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We present a bipartite two-level system coupled to electromagnetic quantum vacuum fluctuations through a
general dipolar coupling. We derive the master equation in the framework of an open quantum system, assuming
an environment composed of (i) solely vacuum fluctuations and (ii) the vacuum fluctuations and a conducting
plate located at a fixed distance from the bipartite system. For both cases considered, we study the dynamics
of the bipartite system and the temporal evolution of the concurrence of an initial entangled bipartite state.
We further analyze the generation of entanglement due to the vacuum structure. Finally, we study the different
induced contributions to the correction of the unitary geometric phase of a bipartite quantum state so as to explore
the possibility of future experimental setups by exploring the influence of boundaries conditions in vacuum.
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I. INTRODUCTION

The global phase acquired by a quantum system related
to its dynamical evolution contains a gauge-invariant compo-
nent, namely, the geometric phase (GP) which depends only
on the geometry of the path traversed by the system during
the quantum evolution [1,2]. Since their seminal works, great
progress has been achieved in this field. As an important
evolvement, the application of the geometric phase has been
proposed in many fields, such as the geometric quantum
computation. Due to its global properties, the geometric phase
is propitious to construct fault tolerant quantum gates. In this
line of work, many physical systems have been investigated
to realize geometric quantum computation, such as nuclear
magnetic resonance (NMR) [3], Josephson junctions [4], ion
traps [5], and semiconductor quantum dots [6]. The quantum
computation scheme for the GP has been proposed based on
the Abelian or non-Abelian geometric concepts, and the GP
has been shown to be robust against faults in the presence of
some kind of external noise due to the geometric nature of the
Berry phase [7,8].

Due to the fact that a real quantum system unavoidably
interacts with its environment and undergoes decoherence,
much attention has been raised by studies on the geometric
phase in open quantum systems under nonunitary dynamics
as it has been shown that the interactions play an important
role for the realization of some specific operations. Since
the gates operate slowly compared to the dynamical time
scale, they become vulnerable to open system effects and
parameter fluctuations that may lead to a loss of coherence.
Consequently, the study of the geometric phase was soon
extended to open quantum systems and many authors have
analyzed the robustness of the GP under the influence of a
wide variety of external environments, by the use of different
approaches [9-31]. The GP is a promising building block for
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noise-resilient quantum operations. Lately, the GP has been
observed in a variety of superconducting systems [32,33] and,
in [34], the geometric phase of an open system undergoing
nonunitary evolution has been measured using a NMR quan-
tum simulator. In this context, GPs have become a fruitful av-
enue of investigation to infer features of the quantum system
due to their topological properties and close connection with
gauge theories of quantum fields, ince the phase depends only
on the system path in parameter space, particularly the flux of
some gauge field enclosed by that path. Then, in [35] the GP
is said to encode information about the number of particles in
the field for pure field states. In particular, for initial squeezed
states, the phase also depends on the squeezing strength [36].
If the field is in a thermal state, the GP encodes information
about its temperature, and so it has been proposed to measure
the Unruh effect at low accelerations [37]. It has further been
proposed as a high-precision thermometer by considering the
atomic interference of two atoms interacting with a known
hot source and an unknown temperature cold cavity [38]. In
addition, in [39], authors suggest a possible way of detecting
vacuum fluctuations in experiments involving the geometric
phase. Recently, a proper scenario was found to indirectly
detect the noncontact quantum friction [40] by measuring the
GP acquired by a particle moving in front of a dielectric plate,
where they have even proposed an experimental setup which
determined the feasibility of the experiment for tracking traces
of quantum friction through the study of decoherence effects
and the correction of the unitary geometric phase on a two-
level system [41]. Therein, it has been shown that the GP can
be used to infer quantum properties of the systems with the
emergence of new technologies.

Quantum entanglement is another important concept in
quantum physics, playing a central role in many novel
quantum technologies [42,43]. The understanding of GPs
for entangled states is particularly relevant due to potential
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applications in holonomic quantum computation with spin
systems, which provide a plausible design of a solid-state
quantum computer. Quantum and classical correlations alike
always decay as a result of noisy backgrounds and decor-
relating agents that reside in ambient environments [44],
so the degradation of entanglement shared by two or more
parties is unavoidable. It has been said that two initially
entangled atoms may get completely disentangled within a
finite time, which is known as entanglement sudden death
[45,46]. Likewise, a common bath can also provide indirect
interactions among independent atoms, leading to entangle-
ment sudden birth [47]. Thus, the definition and modeling
of the environment becomes relevant. Particularly, vacuum
quantum fluctuations are a type of environment that cannot
be turned off. The natural coupling of a neutral atom to the
electromagnetic quantum fluctuations is through the dipolar
interaction. It is well known that electromagnetic quantum
fluctuations are modified by the presence of boundaries and
the resulting distortions are known as observable effects such
as the Lamb shift [48] and the Casimir effect [49]. The GP
has been studied for bipartite systems in [50], showing that the
initially maximally entangled state (MES) acquired a “robust”
GP [51].

