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The ability to generate and verify multipartite entanglement is an important benchmark for near-term quantum
devices. We develop a scalable entanglement metric based on multiple quantum coherences and demonstrate
experimentally on a 20-qubit superconducting device. We report a state fidelity of 0.5165 ± 0.0036 for an 18-
qubit GHZ state, indicating multipartite entanglement across all 18 qubits. Our entanglement metric is robust to
noise and only requires measuring the population in the ground state; it can be readily applied to other quantum
devices to verify multipartite entanglement.
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Universal quantum computers promise to solve many
problems that are intractable classically [1,2], but achieving
fault tolerance will require a number of resources that are
unavailable today. Until we can implement error correction,
quantum systems will be beset with a certain amount of noise.
Understanding how to best benchmark these near-term quan-
tum devices is an active question [3]. Traditionally, the field
has relied on local metrics such as one- and two-qubit gate
fidelities since these are experimentally feasible even with
full tomographic methods [4–7]. However, it has become in-
creasingly clear that such local metrics do not capture the full
intricacies of a multiqubit device. Therefore, a number of mul-
tiqubit metrics such as direct fidelity estimation [8,9], three
qubit simultaneous randomized benchmarking (RB) [10], di-
rect RB [11], and quantum volume [12] have been proposed
and measured. Another powerful multiqubit metric is that
of entanglement, specifically, measuring the largest possible
multipartite entangled state on a device [13,14]. Not only is
the ability to generate entanglement indicative of high fidelity
gate operations and qubit coherence, entangled states are
the cornerstone of quantum speedups and they can be direct
resources for quantum computing [15,16]. Multipartite entan-
glement in Greenberger-Horne-Zeilinger (GHZ) states have
been demonstrated with 10 superconducting circuits [17], 14
trapped ions [18], and 18 photons [19]. Recently, multipartite
entanglement in a 12-qubit linear graph state and 18-qubit
GHZ state were verified in superconducting qubit architec-
tures [20,21], as well as 20-qubit GHZ state in a Rydberg
atoms array [22].

Here we generate and verify an 18-qubit entangled GHZ
state on a 20-qubit superconducting device. Our entanglement
metric is inspired by quantum sensing [23] and can be used to
directly bound the state fidelity. The device is comprised of 20
fixed frequency transmon qubits, and implements two-qubit
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gates based on cross-resonance driving [24–26]. The device
layout and the two qubit errors are shown in Fig. 1.

We verify the generation of GHZ states by measuring
multiple quantum coherences (MQC) [29], a tool traditionally
used in solid state NMR and more recently in trapped ions
to study many-body correlations and quantum information
scrambling [30,31]. The experimental method to measure
MQC has a strong overlap with quantum sensing and entan-
glement assisted metrology [32]. In the prototypical quantum
sensing circuit shown in Fig. 2(a), a GHZ state is used to sense
static magnetic fields with Heisenberg-limited sensitivity; it
works by taking advantage of an ideal GHZ state’s amplified
sensitivity to phase rotations of each of the individual qubits
in the entangled state [23,33–35]. If each qubit has a phase
rotation of φ, then the N-qubit GHZ state rotates collectively
by Nφ. By observing how sensitive a nonideal GHZ state
responds to rotations, we can deduce how much entanglement
is present in the state. The quantum circuit for measuring
MQC is illustrated in Fig. 2(b), and it can be described in four
steps:

(1) Starting from the N-qubit ground state: |GS〉 =
|000..00〉, apply a Hadamard gate on qubit 0 followed by
a sequence of CX gates given by the unitary UCX. Ide-
ally, this brings the system into the GHZ state: |GHZ〉 =

1√
2
(|000..00〉 + |111..11〉).
(2) Apply a collective rotation given by the unitary Uφ on

all qubits. This amounts to adding a phase Nφ to the GHZ
state: 1√

2
(|000..00〉 + e−iNφ|111..11〉).

(3) Disentangle the GHZ state by performing the CX gate
sequence in reverse order. The amplified phase is mapped onto
qubit 0: 1√

2
(|0〉 + e−iNφ |1〉) ⊗ |00..00〉.

(4) Read out the amplified phase by measuring the proba-
bility of the system returning to its initial state: |GS〉.

