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Limited-control metrology approaching the Heisenberg limit without entanglement preparation
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Current metrological bounds typically assume full control over all particles that are involved in the protocol.
Relaxing this assumption, we study metrological performance when only limited control is available. As an
example, we measure a static magnetic field when a fully controlled quantum sensor is supplemented by particles
over which only global control is possible. We show that even for a noisy quantum sensor, a protocol that maps
the magnetic field to a precession frequency can achieve transient super-Heisenberg scaling in measurement
time and Heisenberg scaling in the particle number. This leads to an estimation uncertainty that approaches
that achievable under full control to within a factor independent of the particle number for a given total time.
Applications to hybrid sensing devices and the crucial role of the quantum character of the sensor are discussed.
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I. INTRODUCTION

The use of quantum resources in sensing and metrology
has a longstanding history which originated with the use
of single-mode squeezed states [1] and multiparticle spin
squeezing [2,3], i.e., entanglement, to enhance precision in
interferometry and atomic spectroscopy.

The goal of quantum metrology is the optimization of the
scaling of metrological precision with the available physical
resources [4,5]. Notably, in a noiseless setting, independent
preparation and measurement of M particles in parallel results
in a 1/

√
M scaling of the uncertainty, the so-called standard

quantum limit (SQL), while the collective preparation of
the particles in an entangled state leads to a 1/M scaling,
commonly referred to as Heisenberg scaling (HS) [2,3] (see
Refs. [6,7] for more general upper bounds obtained via the
quantum Fisher information). The use of entangled states is
necessary to achieve the optimal precision and exact HS but
sequences of probe states with an asymptotically vanishing
amount of entanglement can reach a scaling arbitrarily close
to the Heisenberg limit (HL) [8]. Environmental noise is
known to have a nontrivial impact on metrology [9] and a
meaningful comparison of different schemes needs to spec-
ify carefully the conditions under which the metrological
protocol is carried out, such as the number of particles or
the total amount of time available [9,10]. A wide variety of
settings has been analyzed [9–12] and noise models have been
found to result in metrological scaling intermediate between
SQL and the HL [12–16]. However, these results depend on
access to perfect and arbitrarily fast control and feedback
operations [17,18].

In practice, however, only limited control is possible over
experimental resources and the asymptotic regime of large
numbers of fully controlled particles is not accessible. What
can be achieved in metrology for systems where, for exam-
ple, particles cannot be addressed individually, multiparticle

quantum gates are not available, or the rate of measurements,
feedback, and the number of accessible particles are limited?

In order to initiate investigations of this type in a concrete
setting, we allow ourselves to be motivated by the recently
developed concept of quantum-hybrid sensors [19,20]. These
are devices that integrate at least two components, one being
a fully controlled quantum sensor and another, typically an
assembly of quantum particles, mutually interacting or not,
that are coupled to the quantum sensor but over which there
is no individual control. This second component acts as a
transducer of a signal to a form that is then detected by
the quantum sensor. An example is a device composed of a
piezomagnetic material deposited on a diamond surface that
translates a force into a stray magnetic field which is then
detected by a shallowly implanted nitrogen-vacancy (NV)
center in diamond [21–23]. Another possibility, motivated
by recently realized nanoscale NMR measurements [24–26],
consists of an ensemble of M nuclear spins and an NV
center. Here an applied magnetic field can be measured as
it induces a nuclear Larmor precession, which can be mon-
itored by an NV center. Similarly, atoms in microfabricated
vapor cells [27] could allow for observation of their Larmor
precession by an NV center rather than a classical laser field.
We assume that the quantum sensor is subject to noise and
cannot exert individual control over the noise-free auxiliary
spins.

While we are motivated by concrete settings, our analy-
sis yields more compact expressions, without affecting the
scaling properties, by assuming that all involved spins have
the same magnetic moment. Furthermore, all the following
considerations will neglect direct interactions between the
auxiliary spins.

By means of analyzing the scaling of the Fisher informa-
tion with respect to particle number M and measurement time
T , we will show that, despite the limitations of partial control,
it is possible to get close to the Heisenberg limit; discuss the
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origin of this scaling; and compare our scheme to a single
quantum sensor without auxiliary spins.

II. APPROACHING THE HEISENBERG LIMIT WITHOUT
ENTANGLEMENT PREPARATION

Before stating the main results, we briefly recapitulate the
achievable uncertainties under unconstrained metrology to
make it available for later comparison with our schemes.

A. The ideal case of full quantum control

Consider a quantum sensor and M auxiliary spins, all with
the same magnetic moment μn, over which we can exert
arbitrary and fast control. Then the optimal uncertainty for the
estimation of the magnetic field in a time T in the absence of
noise is obtained via Ramsey spectroscopy using the M + 1
accessible particles prepared in a highly entangled state of the
form (|0 . . . 0〉 + |1 . . . 1〉)/

√
2 and is given by [9]

�B = h̄

μn(M + 1)T
. (1)

We observe a linear decrease in the uncertainty, i.e., HS, both
in the total measurement time T and the number of spins M.

