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Stark shift and width of x-ray lines from highly charged ions in dense plasmas
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We implement several plasma screening potentials to calculate the level energy shifts of highly charged
ions in warm dense plasmas. The Stark widths of transitions are treated with an empirical interpolation
scheme combining the impact approximation and the quasicontiguous approximation. The resulting shift-width
relationship is compared with recent experimental measurements of the Kβ transition of He-like Cl from the
Orion laser facility.
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I. INTRODUCTION

Atomic data needed to describe the emission and absorp-
tion of radiation from highly charged ions embedded in a
plasma are typically calculated in the isolated-atom approxi-
mation, in which perturbing effects from the surrounding ions
are neglected. This is generally a good approximation for
coronal plasmas and many low-density laboratory plasmas,
such as those produced in tokamaks and other magnetic con-
finement devices. As the density increases, however, plasma
effects start to noticeably affect the atomic parameters. In
particular, the central nuclear field that determines the atomic
properties of an isolated ion is modified by the fields of neigh-
boring ions and closely packed free plasma electrons. The
resulting effects can significantly change atomic properties,
and express themselves, for example, as ionization potential
depression, the vanishing of spectral lines from higher-lying
atomic levels, the broadening of spectral lines, and the change
in the position of the emitted lines [1–6].

The importance of high-density effects is now being rec-
ognized for the radiative properties of accretion disks sur-
rounding black holes as well as for the radiation transport and
opacity of stellar interiors [7,8]. Field-induced spectral line
broadening has also been recognized as an important diagnos-
tic tool for inferring the density of laboratory plasmas, e.g.,
those produced in inertial confinement fusion experiments,
and this effect has been observed in a variety of laboratory
plasmas [9–11].

Recent experimental observations of dense plasma line
shifts open up the possibility of determining the plasma
density from high-resolution spectral measurements of spec-
tral line positions. Line broadening measurements used for
inferring the plasma density are affected by systematic and
instrumental effects, such as by assumptions of the level of
the radiative background in a given spectrum. Such systematic
uncertainties are absent in line-shift determinations, and thus
they offer an alternative and complementary method that
potentially has higher accuracy—provided that the underly-
ing theory of dense plasma line shifts is well understood.
However, there are still significant disagreements among the
theoretical models that describe field-induced line shifts. For

example, a recent measurement of both shift and width of
the Kβ transition of He-like Cl from the Orion laser facility
indicated significant disagreement with existing theoretical
models [12]. Specifically, it was shown that the recent theo-
retical line-shift model of Li and Rosmej [13] overestimated
the energy shift by about a factor of 2 at electron densities
that are inferred from the linewidths according to the standard
theory of Stark broadening. Clearly, additional theoretical
developments are needed to put a potential density diagnostic
based on line shifts on a solid footing and, of course, to
provide reliable atomic data for the modeling of the radiative
properties of astrophysical and laboratory plasmas.

In the present paper, we implement a detailed numerical
line-shift model in the framework of the flexible atomic
code (FAC) of Gu [14], and develop an efficient method for
determining Stark widths of transitions from complex ions.
Various forms of screening potentials have been employed in
the past to address the lowering of the continuum and shifting
of spectral lines; some of them have also been implemented
in FAC and other widely used atomic structure codes [15,16].
The most popular models are the Debye-Hückel and ion
sphere potentials, which are valid in two opposite regimes
of plasma conditions. In the present paper, we also imple-
ment the screening potential based on the model proposed
by Stewart and Pyatt [17], which is expected to work in a
wider range of plasma temperature and density parameters.
Our empirical method for estimating Stark broadening com-
bines the distorted-wave calculation of electron impact width
and the quasicontiguous approximation of Stambulchik and
Maron [18]. Significant attention is devoted to account for the
effects of strong plasma coupling. To this end, we propose an
improved analytical fit of realistic ion microfield distributions
based on the work of Potekhin et al. [19]. The resulting shifts
and widths for the He-like Cl Kβ transition agree well with
the Orion measurements.