In the absence of decoherence, the measured signal of this
protocol is given by

Sφ = 〈GS|ρf|GS〉 = |〈000..00|U †
expUφUexp|000..00〉|2

= Tr(ρφρ), (1)
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FIG. 1. System One device layout and 2Q errors. Top: 20-qubit
device layout and connectivity on IBM Q System One. Bottom:
Comparison between 2Q error and 2Q coherence limit for all two-
qubit gates on the device. The coherence properties of the device can
be found in Ref. [27] and Appendix A.

where ρf is the final state before measurement, ρ =
Uexp|GS〉〈GS|U †

exp, and ρφ = UφρU †
φ . In the last step we used

the cyclic property of the trace. It has been shown that Eq. (1)
is still valid under general types of noise [36]. For an ideal
GHZ state (Uexp = UGHZ = UCXH0), Eq. (1) reduces to

Sideal
φ = 1

2 [1 + cos(Nφ)],

which can also be obtained by measuring the state |0〉 on qubit
0 in the final step. Since Sφ comes from the overlap between
a rotated and unrotated density matrix, in the final step of the
protocol the probability of all qubits being in the zero state
must be measured. The constant term in Sideal comes from
the diagonal elements of the GHZ density matrix, whereas the
oscillating term comes from the off-diagonal corner elements.
Any difference between Sφ and Sideal

φ is an indication that
our GHZ state is imperfect. To quantify the state fidelity we
focus on the MQC amplitudes, defined as the discrete Fourier
transform of Sφ :

Iq = N−1

∣∣∣∣∑
φ

eiqφSφ

∣∣∣∣, (2)

where N is a normalization factor. The experimentally pre-
pared GHZ state can have a phase error in the form of
|GHZ(φε )〉 1√

2
(|000..00〉 + eiφε |111..11〉). Iq defined in Eq. (2)

is insensitive to the phase error φε ; one can determine φε by
analyzing the real and imaginary parts of

∑
φ eiqφSφ , as shown

in Appendix E. The maximum N-qubit GHZ state fidelity
defined as F = maxφε

〈GHZ(φε )|ρ|GHZ(φε )〉 can be bounded
by

2
√

IN � F �
√

I0/2 + √
IN . (3)

For a perfect GHZ state we have I0 = 2IN = 1/2, and all other
Iq being zero. We can also directly obtain the state fidelity
as F = 1

2 (P000..00 + P111..11) + √
IN , where P000..00 and P111..11

are the populations of |000..00〉 and |111..11〉 in the density
matrix. A discussion on MQC amplitudes and proof of Eq. (3)
are given in Appendices B and C. For a N-qubit state to have
multipartite GHZ entanglement, it needs to have a minimal
fidelity of 0.5 [37,38]. Equations (1) and (3) are valid under
common types of noise. In Appendix C we show they are valid
in simulations taking into account T1/T2 noises, CNOT gate
error, and ZZ interactions.

This method can be seen as complementary to parity
oscillation measurements commonly used in trapped ions
to verify GHZ entanglement [18,39,40], MQC offers two
main benefits: robustness to noise and scalability in read-
out correction. Parity oscillations measure the expectation
value 〈GHZφ|ZZZ...ZZ|GHZφ〉 as a function of φ, where

|GHZφ〉 = ⊗N
j e

iπ
4 (cos φσ

j
x +sin φσ

j
y )|GHZ〉 [18]. The amplitude of

the parity oscillations gives coherence C = |ρ000..00,111..11| +
|ρ111..11,000..00|, where ρ000..00,111..11 is the off-diagonal element
in the density matrix. C is related to the fidelity via F =
1
2 (P000..00 + P111..11 + C) [18]. The coherence is related to
MQC amplitudes via C = 2

√
IN . At first our entanglement

metric appears disadvantageous compared to parity oscilla-
tions since it takes twice the circuit length. However, our
experiments can be made robust against noise. Just as a
Hahn echo refocuses low-frequency noise and reduces de-
phasing [41], adding a π -pulse after making the GHZ state
can dramatically improve the measured fidelity. The quantum
circuit for refocused MQC is illustrated in Fig. 2(c). We
find experimentally the 20-qubit state fidelity to increase by
nearly 11% by adding the refocusing π -pulse, as shown in
Fig. 4(b). In addition, our entanglement metric only requires
measurement of the initial state.