B. The case of limited control setting

We consider a perfectly controlled quantum sensor supple-
mented by M auxiliary spins all having the same magnetic
moment. These M auxiliary spins can be controlled by a
global field and interact weakly with the quantum sensor; i.e.,
the product of sensor-auxiliary spin interaction strength and
interaction time is much smaller than unity. For simplicity,
we assume that each auxiliary particle is interacting with the
same strength and phase with the quantum sensor; however,
the basic findings remain the same in the more general case.

We measure a static external magnetic field B with this
hybrid sensor and determine the achievable uncertainty �B.
To this end we initialize the auxiliary spins in a fully polarised
state [28] and then subject them to a π/2 pulse. We determine
the resulting rate of precession of these M spins by periodi-
cally measuring the time-dependent magnetic field generated
by the precessing spins in regular time intervals using the
quantum sensor and a dynamical decoupling (DD) sequence
to weakly entangle it with the auxiliary spins. This allows
for comparison of the precession frequency to that of a local
oscillator [24,25], as sketched in Fig. 1. This DD sequence
does not only cancel static noise on the sensor spin but also
allows us to accumulate signal over several auxiliary spin
Larmor periods by creating an effective σz ⊗ σx interaction.
In order to see this, we start with a Hamiltonian of the form

H = �(t )

2
σx +

M∑
m=1

ωL

2
σ (m)

z + A(m)
⊥ σz

⊗ [
σ (m)

x cos(φ0m) + σ (m)
y sin(φ0m)

]
(2)

that describes a NV center coupled to M nuclear spins in
the interaction picture where �(t ) is the Rabi frequency with
�(t ) = 0 during the free evolution, ωL is the nuclear Larmor
frequency, A(m)

⊥ is the perpendicular coupling of the nuclear
spins, and φ0m is the corresponding phase. The operators σi

Free
ev.

φ

Free
ev.

φ

Int.

k

Int.

k

...

|0〉 π
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FIG. 1. The proposed measurement scheme uses a control se-
quence on the sensor spin (blue) to weakly measure the auxiliary
spins (black) without the need of further control after initialization in
either the pure state |+ + + · · ·〉 as shown here or the completely
mixed state. The weak measurement is realized by initializing a
sensor spin (blue) into |0〉, applying π/2 pulses, and a dynamical
decoupling (DD) sequence to weakly entangle the sensor spin with
the auxiliary spins and finally measuring the sensor spin, applying
an effective CPTP map onto the auxiliary spins. In between these
measurements that are synchronized with an external local oscillator,
the auxiliary spins acquire a phase φ ∝ μnB, leading to a total phase
nφ after n cycles.

act on the electron spin (NV center), and σ
(m)
i act on the mth

nuclear spin.
When we fulfill τ = π/ωL in the DD (e.g., XY-8) se-

quence, the sequence produces a modulation function that
modulates the NV σz operator to σz f (t ) where

f (t ) = 4

π
cos(ωLt ) + rot., (3)

and rot. denotes terms that vanish after the rotating-wave
approximation in a frame rotating with the nuclear Larmor
frequencies. Using

cos2(ωLt ) = 1
2 [1 + cos(2ωLt )], (4)

we obtain the effective interaction Hamiltonian

Heff =
∑

m

2A(m)
⊥

π
σz ⊗ [

σ (m)
x cos(φ0m) + σ (m)

y sin(φ0m)
]

(5)

that will be the starting point for the following discussion.
We use k0 = μnBs/h̄, where Bs is the field generated by

one of the M auxiliary spins at the position of the NV center.

C. Transient super-Heisenberg scaling in measurement time

In a first step, we analyze the Fisher information scaling
with the measurement time. For this purpose, we derive the
probability pn of finding the internal state of a spin-1/2
quantum sensor in the spin-down state in the nth measurement
in leading order assuming the length Ts of each instance of
a magnetic field measurement is short and if we apply these
measurements every τm.

We simplify to the case that all couplings A(m)
⊥ = k and all

phases φm are equal; see the Appendix for a more general
discussion. Here k0 = μnBs/h̄, where Bs is the field generated
by one of the M auxiliary spins at the position of the NV
center. In the described protocol, the auxiliary spins gain
a phase φ = δτm in each step, where δ = 2π (ν − νloc) is
the difference of precession frequency ν and local oscillator
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frequency νloc. For a nuclear spin with an already accumulated
phase from n cycles equalling nφ, the readout probability
is calculated for the NV measurement in basis Y , i.e., the
eigenbasis of the Pauli σy operator, and NV preparation in |+〉:

pn − 1

2

= Tr[ÔmeasurementUρnU
†] = Tr

{(σy

2
⊗ 1⊗M

)
U

×
[
1+ σx

2
⊗

(
1+ cos(φn)σx + sin(φn)σy

2

)]⊗M

U †

}

= i

4

[(
cos

4k0Ts

π
− i sin

4k0Ts

π
cos(φn)

)M

−
(

cos
4k0Ts

π
+ i sin

4k0Ts

π
cos(φn)

)M
]
. (6)

For Mk0Ts � 1, we can approximate(
cos

4k0Ts

π
± i sin

4k0Ts

π
cos(φn)

)M

∼= exp

(
±iM sin

4k0Ts

π
cos(φn)

)
(7)

to derive the signal

pn = cos2

(
2Mk0Ts

π
cos(φn) − π

4

)
. (8)

Imperfect polarization P of the auxiliary spins can be
incorporated via k0 = μnPBs/h̄.

