method. Therefore, the R-R-eigen method is very promising
for calculating dense resonant states of HCIs.

In this work, we use the R-R-eigen method to investigate
bound energy levels as well as autoionization resonances of
highly charged Ar13+ ions with Jπ = 1.5+ symmetry. Strong
electron correlations within 2s, 2p shells are demonstrated
through calculated complex multichannel energy structures.

II. THEORETICAL METHODS AND
CALCULATION RESULTS

A. Calculation of eigenchannel parameters

The relativistic eigenchannel R-matrix method (R-R-eigen)
[8–14] is applied in this study to stringently treat the complex
atomic multielectron problem. Briefly, the coupling of N-
electron ion-core target states and an excited electron with
the appropriate angular momentum forms channels for the
N + 1-electron excited complex with a specific total angular
momentum. The multichannel logarithmic derivative bound-
ary matrix R(E ) is obtained by solving the N + 1-electron
problem variationally within the R-matrix box, i.e., the reac-
tion zone. With the R(E ) matrix, the reaction matrix K (E ) can
be calculated with the appropriate standing-wave expressions
on the boundary of the reaction zone.

Our R-R-eigen method [8–14] differs from the traditional
R-matrix method [22–27] mainly by definitions of physical
channels, which includes not only opened channels (with pos-
itive orbital energies) but also several relevant closed channels
(with negative orbital energies). Therefore, physical channels
(the number of which is denoted as np) include all Rydberg-
type bound electrons and their adjacent continua with orbital
energy in the energy range of ε > −q2/l2 (in Ry, where q is
the charge of a long-range potential and l is the orbital angular
momentum of the electron) owing to the mathematical prop-
erties of Coulomb wave functions [20]. Other closed channels
with deep negative orbital energies and N + 1 bound-type
configurations are also included as computational channels
(the number of which is denoted as ncom) to consider electron
correlations adequately. Once the number of target states is
determined, the total number of channels ntot = np + ncom is
determined and remains unchanged throughout calculations.
The number of physical channels np will increase with the
energy to meet the energy criteria ε > −q2/l2. The np × np

scattering matrices can be readily calculated with a suitably
chosen physical channel set for certain energies, which have
the analytical continuation properties. The short-range scatter-
ing matrix KJπ

for the symmetry block with the total angular
momentum J and parity π can be expressed in the diagonal
representation by

KJπ

i j =
∑

α

Uiα tan (πμα )Ujα, (1)

with the np eigenquantum defect μα and transforma-
tion matrix Uiα represented by Euler-type angles θk , k =
1, ..., np(np − 1)/2 [16]. The μα and Uiα are so-called physi-
cal parameters in the MQDT procedure [15–21].
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TABLE I. Physical channels (ionization channel) and corresponding eigenchannels for Ar13+ ions with Jπ = 1.5+.

Index 1 2 3 4 5 6 7 8 9
Ionization channels 1Se

0 d3/2
3Po

0 p3/2
3Po

1 p1/2
3Po

1 p3/2
3Po

2 p1/2
3Po

2 p3/2
1Po

1 p1/2
1Po

1 p3/2
3Pe

1 s
Eigenchannels 1Se d 2D 3Po p 4S 3Po p 4D 3Po p 2D 3Po p 4P 3Po p 2P 1Po p 2D 1Po p 2P 3Pe s 4P

Index 10 11 12 13 14 15 16 17 18
Ionization channels 3Pe

2 s 1De
2 s 3Pe

0 d3/2
3Pe

1 d3/2
3Pe

1 d5/2
3Pe

2 d3/2
3Pe

2 d5/2
1De

2 d3/2
1De

2 d5/2

Eigenchannels 3Pe s 2P 1De s 2D 3Pe d 4F 3Pe d 4D 3Pe d 2D 3Pe d 4P 3Pe d 2P 1De d 2D 1De d 2P

Index 19 20 21 22 23 24 25
Ionization channels 1Se

0 d3/2
3Po

1 f5/2
3Po

2 f5/2
3Po

2 f7/2
1Po

1 f5/2
3Pe

2 g7/2
1De

2 g7/2

Eigenchannels 1Se d 2D 3Po f 4F 3Po f 4D 3Po f 2D 1Po f 2D 3Pe g 4F 1De g 2D

For our interested energy regions, we consider all possible
electron configurations with 2s, 2p shells of Ar14+ targets
for intrashell correlations, i.e., Ar14+ (2s2) 1Se