In addition to accommodating dynamical decoupling tech-
niques, the MQC method is also less sensitive to readout
errors. We point out that parity oscillations in GHZ states
have been measured previously on the IBM Q 16-qubit de-
vice [42] with average readout error of 7%, but multipar-
tite entanglement cannot be established beyond five qubits.
Aside from control imperfections and decoherence, read-
out errors limit our ability to measure the entangled state,
even though the state itself can be highly entangled. Since
readout errors are independent from entanglement we can
calibrate them out of the measurement. Here we implement
a scalable readout mitigation method based on constructing
a truncated calibration matrix, the details are explained in
Appendix F.

We have experimentally generated GHZ states for N = 11
to N = 20, and measured Sφ in Eq. (1) and extracted the
corresponding MQC amplitudes. The data for 12-, 14-, 16-,
and 18-qubit GHZ states are shown in Fig. 3, and the circuit
used in the 18-qubit experiment is shown in Fig. 2(d). For each
N , we measure Sφ for φ = π j

N+1 , where j = 0, 1, 2, · · · , 2N +
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FIG. 2. Quantum circuits. (a) Quantum sensing circuit. An ideal GHZ state is generated and used to sense an external magnetic field. After
sensing, the GHZ state is disentangled and information about the magnetic field is encoded as a phase on the first qubit. (b) MQC quantum

circuit. Instead of sensing, we apply a collective rotation given by the unitary operator Uφ = e−iφ/2
∑

j σ
j

z . We can implement this rotation
instantaneously in our device by phase-shifting all subsequent pulses [28]. In the readout step, all qubits are measured to obtain the probability
of system returning to initial state. (c) refocused MQC quantum circuit. Similar to MQC except for the addition of a collective π -pulse on
all qubits before Uφ . The π -pulse is used to reduce noise without affecting the GHZ state. (d) experimental circuit for the 18-qubit MQC
experiment on IBM Q System One.

1 so the highest frequency detectable is N + 1. The result
of each experiment is averaged over 16 384 shots, and the
errorbar corresponds to one standard error obtained from
eight experiments. There is considerable difference between
the results with and without readout correction. Here the
calibration matrix is constructed using 256 basis states (see
Appendix F), and each basis state measurement is averaged
over 4096 shots.

From the experimentally extracted MQC amplitudes
shown in the bottom row of Fig. 3, we see one peak located
at q = 0 and two peaks at q = ±N , characteristic of N-qubit
GHZ states. Peak amplitudes become lower with increasing
N , indicating larger N-qubit GHZ states have lower fidelities.
Using Eq. (3) we extract the upper and lower bounds on
state fidelities with readout calibrations as a function of N ,
as shown in Fig. 4(a). For N = 11 to N = 17 the fidelity

FIG. 3. Experimentally measured Sφ and extracted MQC amplitudes. Top row: experimentally measured Sφ for N = 12, 14, 16, 18. Bottom
row: corresponding MQC amplitudes extracted by discrete Fourier transforming Sφ . The error bar corresponds to one standard error linearly
propagated from uncertainties in Sφ .
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(a)

(b)
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FIG. 4. Fidelity bounds and 20q data. (a) experimentally extracted fidelity bounds according to Eq. (3) for N = 11 to N = 20 with readout
correction. Error bars corresponds to linearly propagated uncertainties in the corresponding Sφ . For N = 18 and N = 19 the fidelities are also
presented. (b) experimentally measured 20-qubit Sφ and MQC amplitudes with and without the refocusing π -pulse. (c) simulated results using
basic noise model described in Ref. [43]

lower bound is clearly higher than the 0.5 threshold for
multipartite entanglement. For N = 18 the lower bound is
0.5006 ± 0.0067, in this case we measure P000..00 and P111..11

for the GHZ state in addition to MQC amplitudes to obtain
the state fidelity of F = 0.5165 ± 0.0036, confirming that the
18-qubit GHZ state is multipartite entangled. We have not
been able to establish multipartite entanglement with 19- and
20-qubit GHZ states. Without applying the aforementioned
readout calibration, the highest number of multipartite entan-
gled qubits we can measure is N = 14 with a fidelity lower
bound of 0.5406 ± 0.0037. We compare fidelities extracted
from our method with that from quantum state tomography
(QST) [44] for small GHZ states, the results are summarized
in Table I. While the MQC method appears to give slightly
higher state fidelity, we expect these results are within the
errors of the tomography experiments. Each experiment is
averaged over 16 384 shots and readout corrected. Our method
to experimentally quantify multipartite entanglement for GHZ
states can be applied to other states that are locally equiv-
alent to GHZ states, such as star graph and complete graph
states [45]. The only difference is in the rotation step. For star
graph states, instead of applying Uφ on all qubits, apply Uφ on
the central qubit and HUφH on the rest. For complete graph
states, apply e− iπ

4 σxUφe
iπ
4 σx on all qubits.