By Eq. (8), we estimate the frequency 2πν = μnB/h̄ and
hence the magnitude of the magnetic field B. For N mea-
surements, the achievable uncertainty in the estimate of ν is
obtained via the classical Fisher information

IN =
N∑

n=1

1

pn(1 − pn)

(
∂ pn

∂φ

)2(
∂φ

∂δ

)2

. (9)

We can describe decoherence processes in terms of a decay
rateγ = γ2 + γb (see the Appendix), where γ2 refers to T2

processes on the nuclear spins and γb refers to measurement
backaction from the quantum sensor. Then the effective cou-
pling after n measurements is kn = k0e−γ n and we find

IN (γ ) =
N∑

n=1

(
4τmMknTsn

π

)2

sin2 φn. (10)

Under the assumptions max[γ , 1
N ] � 2πφ and Mk0Ts � 1,

i.e., when we sample at least one full oscillation of the signal
of frequency δ, Eq. (10) is well approximated by

IN (γ ) ∼= 16M2τ 2
mk2

0T 2
s

π2

N∑
n=1

n2

2
e−2γ n(1 − cos 2φn)

∼= 2M2τ 2
mk2

0T 2
s

π2

1 − e−2γ N [1 + 2γ N (1 + γ N )]

γ 3
. (11)

For γ N � 1 (for γ N < 0.6 errors are smaller than 3%),

IN (γ ) ∼= 2M2τ 2
mk2

0T 2
s

π2

(
4N3

3
− 2γ N4 + 6γ 2N5

5

)
(12)

and hence

�B �
√

3π2h̄2

8μn
2M2τ 2

mk2
0T 2

s

1

N3
. (13)

As a result, for small γ N our limited control procedure
exhibits a scaling in the number of measurements N or,
equivalently, the total measurement time T = Nτm that ex-
ceeds the standard HS of Eq. (1) while the scaling in the
number of particles M achieves the HL. Note that unlike
the case of interaction-based quantum metrology [29] this
super-Heisenberg scaling is not due to interactions between
the auxiliary spins. Intuitively, the scaling can be understood
to emerge due to the fact that, without noise, the last mea-
surement of the measurement record alone would already give
quadratic Fisher information scaling, and the linear number of
intermediate measurements leads to a cubic scaling in total.

D. Asymptotic SQL scaling in measurement time

However, the super-Heisenberg scaling identified in the
previous subsection has to be transient and cannot persist for
arbitrarily long times as this would be in violation of the
fundamental limit of sensitivity that is imposed by the full
control scheme in the absence of any noise.

For γ2 = 0, the remaining contribution to the decay rate γ

is due to the measurement backaction of the quantum sensor
on the auxiliary spins, which is negligible only for γ N � 1.
Our measurement scheme then yields (see the Appendix for a
derivation)

γb = 4k2
0T 2

s

π2
. (14)

Due to the measurement backaction, the signal weakens with
increasing number of measurements N and the rate of in-
crease of the Fisher information slows. When determining
the scaling in this regime, a note of caution is in order as
the calculation of the measurement backaction in Eq. (11)
determines the Fisher information of the averaged density
matrix of the auxiliary spins. However, as we have access to
and use all the intermediate measurements, the correct Fisher
information of the protocol is obtained by weighted averaging
over measurement trajectories. For γ N 	 1, this results in
a scaling linear in N (see also Refs. [30,31]), as indicated
analytically in the Appendix and numerically in Fig. 2. For
M = 100 nuclei in an initial product state (red data), the
transient super-Heisenberg IN ∝ N3 ∝ T 3 scaling evolves into
the shot noise scaling (SQL) of IN ∝ N ∝ T (blue asymptote),
while Eq. (11) was calculated with the average density matrix
and therefore would yield a constant. Remarkably, this linear
scaling is independent of the initial state and we can achieve
the same scaling using a completely mixed initial state (orange
triangles) [32]. In the limit of small interaction strength k0Ts