0, (2s2p) 3Po
0,1,2,

(2s2p) 1Po
1 , (2p2) 3Pe

0,1,2, (2p2) 1De
2, (2p2) 1Se

0 with energies
0.00, 2.0839, 2.1493, 2.3026, 4.1206, 5.5124, 5.6056, 5.7256,
6.2843, 7.6603 Ry [28,29], respectively. As the scattering
energy varies from the bound-state region below the first
ionization threshold (2s2) 1Se

0 to the complete continuum-
state region above the highest threshold (2p2) 1Se

0 via the
intermediate autoionization region, the number of physical
channels np varies from 1, 6, 8, 11, 19, 22, 23, to 25, which
forms eight energy regions for the short-range scattering ma-
trix calculations. To facilitate later discussions with variable
physical channels, all 25 ionization channels (JJ notation)
are listed in Table I with their corresponding eigenchannels
(LS notation), respectively. Here orders of ionization channels
are arranged to comply with physical channels used in calcu-
lations with the increasing energy, and related eigenchannel

labels are given by their maximum overlap component with
the geometric JJ decomposition representing corresponding
ionization channels. Calculated eigenquantum defects μ in the
energy range from −23.0 to 8.0 Ry are displayed in Fig. 2.
Considering the number of channels involved in our calcu-
lation is relatively large, we show the figure of corresponding
Euler-type angles θk (as well as the data of scattering matrices)
in the Supplemental Material [30].

As can be seen, MQDT parameters (μα and θk) vary
smoothly within each energy region and cross ten ioniza-
tion thresholds smoothly, which well reflect the analytical
properties of the calculated scattering matrices. Additionally,
parameters of two adjacent energy regions connect perfectly
with each other over intersection regions for 1 ↔ 6, 11 ↔
19, 19 ↔ 22, 22 ↔ 23, and 23 ↔ 25 channels, which are
denoted as the type-I connection with weak interchannel
interactions [12]. However, for 6 ↔ 8 and 8 ↔ 11 channels,
newly added-on physical channels strongly interacted with

FIG. 2. MQDT physical parameters (eigenquantum defects μα of scattering matrices) of Ar13+ system with Jπ = 1.5+ in both discrete and
autoionization energy regions (−23.0 � E � 8.0 Ry) across ten thresholds represented by the vertical dashed blue lines. The vertical dashed
red lines plotted at E = −22.0, −20.4, −19.1, −17.2, −10.4, −8.3, and −1.8 Ry give boundaries of individual eight energy regions. See the
main text for more details.
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previous ones, inducing the so-called type-II connection [12].
Compared to eigenquantum defects μα , Euler-type angles θk

(see Supplemental Material [30]) are more sensitive to the
energy due to relatively strong interchannel interactions at
8ch, 11ch, and 19ch regions. Based on analytical continuation
properties of scattering matrices, all discrete energy levels and
autoionization resonances can be obtained without missing
any one in the framework of the MQDT. On the other hand,
one can readily check/calibrate the accuracy of scattering
matrices using available spectroscopic data [9,13,14].

B. Calculation of discrete energy levels and the assessment of
accuracies of eigenchannel parameters with spectroscopy data

The eigenchannel wave functions �Jπ

α inside the reaction
zone (r � r0) are calculated variationally [8–14]. Outside the
reaction zone (r � r0), it can be expressed rigorously as

�Jπ

α =
np∑

i=1

�i · Uiα · ( fi cos πμα − gi sin πμα ), (2)

where fi and gi are regular and irregular Coulomb functions,
respectively, and �i represents the channel wave function.
Wave functions of physical states (energy eigenstates) can
be expressed as the linear combination of eigenchannel wave
functions �Jπ

α [8–14,20,21],

�Jπ

(E ) = �αAα�Jπ
α (E ), (3)

where mixing coefficients Aα can be determined from asymp-
totic boundary conditions [15–21]. For bound states, all chan-
nels are closed, and the asymptotic boundary conditions re-
quire

�αUiα sin π (νi + μα )Aα = 0, for all i, (4)

with the effective principal quantum numbers νi defined as

E = Ii − q2/ν2
i (in Ry), (5)

where Ii is the threshold and q is the charge of the target ions.
The existence of nontrivial Aα leads to the MQDT equation:

F ({νi}, {Uiα, μα})= det[Uiα sin π (νi + μα )] = det(Fiα ) = 0.