The paper is organized as follows: Sec. II describes the
numerical model of line shifts and its implementation in FAC;
Sec. III introduces the empirical model of Stark broadening
combining the impact and quasicontiguous approximation;
Sec. IV compares the theoretical shifts and widths of the
He-like Cl Kβ line with Orion measurements.
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II. STARK SHIFT

The shift of energy levels of ions embedded in a warm
dense plasma is often treated with screening potentials. In
the mean-field approximation, the central potential of an ionic
system is written as

V (r) = V0(r) + Vf (r), (1)

where V0(r) is the potential of an isolated ion, while Vf (r)
accounts for the screening of free electrons and ions in the
plasma. Several forms of the screening potential Vf (r) are
widely used, which are valid under different physical condi-
tions. The simplest form is the Debye-Hückel potential. After
subtracting V0(r), we obtain Vf (r) as

Vf (r) = V0(r)
(
e− r

Rd − 1
)
, (2)

where Rd denotes the Debye screening lengths due to both
electrons and ions, the exact definition of which will be given
later; note that instead of taking into account the screening
of the interelectronic Coulomb interactions and the nuclear
potential separately we are using the screening of the total
mean potential generated by the nucleus and the bound elec-
trons. This is valid when the Debye length is much larger
than the size of the ionic system, which is generally where
the Debye screening model can be justified, i.e., in the limit
of low density and high temperature. Under this assumption,
we can simplify Equation 2 by approximating V0(r) = − z

r ,
where z = Z − Nb + 1 is the residual charge of the ion, Z is
the nucleus charge, and Nb is the number of bound electrons.

In the opposite limit of high density and low temperature,
the ion sphere model is often employed [20]:

Vf (r) = 4π

[
1

r

∫ r

0
r′ +

∫ Rs

r

]
r′ρ f (r′)dr′, (3)

where ρ f (r) is the radial distribution of the free electrons in
the ion sphere of radius Rs = [3(Z − Nb)/4πne]1/3. The local
free-electron densities are assumed to follow the Fermi-Dirac
distribution as

ρ f (r) = 1

π2

∫ ∞

κ0

κdκ

e[
√

κ2c2+c4−c2+V (r)−μ]/kT + 1
, (4)

where c is the speed of light, κ0 =
√

−2V (r)c2 + V (r)2, and
V (r) is the total potential experienced by the free electron. The
chemical potential μ is implicitly defined through the charge
neutrality condition inside the sphere:

4π

∫ Rs

0
r2ρ f (r)dr = Z − Nb. (5)

Note that in this model only the screening by electrons is
taken into account. When the temperature is high enough, this
screening potential reduces to that of a uniformly distributed
electron sphere:

Vf (r) = Z − Nb

2Rs

[
3 −

(
r

Rs

)2
]
. (6)

The ion sphere and Debye-Hückel screening models are
valid under different physical conditions. The ion sphere
model is valid where Rd � Rs, while the Debye-Hückel
model applies when Rd � Rs. In the intermediate regime

where Rd ∼ Rs, both models fail. The screening potential
proposed by the Stewart-Pyatt model naturally interpolates the
two limits, and is considered to be more accurate [17]. The
potential induced by the free electrons is defined by a second-
order differential equation based on the Thomas-Fermi model.
The equations are often expressed in dimensionless form in
terms of v(x) = Vf (r)/kT , y(x) = V (r)/kT , and x = r/Rd ,
where the total Debye length is defined by

1

R2
d

= 4πe2

kT
(z∗ + 1)ne, (7)

where ne is the electron density far away from the ion, and
z∗ = 〈z2〉/〈z〉 is the ratio of the second and first moments of
the ionic charge of a multicomponent plasma.

y(x) is the solution of

1

x

d2

dx2
(xy) = 1

z∗ + 1

[
F (y − α)

F (−α)
− e−z∗y

]
, (8)

where

F (y) =
∫ ∞

0

t1/2dt

et−y + 1
, (9)

and the constant α is related to the electron density, ne, far
from the ion:

ne = 2(2πmkT )3/2

h3

2√
π

F (−α). (10)

y(x) satisfies the boundary conditions y(∞) = 0, and xy =
Ze2/(Rd kT ) at the origin.

v(x) is the solution of

1

x

d2

dx2
(xv) = 1

z∗ + 1

[
F (y − α, y)

F (−α)
− e−z∗y

]
, (11)

where

F (y − α, y) =
∫ ∞

y

t1/2dt

et+α−y + 1
. (12)

The boundary condition for this second-order differential
equation is dv/dx = 0 at the origin, and v(∞) = 0.