There are several experimental limitations to entangling
large GHZ states in our device. First, the circuit depth required
to generate a N-qubit GHZ state scales as O(N ); in contrast
with the linear graph state, where only two steps are needed
independent of N [14,20]. This makes GHZ states particularly
fragile to decoherence. We choose an entangling path on our
device that takes the least amount of time to complete; the

TABLE I. Fidelity Comparison for Small GHZ States

Method 2q GHZ 3q GHZ 4q GHZ 5q GHZ

QST 0.96 0.93 0.87 0.85
MQC 0.98 0.94 0.87 0.86

physical qubits involved for each N are listed in Appendix A.
Second, there are instances where CX gates, implemented
by cross-resonance driving, are run on adjacent qubit pairs.
Simultaneous adjacent CX gates will have lower fidelity than
individual CX gates due to always-on ZZ interactions and
cross-driving effects between neighboring qubits. Third, since
the CX gates are applied sequentially, there will inevitably
be free evolution on idle qubits leading to unitary errors. In
addition, due to pulse alignment restrictions in the software,
the entangling and the disentangling operations take different
times to complete, making the π -pulse not as effective as
it can be. This might explain why the measured Sφ appears
phase-shifted.

We use a basic noise model built from device parameters
to simulate the 20-qubit MQC experiments using Qiskit [43].
The simulation models one- and two-qubit gate errors as a
depolarizing error plus a thermal relaxation error such that
the total error equals the error measured experimentally from
randomized benchmarking; the details of the basic noise
model can be found in Qiskit tutorial [43]. To compare
with experiments, we turn off readout error in the simulation
and average over 2048 shots. The simulation shows higher
fidelities than the experiment and does not appear to capture
the effects of the refocusing π pulse, as shown in Fig. 4(c).
This suggests that the experimental system has slow drifts
which can be refocused by π -pulses. Interestingly, it has
been demonstrated that dynamical decoupling is remarkably
effective at extending the lifetime of GHZ states [46].

We demonstrate in this work an experimentally scalable
entanglement metric based on multiple quantum coherences,
and applied it to verify 18-qubit multipartite GHZ entangle-
ment. Our experiments show encouraging results in the abil-
ity to entangle and disentangle highly correlated many-body
states in near term quantum devices. We are exploring new
variations of CX gates which can be applied simultaneously
on adjacent qubit pairs while canceling ZZ errors [47]. This
should improve gate fidelity in the entangling and disen-
tangling steps. The lifetimes of MQC amplitudes should be
measured and compared to those of parity oscillations, which
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TABLE II. Qubit parameters on IBM System One. The qubit
frequency, T1, T2,echo, and readout fidelity are presented.

Qubit Frequency (GHz) T1 (μs) T2,echo (μs) Readout fidelity

Q0 4.666 88.1 76.6 98.1
Q1 4.760 69.0 75.7 96.4
Q2 4.609 58.3 65.4 97.2
Q3 5.031 60.9 73.0 79.7
Q4 4.657 69.1 78.1 96.6
Q5 4.752 74.4 71.9 95.9
Q6 4.829 60.2 65.8 98.1
Q7 4.698 80.7 79.5 96.4
Q8 4.893 64.0 75.7 96.5
Q9 4.731 63.3 70.7 93.0
Q10 4.840 59.1 62.9 96.6
Q11 4.755 64.1 56.3 97.8
Q12 4.621 85.4 87.2 96.6
Q13 4.859 69.4 83.2 93.6
Q14 4.394 101.6 86.6 93.5
Q15 4.693 76.1 74.3 98.1
Q16 4.512 70.3 80.1 95.0
Q17 4.719 66.4 79.2 97.8
Q18 4.321 73.6 80.7 93.0
Q19 4.593 83.3 85.5 97.6
Median 4.708 69.2 76.2 96.6

were reported to decrease as N2 in trapped ions [18] and N
in superconducting qubits [48]. It will be interesting to extend
MQC to other entangled states such as the W-state and study
their entanglement properties. Lastly, the newly developed
error mitigation techniques [49,50] may give us insights to the
maximum GHZ fidelity achievable in our device in the limit
of zero noise.
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APPENDIX A: DEVICE PARAMETERS

In Table II we show the typical qubit parameters for the
device. In Table III we list the physical qubits involved in
the state tomography experiments and the N-qubit MQC
experiments on the device. The numbers labeling the physical
qubits are shown in Fig. 1 in the main text.