(6)
In principle, although one can obtain theoretical energy

levels by solving Eqs. (5) and (6) with the substitution-
elimination method, it is not convenient for a systematic
overview of level characteristics and checking the calculation
accuracy with the precision spectroscopy data. Instead, we
can use our proposed “projected high dimensional quantum-
defect graph (symmetrized)” (JHANGZ plot) method as a
multithreshold generalization of the Lu-Fano plot to solve
Eqs. (5) and (6) [14]. This semianalytical method facilitates
a visual comparison of theoretical results with experiment
data systematically, where the effective quantum defect is
applied to represent energy positions. It allows one to readily
check and/or calibrate an ab initio calculated scattering ma-
trix. In addition, the complex overlapping resonances can be
systematically analyzed using the JHANGZ plot. A detailed
discussion on the JHANGZ plot can be found in Ref. [14]. In
short, we can use energy constraints from Eq. (5) to project the
multiple unknown variables in Eq. (6) onto a two-dimension
subspace. There is a parameter Ione representing one of the

ionization thresholds to control the general geometric struc-
ture of this plot. Channels associated with thresholds higher
than Ione will behave as resonances, while the others are
nonresonant curves. Then, the projected two-dimension sub-
space can be spanned by any two effective principle quantum
numbers in principle. However, a better choice of abscissa and
ordinate (determined by Ione) can greatly simplify the physical
analysis and illustrate the merits of eigenchannel treatments.
Taking Jπ = 1.5+ as an example, instead of choosing the
effective principle quantum number associated with the first
threshold 1Se

0 as Ione, we choose the third one, 3Po
1 , to show

moderately dense resonances. Effective principle quantum
numbers associated with the first and second thresholds are
projected out in Eq. (6) with the following two energy con-
straints:


1 ≡ ν 1Se
0
− v 3Po

1
= [

1/ν2
3Po

2
− (

I 3Po
2
− I1Se

0

)
/q2

]− 1
2

− [
1/ν2

3Po
2
− (

I 3Po
2
− I 3Po

1

)
/q2]− 1

2 ,


2 ≡ v 3Po
0

− v 3Po
1

= [
1/ν2

3Po
2
− (

I 3Po
2
− I 3Po

0

)
/q2

]− 1
2

− [
1/ν2

3Po
2
− (

I 3Po
2
− I 3Po

1

)
/q2

]− 1
2 . (7)

The main abscissa is chosen as ν 3Po
0
, and the other effec-

tive principal quantum numbers can be used as auxiliary
abscissa.

Figure 3 shows the JHANGZ plot (ν 3Po
0
, ν 3Po

1
) for an Ar13+

system with Jπ = 1.5+ to check and/or calibrate scattering
matrices in the discrete energy region. Quasiperiodic resonant
colored branch curves are solutions of determinant Eq. (6) un-
der additional constraining conditions of Eq. (7). And the gray
dashed lines show the energy relation between ν 3Po

1
and ν 3Po

0

according to Eq. (5), i.e., I 3Po
1
− 142/ν2

3Po
1

= I 3Po
0
− 142/ν2

3Po
0

in the discrete region. The crossing points of these two set of
lines are our calculated energy-level positions. As can be seen,
the energy-level structures are very complicated due to strong
intrashell electron correlations. With the aid of our calculated
Aα coefficients, we can get the detailed information regarding
the complex channel interactions. For example, the physical
channel characteristics of these solution curves (represented
by different colors and symbols) are determined by ionized-
channel coefficients with Ai = ∑

α UiαAα . Specifically, dif-
ferent color curves, including cyan, red, green, violet, black,
magenta, orange, dark yellow, and olive, represent chan-
nels with thresholds (2s2) 1Se

0, (2s2p) 3Po
0,1,2, (2s2p) 1Po

1 ,
(2p2) 3Pe

0,1,2, (2p2) 1De
2, and (2p2) 1Se

0, respectively. And
different symbols, namely, circle, left-triangle, right-triangle,
down-triangle, up-triangle, square, diamond, and pentagon,
indicate physical states with channel electrons s, p1/2, p3/2,
d3/2, d5/2, f5/2, f7/2, and g7/2, respectively. Eight auxiliary
abscissas (ν 3Po

1
, ν 3Po

2
, ν 1Po

1
, ν 3Pe

0
, ν 3Pe

1
, ν 3Pe

2
, ν 1De

2
, and ν 1Se

0
) also

help to determine states by showing the principal quantum
number of related channel electrons. All of the above can
make the identification of bound states quick and clear in the
JHANGZ plot. It can be seen that there are four solutions
for 6-, 8-, 11-, and 19-channel energy regions and five for
higher energy regions (cyan, red, and blue lines associated
with three thresholds 1Se

0, 3Po
0,1). Because of the energy
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Energy (Ry)

