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Classical analog of the quantum marginal problem
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We construct a classical cryptographic analog of multipartite entanglement which can be verified solely from
separable marginals. That is a set of marginal classical probability distributions carrying no secret correlations,
which are compatible only with a joint distribution containing secret correlations. This demonstrates that the
emergent correlation properties do not exist only in the quantum world. Viewed from a different perspective, our
result reveals another possible application of the quantum marginal problems in that they can help us to design
and solve interesting classical marginal problems.
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I. INTRODUCTION

The question of the relationship between the whole and its
parts arises in many branches of natural science. One class
of such problems appears in mathematical statistics under the
name of marginal problem. In its basic formulation one wants
to identify a set of all joint probability distributions com-
patible with a given set of reduced probability distributions
(marginals). The origin of the problem dates back the 1940s
[1] and since then many variants of the problem have been
analyzed for discrete as well as continuous random variables
both in bipartite and multipartite scenarios [2].

The classical marginal problem has a quantum counterpart
called the quantum marginal problem. Here, instead of a set
of marginal distributions one is given a set of reduced density
matrices and the goal is to find the set of global density matri-
ces compatible with them. The problem originally addressed
a question about the representability of a set of two-electron
density matrices by an N-electron wave function [3], but
with the advent of quantum information theory several other
kinds of the problem have been analyzed and solved [4]. This
includes the quantum marginal problem for finite-dimensional
quantum systems [5] as well as various forms of the problem
for bosonic Gaussian states [6,7].

The quantum marginal problem appears in numerous tasks
of quantum information theory ranging from classification
[8] and quantification [9] of quantum entanglement to ex-
tendibility of quantum states [10,11]. Another use of the
problem concerns detection of a global property of a com-
posite quantum system from its parts. In this case, we aim at
answering the question of what can be said about the global
properties of the system using only the partial information
contained in a given set of reduced density matrices. This task
is particularly interesting when the reductions do not carry
any signatures of the sought property, because then it can be
viewed as a means of detection of an “emergent property,” i.e.,
a property appearing only at a certain level of the complexity
of the investigated system, from simpler constituents which
do not carry the property. The utility of the quantum marginal
problem in this context is twofold. In the first instance [12]
we apply the solution of an already solved quantum marginal

problem to a given set of reduced density matrices to identify
all global density matrices compatible with the reductions.
In the next step, we check whether all the density matrices
carry the global property of our interest, which would be a
successful confirmation of the property from reductions. The
other application is more involved. Namely, finding examples
of systems whose global property can be inferred from its
parts lacking the property is a nontrivial marginal problem
itself and so far it has been solved only for several special
cases. A common feature of all currently known examples
is that the investigated global properties are exclusively non-
classical correlation properties in quantum systems, which
encompass quantum entanglement [13–16] and quantum non-
locality [17]. But is there also an example of the con-
sidered marginal problem for ordinary classical probability
distributions?

Intuitively, we would expect that this is indeed the case
because it is possible to practically systematically construct
classical analogs of quantum phenomena. The basis of the
construction is the fact [18,19] that an entangled quantum
state, i.e., a quantum state which cannot be prepared by local
operations and classical communication, can be mapped by
a measurement onto a classical probability distribution with
secret correlations, i.e., correlations which cannot be prepared
by local operations and public communication (LOPC). If the
original quantum state carries some special form of entan-
glement, e.g., bound entanglement, and the measurement is
chosen suitably, the obtained classical probability distribution
can carry a special form of secret correlations analogous to
bound entanglement. Starting with construction of potential
examples of such so-called bipartite bound information [20],
this method has been used to construct several other classical
analogs of quantum concepts. This includes an example of
multipartite bound information for binary [21] and Gaussian
[22] random variables, a classical analog of negative infor-
mation [23], a protocol for secrecy distribution by nonsecret
correlations [24], superactivation of bound information [25],
percolation of secret correlations [26], and reversibility of
secret correlations [27]. A natural question that arises in this
context is whether also a quantum marginal problem can be
mapped onto its classical cryptographic analog.
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In this paper we answer this question in the affirmative.
Specifically, we use the mapping of quantum states onto clas-
sical probability distributions [18] and map an already solved
quantum marginal problem [15] onto its classical counterpart.
At the same time, all separability properties of the mother
quantum problem are transferred onto secrecy properties of
the daughter classical problem. Recall that the global property
to be inferred in the quantum marginal problem [15] is gen-
uine multipartite entanglement—the strongest form of multi-
partite entanglement—which cannot be prepared by mixing
of states which are separable across different bipartitions. The
problem then asks for the existence of a triple of unentangled
(separable) two-qubit density matrices which are compatible
only with genuine multipartite entangled global states. The
particular solution of the problem given in Ref. [15] then con-
sists of three two-qubit density matrices which are compatible
with a single three-qubit genuine multipartite entangled state.
The classical analog of the quantum problem constructed by
us then consists of a triple of marginals, none of which con-
tains secret correlations, which are nevertheless compatible
with a single global probability distribution carrying secret
correlations. This demonstrates that the possibility to infer a
global property of a composite system from its parts which do
not possess the property exists also in the realm of classical
probability distributions. In a broader sense it manifests the
possibility to map a quantum marginal problem with sepa-
rability constraints on the involved density matrices onto a
classical marginal problem with constraints on the secrecy
content of the involved probability distributions.