and decay, the asymptotic (γ N 	 1) value of the Fisher
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FIG. 2. Upper graph: Numerical Fisher information scaling (red,
initial product state; orange, initial mixed state), the analytical ap-
proximation for small N Eq. (11) (red line, invalid for large N due
to the average density matrix calculation being invalid for γ N > 1)
and the asymptotic (γ N 	 1) behavior (blue) for φ = 0.7 and M =
100 nuclear spins, each coupled with k0Ts = 0.01 to the NV center.
The HL (black) for M + 1 spins is shown for comparison. The
results are averaged over 96 (32 for mixed state) runs with N = 226

measurements each. Lower graph: Same data (red) and results for
k0Ts = 0.05 (green). The Fisher information is initially larger but
dominated by backaction earlier, resulting in a smaller prefactor for
the asymptotic regime. In both graphs and all other simulations, the
achievable Fisher information approaches the HL to within a factor
� 20. This Fisher minimal distance is independent of the interaction
strength k0Ts and the number of nuclei M; see the Appendix.

information can be estimated to be

IN = sin4(4k0Ts/π )

16(γb + γ2)3

M2

2
τ 2

mN. (15)

E. Heisenberg scaling in particle number and relation to the
Heisenberg limit

While the quadratic scaling with the number of nuclei M is
obvious for γ N � 1, it also persists for γ N 	 1 as confirmed
in Eq. (15) and in Fig. 3 (see Fig. 4 and the related discussion
for details). In the full control scenario, such a quadratic
scaling can be traced back to the preparation of an macro-
scopically entangled resource state of the form (|0 . . . 0〉 +

FIG. 3. For the same parameters as in Fig. 2: Numerical Fisher
information scaling [red, initial product state; orange, initial mixed
state (k0Ts = 0.01 at N = 226 each); green, initial product state
(k0Ts = 0.05 at N = 222)] with the number of nuclei M. The blue
lines show the predicted scaling ∝ M2 from Eq. (15) and Fig. 2.

|1 . . . 1〉)/
√

2 including the quantum sensor and the auxiliary
spins which contain one ebit of entanglement [33,34]. This
entanglement is destroyed with the final measurement and
represents the resource that is required to achieve HS. This
is in sharp contrast with our scenario, which starts from an
initial product state. Here the quadratic scaling arises because
the auxiliary spins are interrogated by a quantum sensor which
results in a readout operator that is not particle local, i.e.,
cannot be represented by a product of single-particle operators
as would be the case when using a classical readout device.
Indeed, every measurement applies a completely positive and
trace-preserving (CPTP) map to the auxiliary spins that is
represented by the Kraus operators (see also Ref. [30] for the
case M = 1 and our Appendix),

U± = 〈±y|U |+〉 = e−i 2k0Ts
π

∑
σ (m)

x ∓ iei 2k0Ts
π

∑
σ (m)

x

2
. (16)

FIG. 4. For M = 10 nuclei: Fisher information after 224 mea-
surements for β = 0.01 × 2/π for different γ2 averaged over 192
runs compared to a γ −3 curve with the numerically obtained
prefactor.
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Crucially, this operator is diagonal in a basis different than
the eigenbasis of the free evolution operator, the latter being
a tensor product of unitary evolutions on every auxiliary spin.
If the same held true for the readout operator, it is trivial to
see that every spin would be measured independently and
therefore SQL scaling would apply. The readout operator
here, however, combines all particle states in a nontrivial,
nonlocal, manner. This is similar to the metrological advan-
tage obtained for indistinguishable particles [5] (Sec. III). In
our work, this advantage is achieved by the sensor spin that,
unlike a classical sensor, allows to apply the same, particle
nonlocal, CPTP map in every measurement. We would like to
stress that the entanglement buildup due to the backaction via
a nonlocal measurement operator does not contribute to the
quadratic scaling with the number of auxiliary spins, nor does
it support the transient N3 super-Heisenberg scaling.

In the limit of large nuclear coherence times 0 ≈ γ2 � γb,
the Fisher information approaches the HL achievable under
full control for Nopt ≈ (2k0Ts/π )−2 = 1/γb measurements,
after which the N3 scaling turns into a scaling ∝ N . Note
that the fundamental Heisenberg limit is not violated as with
decreasing interaction k0Ts both the backaction and the infor-
mation gain per measurement decrease at the same rate, thus
compensating each other. Remarkably, at this point, the ratio
of ultimate sensitivity under global control and the limited
control scheme used here only depend on the interaction
strength and therefore can be tuned to approach the HL for
Nopt measurements to within a Fisher minimal distance of a
factor independent of T ; see Fig. 2. Furthermore, it is natural
to assume that this holds independently of M as the Fisher
information of both the HL and the asymptote for γ N 	 1
exhibit the same quadratic in M scaling. This was confirmed
numerically (see the Appendix for confirmation).