APPENDIX B: MULTIPLE QUANTUM COHERENCES

Consider writing the density matrix as ρ =∑
m,m′ ρm,m′ |m〉〈m′|, where the basis states satisfy∑
j σ

j
z /2|m〉 = m|m〉. We can expand the density matrix

as ρ = ∑
q ρq, where ρq = ∑

m ρm,m−q|m〉〈m − q|. It can be

TABLE III. Physical qubits used on IBM System One for state
tomography and MQC experiments

N Physical qubits used

2 [5, 10]
3 [5, 10, 6]
4 [5, 10, 6, 11]
5 [5, 10, 6, 11, 0]
11 [5, 10, 6, 11, 0, 12, 7, 15, 1, 8, 13]
12 [5, 10, 6, 11, 0, 12, 7, 15, 1, 8, 13, 16]
13 [5, 10, 6, 11, 0, 12, 7, 15, 1, 8, 13, 16, 2]
14 [5, 10, 6, 11, 0, 12, 7, 15, 1, 8, 13, 16, 2, 9]
15 [5, 10, 6, 11, 0, 12, 7, 15, 1, 8, 13, 16, 2, 9, 17]
16 [5, 10, 6, 11, 0, 12, 7, 15, 1, 8, 13, 16, 2, 9, 17, 4]
17 [5, 10, 6, 11, 0, 12, 7, 15, 1, 8, 13, 16, 2, 9, 17, 4, 14]
18 [5, 10, 6, 11, 0, 12, 7, 15, 1, 8, 13, 16, 2, 9, 17, 4, 14, 3]
19 [5, 10, 6, 11, 0, 12, 7, 15, 1, 8, 13, 16, 2, 9, 17, 4, 14, 3, 18]
20 [5, 10, 6, 11, 0, 12, 7, 15, 1, 8, 13, 16, 2, 9, 17, 4, 14, 3, 18, 19]

shown that ρq satisfies the following:

e−i φ

2

∑
j σ

j
z ρqei φ

2

∑
j σ

j
z = e−iqφρq,

[∑
j
σ j

z /2, ρq

]
= qρq.

(B1)

Since ρ is hermitian we also have ρ†
q = ρ−q. Each ρq occupies

a different part of the density matrix, and it obeys the orthog-
onality condition Tr(ρqρp) = δq,−pTr(ρqρ−q). While each ρq

is not directly observable, the trace Iq = Tr(ρqρ−q) is. Iq is the
multiple quantum coherence amplitude, and it can be found by
Fourier transforming the overlap signal Sφ = Tr(ρφρ), where

ρφ = e−i φ

2

∑
j σ

j
z ρei φ

2

∑
j σ

j
z . For a general time-dependent den-

sity matrix, measuring Sφ requires the ability to implement
time-reversed evolution. Upon expanding ρ inside Sφ and
using the first relation in Eq. (B1), we have

Sφ = Tr

(∑
q

e−iqφρq

∑
p

ρp

)
=

∑
q

e−iqφTr

(
ρq

∑
p

ρp

)

=
∑

q

e−iqφTr(ρqρ−q ) =
∑

q

e−iqφIq,

where in the second to last step we used the orthogonality
condition. Fourier transforming gives Iq = N−1 ∑

φ eiqφSφ ,
where N is a normalization constant depending on the number
of φ used in the experiments. If the maximum coherence
order to be measured is qmax, we need at least 2qmax exper-
iments. The angle φ can be chosen as φ = π j

qmax
where j =

0, 1, 2, · · · 2qmax − 1 and N = 2qmax. While our discussion
assumes unitary evolution, it has been shown that in certain
types of decoherence the experimental method for measuring
multiple quantum coherence is still valid [36].

For an ideal N-qubit GHZ state, the nonzero elements in
the density matrix resides only in the four corners. There-
fore, only three components arise in the expansion: ρGHZ =
ρGHZ

0 + ρGHZ
N + ρGHZ

−N . Explicitly they are given by

ρGHZ
0 = 1

2 (|000..00〉〈000..00| + |111..11〉〈111..11|),
ρGHZ

N = 1
2 |000..00〉〈111..11|, ρGHZ

−N = ρGHZ
N

†
;
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the corresponding multiple quantum amplitudes are given by

IGHZ
0 = Tr

(
ρGHZ

0 ρGHZ
0

) = 1
2 ,

IGHZ
N = Tr

(
ρGHZ

N ρGHZ
−N

) = 1
4 , IGHZ

−N = IGHZ
N . (B2)

Multiple quantum coherence amplitudes are symmetric:
Iq = I−q.