FIG. 3. Projected high-dimensional quantum-defect graph (symmetrized) (i.e., JHANGZ plot) for Ar13+ ions with Jπ = 1.5+ for the
demonstration of discrete energy-level calculations and the assessment of the scattering matrix accuracy. Quasiperiodic resonant colored
branch curves are solutions of the determinant Eq. (6) under the energy constraint of Eq. (7), where different colors and symbols indicate
related thresholds and channel electrons involved, respectively. The gray dashed lines represent the energy relation between ν 3Po

1
and ν 3Po

0

from Eq. (5) by I 3Po
1

− 142/ν2
3Po

1
= I 3Po

0
− 142/ν2

3Po
0
. All theoretical energies are obtained at intersections between solution curves and energy

relation lines (using ab initio calculated MQDT parameters in Fig. 2 without the calibration), which are indicated as opened symbols. For
comparison, available experimental energy levels [29,31] and MCDF results [32] are indicated as solid symbols. Here auxiliary abscissas
associated with all thresholds (ν 3Po

0
, ν 3Po

1
, ν 3Po

2
, ν 1Po

1
, ν 3Pe

0
, ν 3Pe

1
, ν 3Pe

2
, ν 1De

2
and ν 1Se

0
) are plotted for the convenience of characterizing states.

constraint in Eq. (7), the cyan branch curve goes up-tilted
quickly with the increasing energy and converges to its
threshold 1Se

0. Red branch curves associated with the second
threshold 3Po

0 go up-tilted much more slowly. In contrast, blue
curves associated with the third threshold 3Po

1 appear as a
nearly “horizontal” lines, which will converge to their thresh-
olds in higher energy regions. Other channels with higher
thresholds 3Po

2 , 1Po
1 , 3Pe

0,1,2,
1De

2,
1Se

0 form locally isolated
resonances at the position where the effective principal quan-
tum number ν ≈ integer (green, violet, black, magenta, or-
ange, dark yellow, and olive curves, respectively).

The opened color symbols at intersection points of solid
solution curves [Eqs. (6) and (7)] and gray dashed lines
[Eq. (5)] represent all our calculated energy levels of highly
charged Ar14+ ions. As a comparison, related experimental
data from NIST [29] (red stars) and Ref. [31] (magenta
stars) and multiconfiguration Dirac-Fock (MCDF) results
[32] (solid symbols) are all displayed here. Besides, three
isolated leading states (2s2p) 4P, 2D, 2P are in the en-
ergy region even lower than the present one-channel region
ν 3Po

0
≈ 1.80. In practice, simply extrapolating the scattering

matrix and adapting the MQDT graphical procedure would
not give a satisfactory result. Thus, we directly apply the
traditional R-matrix method [22–27] to calculate bound states,

indicated as green opened squares in Fig. 3. Comparing the
R-matrix results with NIST data [29], great agreement can
be found within 0.1%. Additionally, MCDF results are also
in good agreement with the spectroscopy data [29,31] in
higher energy regions. However, we already notice that the
agreement between MCDF results and the experimental data
[29] for the highest (2s24d ) 2D state at ν 3Po

0
≈ 3.67 is worse

than our R-R-eigen result. Because of analytical continuation
properties of scattering matrices, we can anticipate that all
energy levels should be calculated with the similar accuracy
as the lower six levels. On the other hand, MCDF results
do not have this unique property. For example, our R-R-
eigen calculation of 1Se

0 5d3/2 (olive down-triangle) at ν 3Po
0

=
9.1208 (−3.7032 eV) is significantly lower than the MCDF
result ν 3Po

0
= 9.3127 (−2.3957 eV) [32]. States with higher

orbital angular momentum, such as 3Pe
2 5g7/2, 1De

2 5g7/2, are
all readily calculated by our method, which were not included
in previous MCDF treatments [32].

C. Properties of the autoionization states

In the autoionization region, some channels are closed with
others opened. From the smooth MQDT parameters shown
in Fig. 2, we can readily get resonant scattering matrices for
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Ry

FIG. 4. Eigenphase shifts (effective eigenchannel quantum defects) in the autoionization energy range ν 3Po
0

= 9.7 ∼ 33 (0 ∼ 26 eV).
Colored symbols indicate autoionization resonance positions at maxima of the energy derivatives of eigenphase shifts.

autoionization with the channel projection method [20,21],
from which we can obtain all related autoionization quantities
[33–41]. Notably, eigenphase shifts, which are eigenvalues of
resonant scattering matrices, are crucial for the determination
of resonance properties [34,40,41]. In the following, we will
use eigenphase shifts to demonstrate complex autoioniza-
tion structures of highly charged Ar13+ ions using our R-
R-eigen method. Specifically, using the analytical properties
of Coulomb wave functions [20], we can readily calculate
eigenphase shifts of resonant scattering matrices from MQDT
parameters without the need to diagonalize the physical scat-
tering matrices [13,16–21]. Let us denote the number of
channels which satisfy the closed channel boundary condition
as Nc and open channels as No; thus the asymptotic boundary
conditions require