III. DISCUSSION

Metrology assisted by environmental spins have been con-
sidered before; see, e.g., Refs. [35,36]. There, however, the
emphasis was placed on spins that are strongly interacting
with the quantum sensor and the measurement protocol cre-
ates a joint entangled state of the quantum sensor and the
auxiliary spins, which then evolves for some time followed by
an inversion of the entangling operation and the subsequent
measurement of the state of the quantum sensor. In this ap-
proach, the HS is achieved in the number of strongly coupled
auxiliary spins while we assume no such spins in our setup.
Furthermore, this protocol suffers from the drawback that it is
fundamentally limited by the coherence time of the quantum
sensor and hence does not take full advantage of the long
coherence time of the auxiliary spins. In contrast, the measure-
ments in our protocol can be made shorter than the coherence
time without adversely affecting the achievable sensitivity.

Besides the theoretical interest in the novel scaling
regimes, we stress that the proposed scheme employing auxil-
iary spins under limited control provides enhanced sensitivity
as compared to the quantum sensor alone. This advantage is
the result of two processes. First, the transduction of the static
magnetic field to a time-dependent Larmor precession which
is then detected by the quantum sensor facilitates the use
of dynamical decoupling schemes to filter out noise without

adversely affecting the signal. Second, as each auxiliary spin
contributes to the signal, the overall signal strength scales with
the number of spins and hence leads to a considerable signal
enhancement. Remarkably, magnetometry schemes such as
atoms in gas cells which are probed independently by a
classical field lead to a M−1 scaling of the variance with the
particle number M. In sharp contrast, it is the transduction of
the signal to a quantum sensors, e.g., an NV center, which
results in a particle nonlocal measurement which causes the
M−2 Heisenberg scaling. This suggests a practical route for
enhancing the measurement capacity of gas cell magnetome-
ters. Furthermore, for an NV center as quantum sensor, even
when considering nuclei with their small magnetic moment as
auxiliary spins, we may obtain an increased sensitivity. To this
end, let us consider the |m = 0〉 ↔ |m = +1〉 transition of an
NV center in an external magnetic field B and assume that
the NV center is dominated by pure dephasing, which results
in a coherence time T (NV )

2 . For perfect readout efficiency, the
optimal interrogation scheme yields

�B =
√

2eh̄2

μ2
eT (NV )

2 T
=

√√√√ 4eh̄2

μ2
eNT (NV )

2
2 (17)

[9], where N = 2T/T (NV )
2 . The maximum of Eq. (15) that

takes the form γ 2
b /(γb + γ2)3 is obtained by choosing γb =

2γ2. In comparison with our indirect measurement scheme

using M hydrogen nuclear spins and assuming ( μe

μn
)2 T (NV )

2
T n

2
≈

103, we find that for

M >

√
27

4e

μ2
eT (NV )

2

μ2
nT (n)

2

≈ 50 (18)

the auxiliary spin assisted sensor outperforms the bare NV
center. Nuclear spins couple more weakly to both noise and
signal due to smaller gyromagetic ratio, resulting in typically
larger coherence times μe

μn
≈ T n

2

T (NV )
2

, so similar results apply for

other systems. While our protocol makes use of a far smaller
magnetic moment compared to even a single electron spin
Mμn � μe, this is compensated for by the longer coherence
time and the possibility to measure during the signal accumu-
lation.

Furthermore, the obtained expression also highlights the
advantage of the M−2 Heisenberg scaling over the SQL that
individual measurements on the nuclear spins give, providing
higher Fisher information for M > 27/4e ≈ 2.5.

Finally, we note that our analysis also covers the case M =
1 corresponding to the detection of the Larmor frequency of a
single nuclear spin via an NV center. Super-Heisenberg scal-
ing applies for as long as the measurement backaction is weak.
This applies for distant nuclear spins or for measurements
that are designed to be weak, i.e., not obtaining a full bit of
information in each single measurement.

IV. CONCLUSIONS

We have examined metrology in a realistic setting of
limited control and found transient super-Heisenberg scaling
in the total measurement time and a metrological precision
approaching that of the same number of particles under full
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experimental control. This is despite the absence of initial en-
tanglement in the system. In fact, in this scheme entanglement
emerges only with increasing number of measurements and
adversely affects the metrological scaling. Furthermore, the
proposed setup, which employs auxiliary spin under limited
control, also represents an hybrid sensor that may outperform
a bare quantum sensor, thus providing new design principles
for quantum sensors.
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APPENDIX A: LIMITED-CONTROL METROLOGY
APPROACHING THE HEISENBERG LIMIT WITHOUT

ENTANGLEMENT PREPARATION

1. Derivation of the signal for few measurements

This section presents a more general calculation of
Eqs. (6)–(8) of the main text. For a nuclear spin (initial state
described by polarization P) with an already accumulated
phase from n cycles φ1m = δτmn + φ0, the readout probability
is (NV measurement in basis Xcα + Y sα and NV preparation
in X )

pn − 1
2 = Tr[ÔmeasurementUρnU

†] (A1)

= Tr

{(
σx cos α + σy sin α

2
⊗ 1⊗M

)
U

[
1 + σx

2
⊗

M∏
m=1

(
1 + P cos φ1mσ (m)

x + P sin φ1mσ (m)
y

2

)]
U †

}
(A2)