The paper is organized as follows. In Sec. II we briefly
explain the concept of secret correlations and its connection
with quantum entanglement. Section III contains the construc-
tion of the studied classical marginal problem. Finally, Sec. IV
contains the discussion and conclusions.

II. MAPPING ENTANGLEMENT ONTO
SECRET CORRELATIONS

Construction of classical cryptographic analogs of quan-
tum phenomena is based on mapping of quantum states on
probability distributions by a quantum measurement [18].
More precisely, consider a density matrix ρAB of two two-level
quantum systems (qubits) and take its purification |ψ〉ABE ,
ρAB = TrE (|ψ〉〈ψ |ABE ), where E labels the purifying sys-
tem. By carrying out local projective measurements Pi, i =
A, B, E , on all subsystems of the purification one estab-
lishes the following probability distribution of measurement
outcomes [18]:

P(A, B, E ) = Tr(PA ⊗ PB ⊗ PE |ψ〉〈ψ |ABE ). (1)

Provided that the original state ρAB carries a quantum prop-
erty of our interest and we choose a suitable measurement,
the obtained probability distribution may inherit a classical
cryptographic analog of this property.

Typically, the quantum property is a certain form of quan-
tum entanglement and the respective classical analog is the
corresponding kind of secret correlations. For instance, mak-
ing use of the previous mapping one finds that a classical
analog of the maximally entangled state (|00〉 + |11〉)/

√
2

is the so-called secret bit [18], which is a basic unit of

secret correlations given by the probability distribution
satisfying P(A, B, E ) = P(A, B)P(E ) and P(A = B = 0) =
P(A = B = 1) = 1/2. The concept of secret correlations has
been developed in the context of classical secret-key agree-
ment protocol [28]. Here, two honest parties, Alice and Bob,
and an adversary Eve, share independent realizations of three
random variables A, B, and E , characterized by the probability
distribution P(A, B, E ). The goal of Alice and Bob is to extract
from their variables by LOPC a secret key, i.e., a common
string of random bits about which Eve has practically no
information. For this to be possible it is necessary for the
distribution P(A, B, E ) to contain secret correlations, which
is defined as a distribution that cannot be created by LOPC.
A key tool for detection of secret correlations is the intrinsic
information defined as [29]

I (A; B ↓ E ) = inf
E→Ẽ

[I (A; B|Ẽ )]. (2)

Here,

I (A; B|E ) = H (A, E ) + H (B, E ) − H (A, B, E ) − H (E )

(3)

where H (X ) is the Shannon entropy, is the conditional mutual
information and the minimization is performed over all chan-
nels E → Ẽ . Namely, it holds that a probability distribution
contains secret correlations if, and only if, I (A; B ↓ E ) > 0
[24,30]. Hence, to certify that the distribution P(A, B, E ) does
not contain secret correlations it is thus sufficient to show that
I (A; B ↓ E ) = 0. This can be done as follows [21,24,25]. We
find a suitable channel E → Ẽ which nullifies the conditional
mutual information. As a result, the intrinsic information (2)
vanishes and there are no secret correlations in the investi-
gated distribution.

Let us move to detection of the presence of secret correla-
tions. A straightforward way would be to show strict positivity
of the intrinsic information (2), but it is a hardly tractable
task owing to the optimization in its definition. Instead, we
use the fact that the intrinsic information is an upper bound
on the secret key rate S(A; B||E ) [29] which is in turn lower
bounded as [31]

S(A; B||E ) � max[I (A; B) − I (A; E ), I (A; B) − I (B; E )] (4)

with I (X ;Y ) = H (X ) + H (Y ) − H (X,Y ) being the mutual
information. Consequently, strict positivity of the right-hand
side (r.h.s.) of the latter inequality implies a strict positivity of
the intrinsic information and therefore the presence of secret
correlations in the analyzed distribution.