APPENDIX C: FIDELITY BOUNDS FROM
MQC AMPLITUDES

The state fidelity, given by F = 〈GHZ|ρ|GHZ〉 =
Tr(ρρGHZ), can be bounded by

2
√

IN � F �
√

I0/2 + √
IN . (C1)

The upper bound on F follows from the Cauchy-Schwarz
inequality:

Tr(ρρGHZ) =
N∑

q=−N

Tr
(
ρqρ

GHZ
−q

)

�
N∑

q=−N

√
Tr(ρqρ−q)Tr

(
ρGHZ

q ρGHZ−q

)=
√

I0/2+√
IN .

To prove the lower bound, we first notice that

F = Tr
(
ρ0ρ

GHZ
0

) + Tr
(
ρNρGHZ

−N

) + Tr
(
ρ−NρGHZ

N

)
� 2

[
Tr

(
ρNρGHZ

−N

) + Tr
(
ρ−NρGHZ

N

)]
. (C2)

This can be proved by writing the density matrix as ρ =∑
j w j |ψ j〉〈ψ j |, where w j � 0 and

∑
j w j = 1. The state

vectors |ψ j〉 need not to be orthogonal, we can in general
expand |ψ j〉 as

|ψ j〉 = α j |00...0000〉 + β j |11...1111〉 + · · · .

Since |α j − β j |2 � 0, upon expanding we have |α j |2 +
|β j |2 � α jβ

∗
j + α∗

j β j . It then follows that

1

2

∑
j

w j (|α j |2 + |β j |2) � 1

2

∑
j

w j (α jβ
∗
j + α∗

j β j ),

which is the same as

Tr
(
ρ0ρ

GHZ
0

)
� Tr

(
ρNρGHZ

−N

) + Tr
(
ρ−NρGHZ

N

)
,

thereby proving Eq. (C2). One can go one step further by not-
ing that ρN = κρGHZ

N , where κ is a complex constant. Using
Tr(ρNρGHZ

−N ) = κIGHZ
N = 1

κ∗ IN we can show that |κ| = 2
√

IN .
Notice κ can always be made real by appropriately rotating the
density matrix ρ. Substituting ρN = 2

√
INρGHZ

N into Eq. (C2)
gives 2

√
IN as the lower bound of F . In addition to the fidelity

bounds, we can also obtain the GHZ state fidelity F :

F = 1
2 (P000..00 + P111..11) + √

IN ,

where P000..00 = 〈000...00|ρ|000...00〉 and P111..11 =
〈111...11|ρ|111...11〉 are the probabilities of finding all
zeros and all ones in the state ρ.

APPENDIX D: NUMERICAL SIMULATIONS

Here we look at some numerical simulations of the mul-
tiple quantum coherence (MQC) technique outlined in the

main paper. The simulation starts with a density matrix in
the ground state (i.e., ρ0 = |00..00〉〈00..00|). The circuit to be
simulated is divided into ng steps where each step corresponds
to the time required to perform a single qubit gate operation;
the two-qubit gates are split into m gates where m is the length
ratio between the two-qubit and single-qubit gates (here m =
5). For each step s we apply discrete unitary operations for
the gates at step s in the circuit followed by a coherent error
map (additional unwanted unitary terms) and then a T1, T2

map. This is repeated for all ng steps, carrying through the
resulting density matrix. This technique is outlined in detail
in the Supplemental Material to Ref. [10]. To compare to
the results of the experiment in the main paper, we first
simulate the gates that create the GHZ state and calculate the
state fidelity 〈�ideal|ρsim|�ideal〉 where |�ideal〉 = (|00 . . . 0〉 +
eiθ |11 . . . 1〉)/

√
2 (we assume θ is set to optimize the fidelity).

Next we apply the phase rotations φ to each qubit and unwind
the GHZ state and measure the population in |00 . . . 0〉 versus
φ. As in the experiment, we do a Fourier transform to get
the coherence peaks and determine the bound in Eq. (C1). If
the true fidelity lies within the bound, then the technique is
valid. For all the simulations we consider 6 qubits in a line
where the CNOT gates are applied sequentially from one end
to the other end. We assume the CNOT gates are 500 ns and
the single qubit gates 100 ns, these values are consistent with
actual device parameters.