= 1

4

{
cos α

[
M∏

m=1

(
cos

4A(m)
⊥ Ts

π
− i sin

4A(m)
⊥ Ts

π
P cos φm

)
+

M∏
m=1

(
cos

4A(m)
⊥ Ts

π
+ i sin

4A(m)
⊥ Ts

π
P cos φm

)]
(A3)

+ i sin α

[
M∏

m=1

(
cos

4A(m)
⊥ Ts

π
− i sin

4A(m)
⊥ Ts

π
P cos φm

)
−

M∏
m=1

(
cos

4A(m)
⊥ Ts

π
+ i sin

4A(m)
⊥ Ts

π
P cos φm

)]}
(A4)

where φm = φ1m − φ0m.

For
M∑

m=1
4A(m)

⊥ Ts/π � 1, we can approximate

M∏
m=1

(
cos

4A(m)
⊥ Ts

π
± i sin

4A(m)
⊥ Ts

π
P cos φm

)

=
M∏

m=1

exp

⎡
⎣±i sin

4A(m)
⊥ Ts

π
P cos φm + O

(
4A(m)

⊥ Ts

π

)2
⎤
⎦

(A5)

∼= exp

(
±i

M∑
m=1

sin
4A(m)

⊥ Ts

π
P cos φm

)
(A6)

to derive the signal

pn = 1

2
+ 1

2
cos

(
M∑

m=1

sin
4A(m)

⊥ Ts

π
P cos φm − α

)

= cos2

(
M∑

m=1

sin
2A(m)

⊥ Ts

π
P cos φm − α

2

)
. (A7)

The generalization of this case described in the main text to
different coupling A(m)

⊥ �= A(m)
⊥ can be described by an effec-

tive coupling. Different phases cos φm1 �= cos φm2 can produce
additional features, but in the asymptotic case these effects are

irrelevant as the initial state becomes less important; see the
next section.

2. Derivation of the Fisher information from the probabilities
for a full measurement record

The outcome of the kth measurement is denoted by ev-
ery individual Xk ∈ {0 = +, 1 = −}, X k is a measurement
record of the form {1, 0, 1, 1, 0, 1, ...} with k components,
Xl is the lth component of it, and β ≡ 2AxTs/π is the
coupling achieved by the XY sequence. Furthermore, Uφ =
exp (−iφ

∑
σ (m)

z /2) and

U± = 〈±y|U |+〉 = e−iβ
∑

σ (m)
x ∓ ieiβ

∑
σ (m)

x

2
(A8)

with the coupling from the first section U =
exp(−iβσ NV

z

∑
σ (m)

x ). Here we assumed all coupling
constants to be equal; however, different βm do not change
the structure of the result.

Each measurement probability can be described by

p± = Tr[(|±y〉 〈±y| ⊗ 1)UUφ (|±〉 〈±| ⊗ ρN−1)U †
φU †]

= Tr[UX1Uφρ0U
†
φU †

X1
] (A9)

and evolves the nuclear state to

ρ± = 1

p±
TrNV[UX1Uφρ0U

†
φU †

X1
]. (A10)
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The probability for a measurement record X k can be described as

pX k = pX1 pX2|X1 ...pXN−1|XN−2...X1 pXN |XN−1 (A11)

= Tr[UX1Uφρ0U
†
φU †

X1
]
Tr[UX2UφUX1Uφρ0U

†
φU †

X1
U †

φU †
X2

]

Tr[UX1Uφρ0U
†
φU †

X1
]

... (A12)

= Tr

⎡
⎣ N∏

k=1

(UXkUφ )ρ0

(
N∏

k=1

(UXkUφ )

)†⎤⎦. (A13)

Each part of the sum contributes roughly 2−N , sum over all contributions is 1. To analyze the effect of these operators, we
apply them on a permutation-invariant product state

Uφ

(
a1 + bσx + cσy + dσz

2

)⊗M

U †
φ =

[
a1 + (bcφ − csφ )σx + (ccφ + bsφ )σy + dσz

2

]⊗M

, (A14)

4U±

(
a1 + bσx + cσy + dσz

2

)⊗M

U †
± =

[
a1 + bσx + (cc2β + ds2β )σy + (dc2β − cs2β )σz

2

]⊗M

(A15)

+
[

a1 + bσx + (cc2β − ds2β )σy + (dc2β + cs2β )σz

2

]⊗M

(A16)

± i

{[
(ac2β + ibs2β )1 + (bc2β + ias2β )σx + cσy + dσz

2

]⊗M

(A17)

−
[

(ac2β − ibs2β )1 + (bc2β − ias2β )σx + cσy + dσz

2

]⊗M
}

. (A18)

It is very difficult to calculate the full expression because every measurement multiplies the number of terms by 4, so we want
to find the relevant terms for the Fisher information for different limits. For a single nucleus M = 1, only two terms are created
every measurement and dσz can be neglected. Therefore, we simplify to