In this context, questions naturally arise as to what extent
the presence of boundary conditions modifies the geometric
phase and the entanglement on a bipartite system. As has
been indicated above, the geometric phase is modified by
the presence of quantum vacuum fluctuations. As the elec-
tromagnetic quantum vacuum fluctuations are modified by
the presence of boundaries, we shall expect to obtain traces
of that nontrivial vacuum modification in the corrections of
the geometric phase of the bipartite system. As the GP is
known to be less corrected in a MES state [50], we shall
extend the study of the corrections to the GP to a bipartite
state coupled to vacuum fluctuations. The ultimate goal is
to study the bipartite dynamics, concurrence, and geometric
phase in the presence of the electromagnetic quantum vacuum
fluctuations and compare them with those obtained when
boundary conditions are changed (and therefore quantum
vacuum structure is modified). Furthermore, it may be useful
to know if the influence of these boundaries can be exploited
for an experimental test on the GP as so to infer quantum
properties of the systems [51]. This would help to define
future experimental setups, where the geometric phase would
be used as a tool to sense traces of observable consequences
of quantum vacuum fluctuations [41].

This paper is structured as follows. In Sec. II, we present
the model studied and derive the master quantum equation
so as to describe the dynamics composed of two two-level
systems coupled to electromagnetic quantum vacuum fluctua-
tions through a dipolar coupling. We derive the environmental
kernels for two situations: (i) free-space vacuum fluctuations
and (ii) a conducting plate located at a fixed distance of the
bipartite quantum system. In Sec. III we study the dynamics
of an initially entangled state under the presence of quantum
vacuum fluctuations, focusing on the effect when boundaries
are considered. In Sec. IV, we extend the analysis to the entan-
glement dynamics of the bipartite system, by considering how
the initial entanglement of the quantum system is influenced
by the environment. Further, we study if the presence of the

FIG. 1. A scheme of the system under consideration, where the
two-level atoms are at a fixed distance d from a perfectly conducting
plate and separated by a distance L. The electromagnetic field in
presence of a conducting plate can be thought of as that produced
by the atoms and two image dipoles.

environment can generate entanglement in an initial sepa-
rate state and the functional dependence of the concurrence
upon the distance to the conducting plate and the distance
among particles. In Sec. V we compute the GP acquired by
the bipartite system in either situation considered, (i) free
space and (ii) in presence of a conducting plate, in order to
compare both situations and see if the presence of boundary
conditions can be exploited for future measurements of the
GP. Finally, in Sec. VI, we summarize the results and present
conclusions.

II. THE SYSTEM

We shall consider a bipartite system consisting of two,
originally noninteracting, two-level systems. Both two-level
systems are coupled to the electromagnetic field in its vacuum
state (and all in turn can be in presence of a perfectly conduct-
ing plate). The model, which is schematically represented in
Fig. 1, can be mathematically described by a Hamiltonian

H = H + Hey + Hip, (1)

where the first two terms H, and H., are the Hamiltonian
of the free bipartite system and the electromagnetic field in
presence of a perfectly conducting plate, respectively, and Hiye
is the interaction Hamiltonian between the system and the
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vacuum field. The free system Hamiltonian can be written as
h h
H = 550603 ®1+ Ew(z)]l ® o3, 2)

while the dipolar interaction Hamiltonian (between each atom
and the electromagnetic field) can be expressed as Hiy =
H! + H2 , with

int int®

H = —p' B, x")
2
d3k i i i i
= —e;f (27_[)3\/27rha)k(r+0+ +riol)

X (@A (X)) — al AL (x)]es, 3)

where i implies a label on each particle, Qi =
e(r' ol +r o’) is the electric dipole moment operator
of atom i, e is the electron charge, and r!_ are the dipole
orientations; each particle is located at a spatial position X.
We are assuming r to be a classical parameter with the
operatorial character of 2 contained in of. We have also used
the lower-order multipolar Hamiltonian, with a;x the bosonic
destruction operator of momentum k and polarization A and
the mode functions A, (x) of the electromagnetic field, which
should be chosen as to satisfy the boundary conditions [52].
The free-space mode functions should satisfy the boundary
condition,

A (x') = e, 4)

while the functions considering the plate in the region y > 0
are

A(x) = V2 (ky x kp e,
i \/z i Ny . . i N
Ax(x') = T[ku cos(k x| )k, —iky sin(k X' )k, (5)

withx! = (0,d, L), x> = (0,d, 0),k; = (ki, 0, k3), and k| =
kY. We are applying the inverted hat to denote classical unit
vectors.