Most of the known cryptographic analogs of quantum
phenomena are multipartite. The same holds true also for the
concept studied here, which is tripartite, and thus one has to
generalize the previous approach to three honest parties. Here,
one starts with a three-qubit density matrix ρABC carrying the
required quantum property. Next, we construct a purification
|ψ〉ABCE of the state, ρABC = TrE (|ψ〉〈ψ |ABCE ), and perform
suitable projective measurements Pi, i = A, B,C, E , on the
purification. The obtained measurement outcomes are then
distributed according to the four-variate probability distribu-
tion of the form

P(A, B,C, E ) = Tr(PA ⊗ PB ⊗ PC ⊗ PE |ψ〉〈ψ |ABCE ). (5)
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In what follows, we will need to show the absence of secret
correlations in marginals obtained by dropping one of the
variables A, B, and C. As the resulting distributions will be
always trivariate, the previously described approach based on
vanishing of the intrinsic information (2) perfectly suffices
for our purposes. On the other hand, for verification of the
presence of secret correlations in the global distribution, we
need a multipartite generalization of the lower bound (4). As
far as the secret correlations across the A|BC bipartition are
concerned, one can use the following lower bound:

S(A; BC||E )

� max[I (A; BC) − I (A; E ), I (A; BC) − I (BC; E )]. (6)

Similarly to the bipartite case, if the r.h.s. is strictly positive,
A shares secret correlations with BC.

III. GLOBAL SECRECY VERIFIABLE FROM LOCAL
NONSECRET CORRELATIONS

The distribution we are looking for can be derived from a
tripartite state found in Ref. [15],

ρ = 2
3 |ξ 〉〈ξ | + 1

3 |111〉〈111|, (7)

where

|ξ 〉 = 1

2
|010〉 + 1

2
|100〉 + 1√

2
|001〉. (8)

As we have already mentioned, the state is genuine multi-
partite entangled, while at the same time all its three two-
qubit reduced density matrices are separable. Interestingly, the
reductions determine the global state uniquely, which implies
that one can really infer genuine multipartite entanglement of
the global state from its separable parts.

Following a generic method of construction of classical
analogs of quantum phenomena [18], we now derive a purifi-
cation of the state (7), which reads as

|ψ〉ABCE =
√

2

3
|ξ 〉|0〉 +

√
1

3
|111〉|1〉. (9)

The candidate for the sought probability distribution
P(A, B,C, E ) is then obtained by measuring the purification
(9) in the computational basis. Making use of formulas (9)
and (5), we arrive at the probability distribution with nonzero
probabilities summarized in Table I.

For the needs of our further explanation we also com-
pute marginals P(A, B, E ), P(A,C, E ), and P(B,C, E ). Since
the distributions P(A,C, E ) and P(B,C, E ) coincide, here
we write down explicitly only the distribution P(A,C, E ).

TABLE I. Probability distribution of outcomes of the measure-
ment of the purification (9) in the computational basis.

A B C E P(A, B,C, E )

0 0 1 0 1/3
0 1 0 0 1/6
1 0 0 0 1/6
1 1 1 1 1/3

TABLE II. Marginal P(A, B, E ).

A B E P(A, B, E )

0 0 0 1/3
0 1 0 1/6
1 0 0 1/6
1 1 1 1/3

Both the distributions mentioned above are given in
Tables II and III.

Now, our goal is to show that the constructed distributions
carry a classical analog of multipartite entanglement verifiable
from separable reductions. That is, we need to show that the
marginals P(A, B, E ), P(A,C, E ), and P(B,C, E ) do not carry
secret correlations, yet one can infer from them the presence
of secret correlations in all global distributions which are
compatible with them. The proof consists of three steps. First,
we determine all global distributions compatible with the
given reduced distributions. Next, we show that all the global
distributions carry secret correlations. Finally, we prove that
all the marginals indeed do not carry secret correlations,
which completes construction of the sought classical concept.

Let us start with finding of all the global distributions
which can have the distributions P(A, B, E ), P(A,C, E ), and
P(B,C, E ) as marginals. This amounts to solving a set of
twenty-four equations corresponding to twenty-four elements
of the three marginals for sixteen unknown probabilities of
the global distribution. Additionally, the unknowns are subject
to the constraint that they are probabilities. Since many of
the equations give unique solutions and some equations in
the remaining set of equations are not independent, one ends
up with a set of five independent equations for five variables
(see the Appendix for details of the calculations). By solving
the latter set of equations one finds finally that there is just
one global probability distribution given in Table I compatible
with the marginals given in Tables II and III. Thus interest-
ingly, the property that the reduced density matrices ρAB, ρBC ,
and ρAC uniquely determine the global state was transferred to
their classical counterparts.