The three forms of screening potentials discussed above
have been implemented in the FAC of Gu [14]. The plasma
effects on the atomic structure and on various collisional
and radiative data can then be explored in great detail. As
an example, Fig. 1 shows the lowering of the ground-state
ionization energy of He-like Ar at an electron density of
1023 cm−3 and as a function of temperature. At this density
and with z∗ = 16, Rs = Rd at the temperature of 3.6 keV. It is
seen that the ionization energy shift from the Stewart-Pyatt
model approaches the ion sphere limit at low temperatures
(large Rs/Rd ), and approaches the Debye-Hückel limit at high
temperatures (small Rs/Rd ).

Figure 2 shows the redshift of the He-like Ar Kβ tran-
sition at the same electron density and temperature range.
It is interesting to note that, in contrast to the ionization
energy lowering, the ion sphere and Stewart-Pyatt models
result in very close energy shifts for the Kβ line over a wide
temperature range. The Debye-Hückel model performs rather
poorly, and is likely only valid at very large Rs/Rd values.
This indicates that if one is primarily concerned with the
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FIG. 1. Lowering of the ground-state ionization energy of He-
like Ar at ne = 1023 cm−3. The vertical line represents the tempera-
ture where Rs = Rd .

shift of transition lines the ion sphere model is a reasonable
approximation.

III. STARK WIDTH

The theory of Stark width varies greatly in the level of
complexity. For isolated lines and at low densities, the electron
is often the dominant perturber, and the impact approximation
is valid, such that the Stark broadened line shape is Lorentzian
and the full width at half maximum is reduced to the calcula-
tion of the elastic and inelastic scattering of electrons from
the lower and upper states of the transition lines [21]. For
overlapping lines, and when ions contribute significantly to
the broadening, the line shapes become more complex, espe-
cially when ion dynamic effects cannot be ignored. In such
cases, detailed calculations combining the molecular dynam-
ics simulations for ion microfield distribution and the standard

FIG. 2. Redshift of the Kβ transition He-like Ar at ne =
1023 cm−3. The vertical line represents the temperature where
Rs = Rd .

line-shape theory must be employed. In this paper, we develop
a fast yet reasonably accurate method for estimating Stark
linewidths, that is suitable for use in large scale, nonlocal
thermodynamic equilibrium, collisional radiative models.

Our method starts with the electron impact width calcu-
lated with the Baranger formula, we

i . The Stark width due to
an ion perturber in the impact approximation is then estimated
as wi

i = zi
√

miw
e
i , where zi and mi are the charge and reduced

mass of the perturbing ion. The scaling factors account for the
larger interaction and slower motion of the ions relative to the
electrons. However, the impact approximation is generally not
valid at high densities. This is especially so for ion perturbers.
Therefore, we introduce an empirical interpolation procedure
to reproduce the proper density scaling of the linewidth in the
quasistatic regime, by combining the impact approximation
and the quasicontiguous approximation of Stambulchik and
Maron [18]:

wQC = wQS

(
R0

R
+ 1

)−1

, (13)

where wQS is the quasistatic width, R0 is an empirical constant
of order unity, and R = wQS/wdyn. The dynamic width wdyn is
given by

wdyn =
√

T

mp

(
4π

3
np

)1/3

, (14)

where mp and np are the reduced mass and density of the
perturber. The quasistatic width wQS has an n2/3

p density
dependence, so that at low densities wQC reduces to the impact
approximation:

wi = w2
QS

R0wdyn
. (15)

Using the impact width calculated with the Baranger formula,
we determine the wQS from this relation, which is in turn used
to derive the final width wQC.

The equations described thus far are only valid for weakly
coupled plasmas. For plasmas with strong coupling, the ion
microfield deviates from the Holtsmark distribution signifi-
cantly, and we therefore introduce a correction factor such that
w = wQCη and determine η as

η = wS
QS

wH
QS

, (16)

where wS
QS is the quasistatic width calculated with a realistic

ion microfield distribution for a strongly coupled plasma,
while wH

QS is calculated with the Holtsmark distribution. We
use the fitting formula of the ion field distribution from
Potekhin et al. [19] to compute this correction factor. The
fitting formula for the field distribution depends on two pa-
rameters, the ion-ion coupling parameter

� = z2
i e2

kT Rs
(17)

and the electron screening parameter

s = Rs

Rd
, (18)
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TABLE I. Parameters for the normalized coupling and screening parameters in Eq. (21).