As we want to know the dynamics of the bipartite system
at all times, we shall derive a master quantum equation by
applying the formalism of open quantum systems [53]. The
state of the system, which is represented by the reduced
density matrix for the bipartite system, satisfies a master
equation. If we perform a power expansion, up to second order
in series of the coupling between the bipartite system and the
environment (composed by the electromagnetic field plus the
mirror), this equation is given by

1
pu(t) = —TrIV (1), () @ pe))
1 t
G /o di'Tre([V (), IV (), ps(1) ® pID

1 t
o f i Te IV (1), Tr (V) o6 ® p]) ® pe])
0

(6)
where V(t) = UJ H;, Uy is the interaction Hamiltonian in

the interaction picture and Uy = e~ i #FH0 g the operator
representing the evolution produced by the free theories. By
taking the initial state of the electromagnetic field to be the

vacuum state, both the first and the third terms in Eq. (6)
vanish, leaving a simplified equation governing the dynamics
of the bipartite system:

1 t
bs(t)=—?/ dt'Tre([V (), [V, ps) ® pdD). (7
0

The interaction V(¢) present in Eq. (7) can be found
through a simple calculation involving the Hausdorff formula,
resulting in

,- 2 [ dk
Vi(t) = —e;/m\/%ﬁzwk

x [ (0} ® ax) Au(x') e

+ri (0] ®al,) Al (x)) eftenr

+ 1 (08 ® a) A (x') e ixted)

+ri(el ® alk)A:k\k(Xi) el . (8)

With Egs. (7) and (8) as the starting point and after some
algebra, the master equation governing the dynamics of the
reduced density matrix for the bipartite system can be written,
in the secular approximation,

ps(t)

1
Z_Hﬁ s
ih[ 5> Ps]

2 t .. . . . .
-y [/ duK’ (") ([0}, {o’, pJ1 + [0}, [0, p]D)
0

ij=1
+f dnK () ([o", (o], p N+ 10", [0], ,Os]])+H.c.i|,
0

9

valid as long as the relaxation time tz and all evolution
timescales of the system 75 ~ 1/w}) satisfy the relation g >>
s [53]. K (¢') are kernels containing all the information
about the effect of the electromagnetic field on the system:

2 3 3
ijoy e 2 i d’k
K@) = 2m—Ir| m§n=1 ern/ Gy

x <ZA,\k(xi)Ajk(xj)) e~ i@Ee)t=1 (1)
A

In order to obtain these kernels we have made some
further assumptions. We are assuming that both atoms
have the same natural frequency wg and that they have the
same dipolar moment magnitude |r| allowing for the moment
the directions to be different. These directions are represented
by two unit vectors # the components of which are r . The
master equation can be written in a more suggestive form:

2
. 1 . i
pit) =~ [Hs, ps] = i ;cﬁm[am,, 051
—iY cijlolol, p]
i#j
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(11

The first term corresponds to the free evolution of the sys-
tem (unitary evolution) while the second and third terms
are the frequency renormalization and effective interaction
terms. The last two terms in this equation are responsible
for dissipation and fluctuation (noise) effects. In the previous
equation we have used that oy = o, & ioy. The information
about the environment (with or without boundaries) is thus
encoded in the kernels g;;(¢) and ¢;;(¢), which in the Marko-
vian approximation can be computed by direct integration as

a;j = Re/ dt’ K (1", (12)
0
Cij =iz Im/o dr' [KY(t") + K (1), (13)
ci =Im / dr' Kty — K" (t")]. (14)
0

Itis easy to note in Egs. (14) that the coefficient c;; represents a
frequency renormalization, while the term with ¢;; represents
an effective interaction among the components of the bipartite
(the renormalization of the coupling constant between the
two-level systems considered [54]). The coefficient a;;, i # j
is usually referred to as collective damping. It is important to
note that the kernels will have different expressions whether
we are considering the bipartite system in free space (solely
coupled to quantum vacuum fluctuations) or the presence of
a perfectly reflecting boundary in quantum vacuum. The ex-
plicit expression for the environment a;;(t) and c;;(t) kernels
can be found in Appendix A, and will remain valid as long
as the Markovian approximation does, that is, as long as
the relaxation time 7z and the vacuum field correlation time
7 (the characteristic width of the environment correlation
functions) satisfy the condition 7z > 7z, which imposes the
conditions, in natural units, Loy 2 1 and 2dwy 2 1 [55].