4U±

(
a1 + bσx + cσy

2

)
U †

± = 2

(
a1 + bσx + cc2βσy

2

)
± 2

(−bs2β1 − as2βσx + cσy

2

)
(A19)

= 2A[ρ] + 2B[ρ]. (A20)

The cos(2β ) for the c coefficient produces the backaction-induced decay γb. We can approximate

A[ρ] =
(

a1 + bσx + cc2βσy

2

)
≈

[
a1 + (1 + c2β )/2(bσx + cσy)

2

]
, (A21)

which reduces the Bloch vector according to(
1 + c2β

2

)k

= exp

[
k log

(
1 + c2β

2

)]
≈ exp[k log(1 + β2)] ≈ exp(−kβ2). (A22)

This is valid because the higher orders will be negligible in the further calculation. T 2 processes have a similar effect, which
is why we define the decay of population in the xy plane with

γ = − log
1 + c2β

2
+ τm

T (nuc)
2

≈ β2 + τm

T (nuc)
2

, (A23)

where τm is the time for each of the N repetitions.
When starting with ρ0 = (1 + σx )/2, we can expand the probability for an N measurement record X N as

2N pX N ≈ 1 + s2β

N∑
l=1

(−1)Xl exp(−γ l ) cos(lφ) (A24)

+ s2
2β

∑
1�l1<l2�N

(−1)Xl1 (−1)Xl2 exp[−γ (l2 − l1)] cos[(l2 − l1)φ] (A25)

+ s3
2β

∑
1�l1<l2<l3�N

(−1)Xl1 (−1)Xl2 (−1)Xl3 exp[−γ (l3 − l2 + l1)] cos[(l3 − l2 + l1)φ] (A26)

+ · · · . (A27)
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In a first step, we calculate the Fisher information

IN =
∑
X N

1

pX N

(
∂ pX N

∂φ

)2(
∂φ

∂δ

)2

(A28)

in the limit γ N � 1 using a geometric series

1

τ 2
m

IN = 2−N
∑
X N

∞∑
k=0

[
−s2β

N∑
l=1

(−1)Xl exp(−γ l ) cos(lφ) − s2
2β . . .

]k[
−s2β

N∑
l=1

(−1)Xl exp(−γ l )l sin(lφ) − . . .

]2

. (A29)

As we average over all (−1)Xl = ±1, only terms with an even number of all (−1)Xl contribute. The first order (γ N � 1,
k = 0) results in the N3 scaling that is discussed in the main text:

1

τ 2
m

IN = s2
2β

N∑
l=1

exp(−2γ l )l2 sin2(lφ) (A30)

≈ s2
2β

2

∫ N

0
dl exp(−2γ l )l2[1 − cos(2lφ)] (A31)

≈ s2
2β

2

∫ N

0
dl exp(−2γ l )l2 (A32)

= s2
2β

2

e−2γ N [−2γ N (γ N + 1) − 1]+ 1

4γ 3
≈ s2

2β

2

(
N3

3
− γ N4

2

)
.

(A33)

For γ N > 1, the geometric series is not valid anymore and many higher orders in l need to be considered. To show that terms
linear in N exist, we consider the approximated second order (1/pN

X ≈ 2N )

1

τ 2
m

IN = s4
2β

∑
1�l1<l2�N

exp[−2γ (l2 − l1)] sin2[(l2 − l1)φ)](l2 − l1)2 (A34)

l=l2−l1= s4
2β

∑
1�l�N

(N − l ) exp(−2γ l ) sin2(lφ)l2 (A35)

≈ s4
2β

2

∫ N

0
dl (N − l ) exp(−2γ l )l2[1 − cos(2lφ)] (A36)

≈ s4
2β

2

∫ N

0
dl (N − l ) exp(−2γ l )l2 (A37)

= s4
2β

2

e−2γ N [2γ N (γ N + 2) + 3] + 2γ N − 3

8γ 4
≈ s4

2β

2

N

4γ 3
. (A38)

The numerically obtained prefactor from the main text is smaller by a factor 2 in case of M = 1 and a factor (cM−1
2β )

2
M2/4 for

M > 1. While the first factor 2 is likely to originate from higher order contributions (the dominant order in l depends on N), the
difference for higher M can be explained by the additional terms that arise in the calculation. Many terms like in

2N pX N ≈ 1 + i

2

N∑
l=1

(−1)Xl {[c2β − is2β exp(−γ l ) cos(lφ)]M − [c2β + is2β exp(−γ l ) cos(lφ)]M} (A39)

+ i2

4

∑
1�l1<l2�N

(−1)Xl1 (−1)Xl2

({
c2

2β − s2
2β exp[−γ (l2 − l1)] cos[(l2 − l1)φ] + iα

}M + · · ·
)

(A40)

+ · · · (A41)

will produce roughly the same Fisher information; in partic-
ular, the first order scales as expected. The derivative gives
a factor M2, and the leading order has a factor (cM−1

2β )
2
.