s range a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

0.0 � s � 1.0 0.0000 0.9779 1.2651 1.2226 −0.2520 0.1508 −0.1970 0.0839 1.1811 1.1901
1.0 < s � 1.5 0.5639 0.9400 1.2475 1.2270 −0.1961 0.1490 −0.0844 0.0614 1.1317 1.0023
1.5 < s � 2.0 1.0422 0.9344 1.2318 1.6241 −0.08178 0.1699 0.01409 −0.0242 0.1494 0.2670
2.0 < s � 2.5 1.1156 0.2383 1.2864 5.0000 −0.0323 0.6368 0.09548 −0.1263 0.0265 0.0224
2.5 < s � 3.0 0.7558 0.9654 1.2286 0.8245 −0.1402 0.0322 0.0140 0.2465 0.9557 0.1263

such that

P(F ) = P̃(β, �, s), (19)

where β = F/F0, and F0 = zie
R2

s
is the normal field strength.

One drawback of the fitting formula in Potekhin et al. [19]
is that for a charged radiator it is assumed that the radiator and
perturber charges are the same. However, in many situations,
the radiator is a minority dopant in a plasma with different
perturber ion charges. To account for this, we used a ver-
sion of the adjustable parameter exponential approximation
(APEX) code to compute the ion field distribution for different
radiator-perturber charge ratios zri = zr/zi, and to numerically
fit the field distribution in terms of P̃(β, �, s) of Potekhin et al.
[19] as

W̃ (β, �, s, zri ) = P̃(β, �n, sn), (20)

where the normalized coupling parameter �n and screening
parameter sn are determined as

�0 = a8�, z0 = a9zri, g0 = a0 + a1z0

1 + z0
,

g1 = a2 + a3z0

1 + z0
, s0 = a4 + a5z0

1 + z0
, s1 = a6 + a7z0

1 + z0
,

p0 = g0 + g1�0

1 + �0
, p1 = s0 + s1�0

1 + �0
, �n = �zp0

ri ,

sn = szp1
ri . (21)

The parameters a0 through a9 are determined from the numer-
ical fit in five intervals of s as given in Table I.

To demonstrate the quality of our fits to the field distri-
butions, we show two examples. Figure 3 shows the field
distributions calculated with APEX and the fit formula for
zr = 18, zi = 18, s = 1.0, and � = 6.0. In this case, we have
zr = zi, so that no normalization of the screening and coupling
parameters is needed. Figure 4 shows the field distributions
calculated with APEX and the fit formula for zr = 18, zi = 2,
s = 1.0, and � = 0.67. The normalized screening and cou-
pling parameters for this case are sn = 1.22 and �n = 6.56.
The fitted distributions using both the normalized and original
parameters are shown. The fit with the original parameters
corresponds to the case with zi = zr = 2. It is clear that the
formula using normalized screening and coupling parameters
reproduces the APEX field distribution much better.

Finally, to deal with plasmas with multiple ionic perturbers,
we first determine the ion contributions to the width as

wi =
∑

k

ckwk, (22)

where ck is the weight of ionic species k by number, and wk is
the width of the species k calculated as if it is the only ion in

the plasma. The total Stark width is then the sum of electron
and ion contributions: wt = wi + we. Strictly speaking, such
a procedure to account for multiple plasma particle species
is only valid in the impact approximation, when the density
dependence of all component widths is linear. Other types of
summation schemes are also in widespread use; e.g., Stam-
bulchik and Maron [18] propose

w =
(∑

k

w
3/2
k

)2/3

, (23)

which is valid when the widths of all components can be
described by the quasistatic approximation. However, the
broadening due to different plasma components may have
different density dependences in general, and since our ob-
jective here is to provide an efficient method suitable for use
in large scale collisional radiative models, such that minor loss
of accuracy can be tolerated, we choose the simpler linear
weighting scheme.

The procedure thus outlined contains an empirical parame-
ter, R0. A value of 0.5 is suggested in Stambulchik and Maron
[18]. However, this depends on the particular choice of the
quasistatic width formula. In our case, we choose R0 = 2,
so that the calculated width of the H-like Ar Lyβ transition
matches that of Keane et al. [22] at a temperature of 1 keV
when the Ar ion is a minor dopant in a fully ionized deuterium
plasma, as shown in Fig. 5.

FIG. 3. Ion microfield distributions calculated with APEX and the
numerical fit formula for zr = 18, zi = 18, s = 1.0, and � = 6.0.
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FIG. 4. Ion microfield distributions calculated with APEX and the
numerical fit formula for zr = 18, zi = 2, s = 1.0, and � = 0.67. The
fitted results from original screening and coupling parameters and
from normalized ones (sn = 1.22 and �n = 6.56) are both shown.