∑

α

Uiα sin π (νi + μα )Aρ
α = 0, i ∈ Nc closed channels,

(8a)
∑

α

Uiα sin π
(−τρ + μα

)
Aρ

α = 0, i ∈ No opened channels,

(8b)

with Nc effective principal quantum numbers νi [see Eq. (5)
and τρ the ρth eigenchannel quantum defect for No opened
channels (i.e., collisional phase shift)]. The MQDT equation
[Eq. (6)] is now generalized as

F ({xi}, {Uiα, μα}) = det[Uiα sin π (xi + μα )] = det(Fiα ) = 0,

(9)

where xi = νi for i ∈ Nc closed channels, and xi = −τρ for
i ∈ No opened channels. The solutions of Eqs. (5) and (9)
will lead to No resonant eigenphase shifts πτρ , from which
various properties (resonance positions, widths, etc.) of the
autoionization states can be obtained [40,41].

Applying the MQDT procedure [i.e., Eqs. (5) and (9)], the
effective eigenchannel quantum defect (resonant eigenphase
shifts πτρ) in the autoionization energy region ν 3Po

0
= 9.7 ∼

33 (0 ∼ 26 eV) is obtained (see Fig. 4). The same as in Fig. 3,
different colors and symbols of solution curves represent ion-
ization channel characteristics including targets and channel
electrons. Auxiliary abscissas ν 3Po

0
, ν 3Po

1
, ν 3Po

2
, ν 1Po

1
, ν 3Pe

0
, ν 3Pe

1
,

ν 3Pe
2
, ν 1De

2
, and ν 1Se

0
are also plotted to identify resonance

states conveniently. The black dashed line at ν 3Po
0

= 9.6982
indicates the position of the first threshold 1Se

0. There is
only one opened channel 1Se

0 d3/2 (“horizontal” cyan curve)
observed; the other closed channels associated with higher
thresholds 3Po

0,1,2,
1Po

1 , 3Pe
0,1,2,

1De
2,

1Se
0 (red, blue, green,

violet, black, magenta, orange, dark yellow, and olive curves)
are plotted as steep rises of the phase shift τρ at ν ≈ integer.
It can be seen that the lowest principal quantum numbers
for autoionization resonance series 3Po

0,1,2 nl, 1Po
1 n′l ′ and

3Pe
0,1,2,

1De
2,

1Se
0 n′′l ′′ are 10, 7, and 6, respectively. These

autoionization resonances make up the intermediate states
of the electron-ion recombination process. Especially, the
intrashell two-electron excited (2s2 → 2p2) resonance series
2p2 3Pe

0,1,2,
1De

2,
1Se

0 n′′l ′′(n′′ � 6) are attributed to the strong
trielectronic recombination (TR) rate coefficients [7]. Based
on the analytical property, we can easily obtain all relevant
autoionization resonances (n → ∞) to show the quasiperi-
odicity by its effective quantum number ν. For example,
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FIG. 5. Eigenphase shifts and corresponding energy derivatives
in the energy region ν 3Po

0
= 10.07 ∼ 10.17: (a) zoom-in details of

autoionization resonances and (b) energy derivatives of correspond-
ing eigenphase shifts.

several red steep resonances 3Po
0 np3/2 show up periodically at

ν 3Po
0
=integer (10 ∼ 33). Since autoionization resonances are

based on scattering matrices with accuracies checked using
precision spectroscopic levels, hopefully they can be used as
benchmark data to supplement the future experimental data.

Let us return to discuss the determination of autoion-
ization resonance positions and widths, which are impor-
tant physical parameters in many applications. As shown
in Fig. 4, with the aid of the calculated ionization channel
mixing coefficients of the eigenenergy wave functions, we
can trace the characteristics of each individual resonance.
These features are very helpful for treating the overlapping
resonances (common in strong correlated systems), which
allow us to disentangle the “isolated” resonance from the
possible overlapping resonances. Then resonance positions
and widths are obtained without the need for any fitting
procedures based on the isolated resonance approximation
[33,36,40,41]. More specifically, the theoretical resonance
positions (νres

3Po
0
, τ res

ρ ) can be defined as the position of the
maxima of the energy derivatives of the eigenphase shift
δ′
ρ = dδρ/dE = πdτρ/d (I 3Po