The additional factor 1/2 will arise from averaging random
phases α.

The scaling ∝ γ −3 was tested numerically in Fig. 4. The
simulation results seem to deviate in a regime γ2 ≈ γb by a
factor of 2. This can be explained by higher order terms being
affected more by γ2. As a result, lower order terms with the
expected scaling dominate.
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FIG. 5. Left: Maximum of the ratio between the Fisher information of our protocol and the Heisenberg limit for different coupling strength.
The results do not depend on the number of nuclei M, but are dominated by variations originating from the 9600 averages in the Monte Carlo
simulation. Right: Curves for M = 100 nuclei. The highest value is reached at N ≈ β−2 as expected. Artifacts of the simulation are clearly
visible as for an infinite number of repetitions smooth curves are expected.

Remarkably, these asymptotic results are independent of
the initial state of the nuclei. Therefore, different phases
cos φm1 �= cos φm2 can be transformed to a basis with equal
phases and a different initial state, which yields the same
result as for cos φm1 = cos φm2 ∀m1, m2.

3. Relation to the Heisenberg limit

We numerically investigated the minimum difference be-
tween our protocol and the Heisenberg limit, which can only
be achieved given full control over the nuclei in absence of
decoherence γ2 = 0.

Figure 5 shows the maximum ratio between the Fisher
information of the investigated protocol and the Heisenberg
limit. For different coupling strengths, the ratio is independent
of the number of nuclei. Note that the peaks are due to the
Monte Carlo simulation. This is confirmed by the curves on
the right-hand side of Fig. 5, where the maxima are found at
N ≈ β−2 as expected.

4. Simulation

The normal simulation (without making use of the permu-
tation invariance) repeats the following steps (after initializing
the nuclear spins to |ψ0〉 = |+〉⊗M , ρ0 = |ψ0〉 〈ψ0|):

(1) Simulate nuclear spin evolution with the operator

Ufree = exp

(
−iδτm

∑
m

σ (m)
z /2

)
, (A42)

where τm is the time between two measurements.
(2) Determine probability to measure the NV in |+y〉 after

preparing it in |+〉 and evolving it with the nuclear spins
according to (5) by

p = Tr[|+y〉 〈+y| ⊗ 1⊗MU |+〉 〈+| ⊗ ρnU
†] = Tr[U+ρnU

†
+]

(A43)

= 〈ψn|U †
+U+ |ψn〉 (for pure states), (A44)

where U+ = 〈+y|U ⊗ 1⊗M |+〉.

(3) Probabilistically choose result according to p, save re-
sult, and evolve accordingly including normalization ρn+1 =
NU+/−ρnU

†
+/−.

By using the subspace resulting from the symmetry in the
case of many spins with equal coupling strengths, many spins
can be simulated efficiently, as this subspace has dimension
M + 1 instead of 2M .

The Fisher information

IN =
∑
X N

pX
1

p2
X

(
∂ pX

∂δ

)2

(A45)

was calculated numerically for many different runs evolving
ρ following the recipe above to determine pX . Evolving ρ2/3

according to the same measurement outcomes as ρ, but with
a different evolution parameter δ ± dδ allows us to determine(

∂ pX

∂δ

)
= pX (δ + dδ) − pX (δ − dδ)

2dδ
(A46)

for many measurement records. After calculating the Fisher-
information for every measurement record, the average and
standard deviation can be obtained.

The accuracy is limited by the Fisher information due to
the Cramer-Rao bound

δωN � 1√
IN

. (A47)

For pure states, the logarithmic negativity can be simplified
to an expression depending on the Schmidt coefficients αi:

LN (|�〉 〈�|) = 2 log2

(∑
i

αi

)
, (A48)

which can be calculated for considerably larger systems than
the partial trace.

In order to obtain some insights into the entanglement
buildup and its potential role as a resource in the metrology
scheme, we use the logarithmic negativity [34] as a quantifier
of the entanglement between one of the auxiliary spins with
the remaining M − 1 spins and between equal bipartitions
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FIG. 6. Logarithmic negativity for M spins, each spin coupled with β = 0.01 × 2/π with negligible decay γ2 = 0. The left graph shows
the entanglement of one of the auxiliary spins with the remaining M − 1 spins and the right graph shows entanglement in an equal bipartition
of the auxiliary spins. The results are averaged over 2000 runs.

of the auxiliary spins. While the entanglement between the
nuclei builds up to a steady state after a time 1/γb, it does
not contribute to the quadratic scaling with the number of
auxiliary spins as this effect is related to the readout process,
nor does it support the N3 super-Heisenberg scaling. However,

destroying the entanglement after every measurement would
lead to lower prefactor in the asymptotic SQL scaling as
it inevitably leads to destruction of information. Figure 6
shows this buildup of entanglement of a scale of Nopt ≈
(2k0Ts/π )−2 = 1/γb.
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