In the following we consider T1/T2 noise, ZZ error and
CNOT rotation error. In all cases the state fidelity lies within
the bounds set by Eq. (C1).

1. T1/T2 noise

First we consider the situation where the gates are perfect
but there is T1/T2 noise. We assume T1 = T2 = 60 μs and that
all the qubits have the same T1. The data is shown in the left
of Fig. 5 as a function of T1.

2. ZZ error

Next we consider that there is a ZZ term in the Hamilto-
nian expressed as a term HZZ = ξ |11〉〈11|; the typical values
measured in the device are on the order of tens of kilohertz.
The ZZ term is present between all neighbors on the line (and
between the first and last qubits, i.e., we assume a loop). For
this simulation we leave T1 = T2 = 60μs. The data is shown
in the middle of Fig. 5.

3. CNOT error

Finally we consider that there is an over/under rotation er-
ror in the CNOT gate. We assume the true gate is CRX [π (1 +
γ )], where CRX is the cross resonance interaction aligned
along the X -axis of the target qubit and γ = 0 corresponds
to a CNOT. We look at the state fidelity as we vary γ . For this
simulation we leave T1 = T2 = 60μs and ξ = 0.1 MHz. The
data is shown in the right of Fig. 5.

APPENDIX E: EXTRACTING GHZ PHASE FROM MQC

We describe how the phase of the GHZ state can be
extracted from MQC experiments and compare with the

032343-6



VERIFYING MULTIPARTITE ENTANGLED … PHYSICAL REVIEW A 101, 032343 (2020)

FIG. 5. Simulated fidelity bounds Left: Six-qubit GHZ state fidelity versus T1 (T2 = T1) measured directly (solid blue line), and with the
bounds from the MQC method. Middle: Six-qubit GHZ state fidelity versus the ZZ interaction between the qubits (ξ |11〉〈11|) measured directly
(solid blue line), and with the bounds from the MQC method. Right: Six-qubit GHZ state fidelity versus the CNOT rotation error measured
directly (solid blue line), and with the bounds from the MQC method. For all three errors the fidelity is correctly bounded according to Eq. (C1).

phase extracted from quantum state tomography (QST) and
parity oscillations. A rotated GHZ state acquires a relative
phase and can be written as |GHZ(θ )〉 = 1√

2
(|000..00〉 +

eiθ |111..11〉). By performing QST on the density matrix
ρ(θ ) = |GHZ(θ )〉〈GHZ(θ )|, the relative phase θ can be ob-
tained as

θ = − arctan

[
Im(ρ000..00,111..11)

Re(ρ000..00,111..11)

]
,

where ρ000..00,111..11 = 〈000..00|ρ(θ )|111..11〉, and the coher-
ence is given by C = 2|ρ000..00,111..11|. The phase θ can also be
obtained from parity oscillations, which is extracted from the
following expectation value:

Pφ = Tr
[
ρθ� j

(
cos φσ j

x + sin φσ j
y

)]
= Tr[ρθ� j (e

−iφσ
j

+ + eiφσ
j

−)] = C cos(Nφ − θ ).

The measured Pφ can have other frequency components in
addition to Nφ due to experimental imperfections. Instead of
fitting Pφ to a cosine function, we take the Fourier transform
of Pφ : Jq = N−1 ∑

φ eiqφPφ and extract θ via

θ = − arctan

[
Im(JN )

Re(JN )

]
.

The coherence is given by C = |JN | + |J−N |.
Finally we move on to MQC. The measured signal Sφ =

Tr(ρφρ) can be written as Tr[ρφ (θ )ρ(−θ ′)], where we allow
for two possibly different phases θ and θ ′ due to experimental
imperfections within the entangling and disentangling opera-
tions. The resulting signal is given by Sφ = 1

2 [1 + cos(Nφ +
θ + θ ′)]. Now consider MQC with spin echo in the middle, the
signal becomes Sπ

φ = 1
2 [1 + cos(Nφ − θ + θ ′)]. Comparing

the two expressions, we can extract θ via

θ = 1

2

(
arctan

[
Im(IN )

Re(IN )

]
− arctan

[
Im

(
Iπ
N

)
Re

(
Iπ
N

)
])

,

where Iπ
N and IN correspond to the N th MQC amplitudes

obtained with and without the spin echo.
We compare the experimentally extracted θ from QST,

parity oscillation, and MQC for a 4-qubit GHZ state. The
GHZ state is generated using a linear sequence of CNOT gates
acting on qubits 5, 10, 11, and 12. The extracted θ is similar
across all three methods, as shown in Fig. 6(a). Furthermore,

we compare the extracted coherence C and observed similar
values for all methods, as shown in Fig. 6(b). The coherence
obtained from MQC with spin echo is slightly higher than
MQC without the echo, this difference can be attributed to
dephasing.