0
− 142/ν2

3Po
0
), which are plotted

as colored open circles. Corresponding resonance widths
are the inverse of the maxima δ′

ρ , namely, � = 2/δ′
max(Eres)

[34,40,41]. For a more intuitive understanding, Figs. 5(a)
and 5(b) display zoom-in details of autoionization resonance
phase shifts τρ and corresponding energy derivatives δ′

ρ for
three resonances series in the autoionization energy region
ν 3Po

0
= 10.07 ∼ 10.17. As indicated in Fig. 5(b), the linewidth

TABLE II. Comparisons of resonance positions by ν and Eres (in eV), autoionization widths � (in meV) of autoionization states (0 ∼ 10 eV)
between R-R-eigen and FAC results. The corresponding quantum defect values μR and μFAC (5th and 8th columns) are also listed for convenient
comparison, where “Diff” denotes the difference μFAC − μR. Normalized ionization channel mixing coefficients A2

i are listed for three states
|a〉, |b〉, and |c〉 with strong channel interactions.

R-R-Eigen FAC A2
i

States ν Eres � μR Eres � μFAC Diff A2
1 Channel1 A2

2 Channel2

3Pe
0 6d3/2 9.708 0.060 2.51 × 10−3 0.035 0.566 2.6 × 10−2 0.079 0.044

|a〉 9.729 0.179 1.07 × 10−2 0.142 0.810 6.72 × 10−4 0.175 0.033 0.50 3Pe
2 6s1/2 0.40 1Po

1 7p3/2
1Po

1 7p1/2 9.748 0.288 1.85 × 100 0.085 1.543 1.80 × 100 0.099 0.014
|b〉 9.810 0.642 5.33 × 10−2 0.063 1.643 2.87 × 10−1 0.093 0.030 0.30 1Po

1 7p3/2 0.66 3Pe
2 6s1/2

|c〉 9.915 1.226 4.24 × 10−2 0.085 1.013 5.65 × 10−3 0.203 0.118 0.44 3Po
0 10p3/2 0.46 3Pe