Finally, by assuming that K"2(t)=K?*(t) and K''(t) =
K?2(t), the master equation derived can be analytically solved
for a general initial state of the bipartite qubit system of the
form

[¥) = a|11) + B[10) 4 y|01) 4 &|00). (15)

The resulting matrix elements composing the reduced density
matrix p,(t) are explicitly given in Appendix B.

III. SYSTEM’S OPEN DYNAMICS: IN FREE SPACE AND
WITH A REFLECTING BOUNDARY

We shall start studying the dynamical properties of the
system, whether the bipartite system is in free space or at a
fixed distance of a reflecting plate, located at y = 0. In both
cases, the atoms are separated a distance L in the Z direction.
If we consider the presence of a plate, we shall also assume the
atoms to be fixed at a distance d from the perfectly conducting
plate in the y direction. As we are interested in the effect of the
vacuum fluctuations (either dressed or undressed) on an initial

state of the quantum system, we shall define an initial bipartite
state of the form

[ (0)) = /pI11) + /1 = p|00), (16)

in the {|00), |01), |10), |11)} basis. In Eq. (16), p determines
the degree of entanglement |0) and |1) being eigenstates of
the Pauli operator o, (of each two-level system). It is easy to
note that p = 1/2 accounts for a MES. As has been indicated
in [47], there is no entanglement sudden death for any generic
state with a maximum of one excitation. Analogously, entan-
glement can be smoothly generated but it cannot suddenly
appear. That is the reason we shall limit ourselves to study
this type of Bell-like state. Taking this particular initial state,
the reduced density matrix of the bipartite system assumes the
simplified form

o1 () 0 0 P14(t)
_ 0 @) px3(t) 0
P = 0 @) p3() 0
041(1) 0 0 044(t)

Full expressions of the components of the reduced density
matrix can be found in Appendix B. As decoherence is the dy-
namical suppression of quantum coherences, the off-diagonal
elements of the reduced density matrix are a good measure
of how the environment affects the dynamics of the system.
In our paper, the only off-diagonal elements of interest are
023(¢) and p41(¢), the remaining off-diagonal elements being
either zero or determined by these two. In what follows, we
will be working in natural units ¢ = % = 1 and, in these units,
we will take the dipolar coupling to be of the order of Bohr
radius |r| ~ ag and the natural frequency to be of the order of
the hydrogen ground-state energy wy ~ Ey = 10°1/m leading
to o = 1 and allowing for expansions in powers of yy/wg and
satisfying all the approximations that have been done.

In Figs. 2 and 3, we show the evolution of the absolute
value of the coherences with time. In each figure, we compare
the temporal evolution of the coherences of the reduced
density matrix when there is no plate present (solid line). In
addition, we show the behavior of these quantities if there is a
conducting boundary located at different distances (dotted and
dashed lines) from the bipartite quantum system. In the latter
case, we can further consider the orientation of the dipolar
moment of the atoms. Hence, in both figures, we plot the
temporal behavior for perpendicular orientation of both dipole
moments on top, and parallel orientation of both atoms at the
bottom. As expected, both coherences decay for sufficiently
long times in all considered cases. Even yet, the effect intro-
duced by the presence of the plate tends to vanish as the atoms
are placed at larger distances, leaving decoherence effects
solely to the zero-point fluctuations of the electromagnetic
field. However, we can note different decoherence timescales
for the cases considered. We can surely define the decoherence
timescale where interference terms vanish. As it can be seen in
Fig. 2, vacuum fluctuations induced interference destruction
around v ~ 10°. If we consider this decoherence time 7, as a
reference timescale, we can note that decoherence occurs for
shorter times when the dipole orientations are perpendicular
to the plate (7). On the other hand, if orientations are parallel
to the boundary, decoherence of the off-diagonal matrix ele-
ments takes longer, 7. Therefore, we can state that T, <7p<T.
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FIG. 2. ps, absolute value evolution. The solid line represents
the behavior when the bipartite system is solely coupled to vacuum
fluctuations. Other lines account for the bipartite coupled to vacuum
fluctuations at a fixed d distance of a conducting plate: dotted
line, d/L = 5; dashed line, d/L = 1. The bipartite initial state is a
maximal entangled state (p = 1/2). On top we consider both atoms
with perpendicular dipole moment while at bottom we represent the
temporal evolution if both atoms have dipolar moments parallel to
the plate.