In the next step we show that the global probability dis-
tribution found in the first step carries secret correlations
across all three bipartitions A|BC, B|AC, and C|AB. As the
distribution is symmetric under the exchange of bits A and
B, it is sufficient to prove the presence of secret correlations
with respect to only two bipartite splittings, say A|BC and
C|AB. Making use of formula (6) and Table I, one finds
for the splitting A|BC a strictly positive lower bound on the
secret key rate of approximately 0.541, whereas for the other

TABLE III. Marginal P(A,C, E ). The table of the marginal
P(B,C, E ) is obtained from previous table by replacing A with B
in the first row of the table.

A C E P(A,C, E )

0 0 0 1/6
0 1 0 1/3
1 0 0 1/6
1 1 1 1/3
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TABLE IV. New marginal P(A, B, Ẽ ).

A B Ẽ P(A, B, Ẽ )

0 0 0 1/3
0 1 0 1/6
1 0 0 1/6
1 1 0 1/12
1 1 1 1/4

splitting C|AB it is equal to 2/3. This signifies that the global
distribution in Table I indeed contains secret correlations
across all three bipartitions, as we set out to prove.

Lastly, we need to prove that, contrary to the global distri-
bution, the marginals do not contain any secret correlations.
According to results of Ref. [29] a probability distribution
does not carry secret correlation if its intrinsic information
(2) vanishes. Therefore, if, e.g., for the marginal P(A, B, E )
given in Table II we find a suitable channel E → Ẽ such that
for the new probability distribution P(A, B, Ẽ ) the conditional
mutual information I (A; B|Ẽ ) vanishes, the distribution does
not contain secret correlations.

First, assume that the marginal P(A, B, E ) is subject to a
channel E → Ẽ characterized by the conditional probability
distribution PẼ |E (0, 0) = 1, PẼ |E (1, 0) = 0, PẼ |E (0, 1) = 1/4,
and PẼ |E (1, 1) = 3/4. The obtained marginal P(A, B, Ẽ ) is
displayed in Table IV.

Now, if we calculate for the new distribution the con-
ditional mutual information using formula (3) we find that
I (A; B|Ẽ ) = 0. This implies that the intrinsic information
I (A; B ↓ E ) of the original distribution P(A, B, E ) vanishes
and therefore the distribution does not contain secret correla-
tions, as required.

Moving to the second marginal P(A,C, E ), consider
the variable E to be transformed by the channel E →
Ẽ described by the conditional probability distribution
PẼ |E (0, 0) = PẼ |E (0, 1) = 0 and PẼ |E (1, 0) = PẼ |E (1, 1) = 1.
This gives rise to a new marginal P(A,C, Ẽ ), given explicitly
in the Table V.

Making use once again of the formula (3), we get that
I (A;C|Ẽ ) = 0 and therefore there are no secret correlations
also in the marginal P(A,C, E ). Finally, from equality of the
marginals P(A,C, E ) and P(B,C, E ) it follows immediately
that neither of the latter distributions carries secret correla-
tions, which completes our construction of the sought concept.

IV. DISCUSSION AND CONCLUSIONS

We have shown that one can map a quantum marginal
problem with separability constraints on the involved density

TABLE V. New marginal P(A,C, Ẽ ). The marginal P(B,C, Ẽ ) is
obtained by replacing A with B in the first row of the table.

A C Ẽ P(A,C, Ẽ )

0 0 1 1/6
0 1 1 1/3
1 0 1 1/6
1 1 1 1/3

matrices onto a classical marginal problem with constraints
on the secrecy content of the appearing probability distribu-
tions. In this way, we obtained a triple of trivariate marginal
probability distributions carrying no secret correlations, which
are compatible only with one four-variate probability distri-
bution possessing secret correlations. This demonstrates that
the possibility to detect a global correlation property from
marginals which lack the property is not only an exclusive
attribute of quantum mechanics, but it can be found also in the
classical world. Let us note further that the global probability
distribution obtained by us carries secret correlations across
any of three splittings of honest parties into two groups and
therefore it can be viewed as a classical analog of a fully in-
separable state. However, the original state of Ref. [15], which
was used to construct the distribution, carries a stronger form
of multipartite entanglement known as genuine multipartite
entanglement which cannot be prepared even by mixing of
states which are separable across different bipartite splittings.
The question that arises in this context is whether there is also
a classical analog of the genuine multipartite entanglement
given by a probability distribution which cannot be expressed
as a convex mixture of distributions which do not contain
secret correlations across different bipartitions. If this is the
case, it would be also interesting to know whether there exists
a case when the genuine multipartite secret correlations can be
certified solely from marginals which do not have any secret
correlations.