1 6d3/2
3Pe

1 6d3/2 9.936 1.341 1.55 × 10−2 0.034 1.780 4.66 × 10−3 0.076 0.042
1Po

1 7 f5/2 9.990 1.633 1.04 × 10−1 0.000 2.997 2.84 × 10−1 0.008 0.007
3Pe

1 6d5/2 10.018 1.780 9.67 × 10−2 0.017 2.239 1.16 × 10−2 0.058 0.041
3Po

1 10p1/2 10.079 2.102 3.96 × 10−5 0.088 2.001 1.06 × 10−1 0.184 0.096
3Po

1 10p3/2 10.095 2.188 1.38 × 10−2 0.072 1.892 1.47 × 10−1 0.203 0.131
3Po

0 10 f5/2 10.163 2.536 1.15 × 10−1 0.007 2.286 1.97 × 10−1 0.133 0.126
3Pe

2 6d3/2 10.287 3.153 8.05 × 10−4 0.027 3.584 3.93 × 10−3 0.069 0.042
3Pe

2 6d5/2 10.354 3.480 2.51 × 10−1 0.014 3.883 1.54 × 10−1 0.058 0.044
3Pe

2 6g7/2 10.416 3.771 1.79 × 10−3 0.002 4.170 1.78 × 10−3 0.046 0.044
3Po

2 10p1/2 10.510 4.213 1.65 × 10−4 0.083 3.959 2.76 × 10−3 0.199 0.116
3Po

2 10p3/2 10.516 4.237 1.97 × 10−4 0.079 4.105 3.06 × 10−2 0.174 0.095
3Po

2 10 f5/2 10.604 4.637 1.35 × 10−2 0.004 4.355 1.82 × 10−3 0.129 0.124
3Po

2 10 f7/2 10.615 4.687 5.73 × 10−1 −0.005 4.453 1.07 × 100 0.111 0.116
3Po

0 11p3/2 10.922 5.997 4.26 × 10−3 0.078 5.752 1.10 × 10−2 0.243 0.165
3Po

1 11p1/2 11.134 6.840 1.03 × 10−5 0.090 6.581 1.07 × 10−4 0.255 0.165
3Po

1 11p3/2 11.151 6.905 3.80 × 10−3 0.074 6.668 1.16 × 10−2 0.234 0.160
3Po

1 11 f5/2 11.221 7.175 9.28 × 10−2 0.007 6.909 1.04 × 10−1 0.177 0.170
1De

2 6s1/2 11.412 7.877 2.51 × 10−6 0.139 9.267 2.19 × 10−3 0.168 0.029
3Po

2 11p1/2 11.723 8.948 5.23 × 10−4 0.084 8.656 4.28 × 10−3 0.248 0.163
3Po

2 11p3/2 11.727 8.961 1.04 × 10−3 0.081 8.670 6.54 × 10−4 0.244 0.163
3Po

2 11 f5/2 11.821 9.270 1.46 × 10−2 0.005 8.978 1.53 × 10−2 0.172 0.167
3Po

2 11 f7/2 11.831 9.301 3.54 × 10−1 −0.003 9.016 4.98 × 10−1 0.163 0.166
3Po

0 12p3/2 11.922 9.591 4.78 × 10−3 0.078 9.393 1.27 × 10−2 0.278 0.200
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of the first resonance is about 3 orders of magnitude smaller
than other two narrow resonances, which clearly demonstrates
the merit of our R-R-eigen method, i.e., all autoionization
resonances can be calculated without missing any one for the
complex HCI system.

In Table II, we list calculated resonance positions by ν and
Eres (in eV), autoionization widths � (in meV) of autoioniza-
tion states within the resonance energy 0 ∼ 10 eV. It should be
mentioned that some autoionization states near the threshold
strongly depend on electron-electron interactions between
bound states and continuum states, where strong channel
interactions exist and are not possible to designate using a
single channel character. For these special resonant states, i.e.,
|a〉, |b〉, and |c〉 (see last four columns in Table II), we also give
normalized mixing coefficients A2

i of ionization channels for
clarity. As a comparison, simple flexible atomic code (FAC)
results are also presented based on relativistic configura-
tion interactions (RCI) method under the DW approximation
[42], where configurations (2s2, 2s2p, 2p2)nl, n = 2 ∼ 12
of B-like Ar13+ ions are considered. Large discrepancies can
be easily found in both resonance positions and linewidths
between these two methods. In addition to the difference in
values of these quantities, we can also notice the change of
configuration mixings between these two results. More specif-
ically, the energy order of some resonance states calculated
by FAC is different from those by R-R-eigen, especially for
those associated with higher 1Po, 3Pe, and 1De thresholds.
We found that for about 1/3 states listed in Table II, the
linewidths calculated by the FAC are smaller than those
by R-R-eigen, while others are larger. It is interesting to
note that these 1/3 states are also associated with higher
1Po, 3Pe thresholds. For the present strongly correlated
systems, these discrepancies exactly reflect the difficulty in
electron correlation calculations, as well as the difference be-
tween these two methods in dealing with electron correlation
effects.

Since there are no available experimental values, it is hard
to determine which result is “correct.” Next, we will try to
assess the validity of these two results from the physical fea-
tures of excited states in atomic systems. Based on the MQDT
[15–21], which can serve as a unified theoretical framework
to describe resonance states across ionization thresholds, the
quantum defect μ = n − ν [with the ν defined in Eq. (5)] is a
key physical quantity for excited states. The quantum defect
measures the short-range phase shift (compared with the wave
under the pure Coulomb potential) of an excited electron
due to many-body interactions within the reaction zone. Be-
cause of the dominant centrifugal potential around the atomic
nucleus, for excited electrons within a same channel (i.e.,
can be identified with the same ion-core state and angular
momentum), when the excitation energy varies in a range of
our interest, the relative variation of their local momentums in
the short range is very small. As a result, energy-normalized
wave functions of channel electrons within the reaction zone
are nearly the same. Therefore, excited electrons in a channel
share some similarities in physical quantities such as quantum
defects μ, oscillator strength densities, etc., which we refer to
as “channel properties” in later discussions.

For the R-R-eigen method, the effective quantum defects
can be readily calculated from the ν, whereas for the RCI