APPENDIX F: READOUT CALIBRATION

To mitigate measurement errors, we experimentally con-
struct a 2N by 2N calibration matrix, A, where each row
vector corresponds to the measured outcome probabilities of
a prepared basis state. In the nominal case of no readout error,
A is an identity matrix. With readout error, we can correct the

(a)

(b)

FIG. 6. Extracting GHZ phase θ and coherence C. (a) Extracted
phase θ from QST, parity oscillations, and MQC for a 4-qubit GHZ
state. The errorbar corresponds to one standard deviation of the mean
obtained from eight runs of the same experiment, each experiment is
readout corrected and uses 4096 shots. (b) Extracted coherence C
from QST, parity oscillations, MQC, and MQC with spin echo for a
4-qubit GHZ state.
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(a)

(b)

(c)

FIG. 7. Additional data for N = 11 to N = 20 MQC experiments. (a) Readout corrected MQC amplitudes I0 and IN as a function of the
number of states used in At . (b) The largest 256 counts and full counts for each N are plotted as a function of excitation number. The full counts
are normalized such that the sum over all excitation is one. (c) The histogram of excitation number is plotted using the largest 256 counts from
all experiments for each N . Interestingly, three excitation states have the highest probability for all N .

measured counts vmea by minimizing

|Avcal − vmea|2 (F1)

under the constraint
∑

j vcal, j = 1 and vcal, j � 0. Here vcal

is the calibrated counts of vmea. Equation (F1) can be recast
into a convex optimization problem and solved by quadratic
programming using packages such as CVXOPT [51]. The
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overhead for measuring A and minimizing Eq. (F1) increases
exponentially with N . We modify this calibration procedure
to have a scalable way to perform readout correction using
two key features of the MQC method. For one, we only need
to measure the probability that the sate is in |000..00〉. Two,
we expect that the MQC output for imperfections in the GHZ
state to result in low excitation states.

This is not entirely unexpected since for an ideal GHZ
state, the MQC output has only two distinct states: |000..00〉
and |100..00〉. With an imperfect GHZ state and readout errors
we expect the output counts to spread out but stay within the
low excitation manifolds. Combining these two features we
can significantly reduce the overhead for readout calibration
by truncating A to only correct for states with significant
weights. For example, we can reasonably conclude that the
final measurement will not include states such as |111..11〉.
Our metric to verify GHZ entanglement requires MQC am-
plitudes I0 and IN . In Fig. 7(a) we plot the corrected I0 and
IN as a function of the number of states used in the truncated
A matrix (call it At ); we see a rapid convergence after just
32 states. Interestingly, I0 decreases as we add more states
into the readout calibration, while IN is relatively unchanged.
While keeping such a low number of states may not be
sufficient to correct for the entire output vector, it is sufficient

to accurately correct for the |000..00〉 state. In Fig. 7(b)
we compare all counts and the largest 256 counts from all
experiments for each N . The counts are grouped according
to excitation number (number of ones) and divided by the
total number of counts. For small N , there is little difference
between all counts and the largest 256 counts, indicating most
of the weight in the output are contained in the largest 256
counts. As N increases however, the total counts begins to
spread out to higher excitation numbers, while the largest
256 counts are still localized in the low excitation numbers.
This discrepancy however does not affect the calibrated values
of the all zeros count, as demonstrated by the convergence
of MQC amplitudes. In addition, the largest 256 states all
have similar excitation distributions centered around three
excitations independent of N , as shown in Fig. 7(c). This
suggests the readout calibration based on At is scalable for
measuring MQC amplitudes in GHZ states.

The truncated A matrix cannot correct readout errors from
parity oscillation experiments, since the output counts will be
distributed across all eigenstates. An alternative to scalable
readout calibration is to approximate the full A matrix as
a tensor product of A matrices of each qubit [17,20], this
approach is valid when there is little to no readout cross-talk
between qubits.
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