Another interesting question concerns the existence of
other distributions with the property presented here. We be-
lieve that such distributions indeed exist. This is because
there is another state whose genuine multipartite entangle-
ment can be detected solely from separable marginals [16].
The state is more complex than the state used by us, but
anyway one can map it onto a probability distribution and
analyze its secrecy properties. However, in contrast with the
present case, the marginals of the distribution are compatible
with a one-parametric family of global distributions. Un-
fortunately, in a certain region of the parameter the global
distribution possesses a negative lower bound (6). This in-
dicates that the proof of the presence of secret correlations
in the global distribution is much more involved compared
to the present case, and therefore it is deferred for further
research.

Let us remark further on the distinction between the
quantum marginal problem [15] and the classical problem
constructed here. While in the quantum problem one works
with all two-qubit reduced density matrices, in the present
classical problem we looked for a global probability distribu-
tion compatible with fewer marginals encompassing three out
of four possible marginals. Needless to say, this is inevitable
if we consider a marginal problem with a constraint on the
secrecy content of the marginals. Namely, the remaining
fourth marginal P(A, B,C) does not contain the variable E of
an adversary. The concept of secret correlations thus cannot
be introduced for this marginal and therefore it has to be
omitted from the set of specified marginals. In this respect,
the classical marginal problem solved here resembles more
the quantum problem [32] investigating states whose genuine
multipartite entanglement can be verified from strictly less
than all reduced density matrices.
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Note, finally, that here we proved the presence of secret
correlations in a global distribution from marginals by finding
all the distributions compatible with the given marginals,
which was in our case just one, and showing that it car-
ries secret correlations. Since in quantum scenario one does
not have to certify multipartite entanglement from separable
marginals by solving the marginal problem but one can just
find a suitable witness operator instead [16], which raises the
question of what a classical analog of this operator would be
and, if something like this exists, whether one can use it in the
present classical task.

In conclusion, we have shown that the link between quan-
tum entanglement and secret classical correlations also allows
one to design and solve novel types of classical marginal prob-
lems. We hope that our finding will further boost exploration
of links between quantum and classical marginal problems
as well as transferability of other quantum concepts into the
classical world.
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APPENDIX: UNIQUENESS OF THE GLOBAL
DISTRIBUTION

In this Appendix we show that marginals P(A, B, E ),
P(A,C, E ) and P(B,C, E ), in Tables II and III are compatible

only with probability distribution P(A, B,C, E ) in Table I.
We use the marginal probabilities as known variables and
the global probabilities as unknown variables. The marginal
P(A, B, E ) can be received from the global probability distri-
bution by the equation

PABE (i, j, k) = PABCE (i, j, 0, k) + PABCE (i, j, 1, k), (A1)

where i, j, k = 0, 1. Other marginals can be obtained
analogously. Altogether this gives twenty-four equations
for sixteen variables. Moreover, every variable we are looking
for is constrained by an inequality 0 � PABCE (i, j, k, l ) � 1.
It seems that this system is overdetermined. However,
many marginal probabilities are equal to zero, so with
inequalities it gives us eleven variables equal to zero.
More precisely, one gets P(0, 0, 0, 1) = P(0, 0, 1, 1) =
P(0, 1, 0, 1) = P(0, 1, 1, 0) = P(0, 1, 1, 1) = P(1, 0, 0, 1) =
P(1, 0, 1, 0) = P(1, 0, 1, 1) = P(1, 1, 0, 0) = P(1, 1, 0, 1) =
P(1, 1, 1, 0) = 0. This reduces the number of equations
to be solved to eight, for five unknown variables. Further,
there are two pairs of identical equations and one equation
is a linear combination of the others. Thus we are left
with the set of five equations for five variables which
give directly the values of the remaining five variables:
P(0, 0, 0, 0) = 0, P(0, 0, 1, 0) = P(1, 1, 1, 1) = 1/3,
P(0, 1, 0, 0) = P(1, 0, 0, 0) = 1/6. Therefore, the global
distribution is unequivocally given.
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