method used in the FAC, additional calculations of ion-core
energies with appropriate configurations are required to ex-
tract corresponding quantum defects. Our previous experience
[43] is taken into account in configuration selection processes
of these RCI calculations, where 2l2l ′ and 2l3l ′ of Be-like
Ar14+ ions are adopted. Calculated quantum defect values are
shown in Table II (μR and μFAC in the 5th and 8th columns, re-
spectively). It can be seen that μFAC values are generally 0.16
and 0.04 larger than μR for 2s2pnl series (DR channels) and
2p2nl series (TR channels [7]), respectively. Considering the
electron correlation model used in the FAC calculation is rel-
atively simple (with only limited configurations and without
the use of pseudo-orbitals), the large quantum defects in FAC
results indicates they are still away from the final convergence.
Furthermore, we can deduce that R-R-eigen results should be
more reasonable based on the following three facts: (1) All
short-range scattering matrices for autoionization calculations
are checked to be in good agreement with available experi-
mental results in bound energy regions. (2) There exist good
channel properties for μR within the same Rydberg series (i.e.,
slowly changing with increasing energy), which is not true for
μFAC. (3) For resonances related to high l electrons (such as d
or f waves), the large centrifugal potential makes the electron
wave difficult to penetrate into the inner region and results in
a small quantum defect. R-R-eigen results satisfy this physics
picture qualitatively, whereas FAC results do not. Taking the f
wave as an example, μR values are in the order of 10−3 while
μFAC are in the order of 10−1, which are even comparable
with quantum defects of s waves. Due to the limitation of
experimental resolution, there maybe be dozens of autoion-
ization states contributing to an isolated resonance peak of
recombination spectra. The individual resonance may have
a substantial influence on the observed spectra, which may
lead to obvious differences between configuration interaction
(CI) results under the DW approximation and our calculations.
Therefore, the R-R-eigen method provides us great promise
to improve theoretical calculations for the recent electron-ion
recombination experiment of Be-like Ar14+ ions at CSRm and
to explain substantial discrepancies between measured spectra
and AUTOSTRUCTURE results [7].

III. CONCLUSIONS

Strong electron correlations within 2s, 2p shells in highly
charged B-like Ar13+ ions are demonstrated with the example
of Jπ = 1.5+ symmetry, which are very different from the
neutral B atom and beyond the qualitative impression of less
prominent electron correlations in highly charged ions (HCIs).
Strong intrashell correlations in Ar13+ ions manifest as an
atomic system with many channel interactions. Specifically,
there are 25 strong interacted channels in bound and adjacent
autoionization energy regions which show obvious differences
with the B atom with only one channel. In the language of
the CI method, this kind of strong correlated behaviors means
strong interaction among different reference configurations.
Due to the variational nature of the CI method, the quality
of excited-state calculations closely depends on the quality of
lower states. In highly correlated systems, subtle changes in
lower states due to the insufficient treatment of electron cor-
relations will result in a large difference in excited states. On
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the other hand, treatments of the excited atomic system in the
eigenchannel R-matrix method start from its corresponding
ion core with finite excitations. Interactions between bound
or adjacent continuum excited electrons with the ion core are
calculated in a unified way by a quasicomplete basis within
the reaction zone.

We show in this paper that the relativistic eigenchan-
nel R-matrix method can be successfully applied to B-like
Ar13+ ions. Accurate short-range scattering matrices (i.e.,
MQDT parameters of eigenquantum defects μα and Euler-
type angles θk) in both discrete and continuum regions are
calculated. Applying MQDT procedures, all energy levels
of the bound states are obtained without missing any one.
Using the projected high dimensional quantum-defect graph
(symmetrized) (i.e., the JHANGZ plot) for atomic systems
with many thresholds (more than two), we can check and/or
calibrate scattering matrices in a discrete energy region. A
good agreement is found between calculated energy levels
and available spectroscopy data [29,31], which indicates that
our results are better than previous MCDF results [32]. The
good quality of short-range scattering matrices also allows
us to predict properties of adjacent autoionization resonances.
As a demonstration example, theoretical resonance positions
and autoionization widths of autoionization states in 0 ∼
26 eV are calculated using maxima of energy derivatives of
eigenphase shifts [40,41]. The comparison for autoionization
states between our results and FAC calculations shows a
large discrepancy, which gives an alternative evidence that
strong electron correlations play a crucial role in theoretical
calculations of highly charged Ar13+ ions.

It should be interesting to extend the studies in this work
for the electron-ion recombination process of Be-like Ar14+

ions at the CSRm, where a substantial difference existed
between the DW calculations using the AUTOSTRUCTURE code

and the experimental results, especially at low resonance
energies [7]. Based on the framework of the well-established
perturbative treatment of the DR process, the DR rates depend
on two physical parameters, namely, electron-capture rates
and radiative decay rates [42,44]. The rates for the electron-
capture process (i.e., the inverse of the autoionization process)
can be readily calculated by the procedure adopted in this
work. The radiative decay rates can be calculated similarly
to the method demonstrated in one of our earlier works [11]
using the R-eigen method. Note that for the calculation of
recombination processes, all contributions from the doubly
excited intermediate states with different Jπ as well as a large
number of final states of the radiative decay processes below
the first threshold 2s2 1Se

0 need to be considered, which are
still in progress. It is believed that the R-R-eigen calcula-
tions can give a better analysis of the measured spectra and
shape a more detailed understanding of the recombination
resonances.
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