IV. COMPARISON BETWEEN THEORY AND
EXPERIMENT FOR THE Kβ TRANSITION OF He-LIKE Cl

Recently, the Stark shifts and widths of the Kβ transition of
He-like Cl have been measured with a high-resolution crystal
spectrometer on the Orion laser facility [12]. The targets used
were PyD and KCl. The temperatures of the plasmas were
estimated to be about 600–650 eV. The electron densities
were inferred from the Stark width using its calculated density
dependence assuming He-like Cl ions are embedded in a KCl
plasma and at a temperature of 600 eV. The experimentally
determined density dependence of the shifts were then com-
pared with the theoretical results of Li and Rosmej [13]. It was
shown that the theoretical curve lies significantly higher than
the measured one.

Using the methods described in the previous sections, we
have calculated the density dependence of both shifts and
widths of the Kβ transition of He-like Cl for three different
plasmas at a temperature of 625 eV: fully ionized deuterium;

[22]

FIG. 5. Stark width of the Lyβ transition of H-like Ar at a
temperature of 1 keV, and embedded in a fully ionized deuterium
plasma. The empirical constant R0 is 2 in the present calculation in
order to match the data from [22].

FIG. 6. The calculated density dependence of the shifts of the Kβ

transition of He-like Cl in different target plasmas at a temperature of
625 eV. For the KCl target, the results at two additional temperatures
of 300 eV and 1.5 keV are also shown. The ordering of the legends
coincides with that of the curves at the low density end. Note that the
shifts for KCl and PyD plasmas at 625 eV nearly overlap, and the
curve for the deuterium plasma is just slightly below them.

PyD (C16H12Cl4), in which C and H are fully ionized, while Cl
is assumed to be in the He-like charge state; and KCl, where
both the K and Cl ions are in the He-like charge state. For
the KCl target, we also made calculations at two additional
temperatures, 300 eV and 1.5 keV. The results are shown in
Figs. 6 and 7. It is seen that the target plasma dependence
of the energy shift is minimal, while that of the width is
more pronounced. The width calculation used to determine
densities in Beiersdorfer et al. [12] is shown to be close
to the present results for a PyD plasma at densities below

[12]

FIG. 7. The calculated density dependence of the widths of
the Kβ transition of He-like Cl in different target plasmas at a
temperature of 625 eV, and for the KCl target, at two additional
temperatures of 300 eV and 1.5 keV. The width-density relation used
in Beiersdorfer et al. [12] is also shown for comparison. The ordering
of the legends coincides with that of the curves at the low density end.
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FIG. 8. The measured shift-width relation of Kβ transition of
He-like Cl, and comparison with theoretical results for different
target plasma compositions at a temperature of 625 eV.

2 × 1023 cm−3, but becomes closer to the present KCl plasma
widths at higher densities.

Since the experiment measured the shifts and widths di-
rectly instead of densities, we therefore make a detailed com-
parison of the shift-width relationship between the measure-
ment and the calculated ones for different targets. The results
are shown in Fig. 8. We show three theoretical shift-width
relations for deuterium, PyD, and KCl targets at a temperature
of 625 eV, respectively. It is seen that the measurements
agree better with the calculations using the appropriate target
plasmas.

V. CONCLUSION

In conclusion, we have developed numerical models of
field induced line shifts and broadening of complex ions
embedded in warm dense plasmas. The resulting shift and
width of the He-like Cl Kβ transition agree well with the
recent measurements from the Orion laser facility. Our cal-
culations strongly suggest that it is advantageous to employ
line-shift measurements as a diagnostic for the electron den-
sity of high-density plasmas. Using line-shift measurements
to determine the plasma density is especially attractive in
light of our past experiences with linewidth measurements,
which can be hampered by line asymmetries and uncertainties
in determining the proper background levels. By contrast,
the center position of a line is rather well defined—in the
case of the He-like Cl Kβ line its position is defined by its
central dip. Moreover, our calculations show that, unlike the
linewidth, a given line shift is only weakly dependent on the
plasma composition, as shown in Figs. 6 and 7. Similarly, the
dependence on the electron temperature is also much weaker
for the line shift than for the linewidth. This weak depen-
dence greatly reduces the uncertainties associated with an
experimentally inferred density. The good agreement between
our calculations and the measurements shown in Fig. 8 gives
us confidence that our calculations can be reliably used to
employ line-shift measurements for determining the electron
density.
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