In addition, we can further interpret this result in terms of the
images method when the bipartite atom system is very close
to the conducting surface. If the plane is parallel to the dipole,
the image dipole is given by pi, = —p. Therefore, the total
dipole moment vanishes, and so does the probability to emit a
photon. The image dipole cancels the effect of the real dipole
and this produces less decoherence. On the other hand, when
the conductor is perpendicular to the dipolar orientation, the
image dipole is equal to the real dipole. Therefore, the total
dipole is twice the original one. This in principle would lead
us to conclude that the total decoherence factor grows [56].
We can acquire a better picture of the behavior of de-
coherence with the atom-plate distance by comparing the
decoherence process in free space (without plate) with that

Perpendicular polarization

T T T
d/L
--- 0.5
—1
— No plate

|pail

106

Parallel polarization x direction

T T T
d/L
--- 0.5
-1
— No plate

|parl

~.,
~
-~
~,
~.,
~.
.
~.
.~
e

~——

FIG. 3. Evolution of p4; absolute value. The solid line represents
the behavior when the bipartite system is solely coupled to vacuum
fluctuations. Other lines account for the bipartite coupled to vacuum
fluctuations at a fixed d distance of a conducting plate: dotted line,
d/L = 0.5; dashed line, d/L = 1. The bipartite initial state is a
maximal entangled state (p = 1/2). On top we consider both atoms
with perpendicular dipole moment while at bottom we represent the
temporal evolution if both atoms have dipolar moments parallel to
the plate.

case in which the vacuum field state is modified by the
presence of the boundary condition imposed by the mirror.
The results of this comparison are given separately for the
elements p3; and p4;. As it is suggested from the behavior of
|p41] seen in Fig. 3, by taking the difference in this element’s
amplitude at a fixed time when the system is affected by the
free-space electromagnetic field and by the electromagnetic
field in presence of a perfectly conducting plate, we could
acquire an idea of the relation between the effect of the
environment in both cases. This difference

plate

Alpsi] = (|0}

free

| — o4 (17)

)(z:n)

is illustrated in the upper figure of Fig. 4 for both x and y
polarized atoms. As it will be a recurrent behavior throughout
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FIG. 4. Comparison between the amplitude decays of the off-
diagonal terms of the density matrix.

this paper, there is an initial regime in which the presence
of the plate reinforces the effect of the environment if the
atoms are polarized along the perpendicular y direction and
modifies this effect delaying the system behavior when they
are polarized along the parallel x direction. This can be
seen as that, for a fixed time t = m, if the amplitude of the
element has decreased more in presence of the plate than it
would have in the free-space case, then Eq. (17) should be
negative, obtaining positive values of this subtraction in the
opposite case (this fact can be seen for distances d satisfying
d < 4L approximately). The amplitude of this correction can
be seen to decay with distance while oscillating and tends
asymptotically to the free-space case for distances d > 10L
approximately. Considering the behavior shown by |p3;| in

Fig. 2, a subtraction similar to that performed for |p4;| does

not seem to be a good indicator of the modifications to the

environment effect which are introduced by the presence of
the plate. Instead, we have plotted the difference in time
position of the local maximum present in the revival

Atmax — tplale _

t free
max

max*

(18)

The lower graph in (4) consists of a plot of this difference
Atmax as a function of the distance from the particles to the
plate. We can see that in this case the modification induced by

the plate exhibits the same qualitative behavior as that found
for | p411.

IV. ENTANGLEMENT DYNAMICS

Entanglement is one of the most intriguing properties of
quantum mechanics, as it is a form of correlation that cannot
be explained in terms of any classical theory. Bipartite entan-
glement of pure states is conceptually well understood. When
dealing with mixed states, we say that the state is entangled if
it cannot be written as a mixture of separable pure states. The
dynamical behaviors of correlations present in a composite
open quantum system strongly depend on the noise produced
by the surrounding environment. It is well known that quan-
tum entanglement may be ruined due to the unavoidable
interaction between the quantum system and its environment,
which is one of the main challenges to the realization of
quantum information technologies. In realistic situations the
state of a quantum system is mixed. The so-called maximally
entangled mixed states exhibit the maximum amount of en-
tanglement for a given degree of mixedness. In this section,

we shall study the entanglement dynamics of the bipartite
system in the presence of vacuum fluctuations. We shall then
compare the entanglement dynamics to the one obtained if the
bipartite system evolves in front of a conducting plate located
at a fixed distance. In this last case considered, the dipole
moments can be considered either perpendicular or parallel
to the conducting plate. Then, it might be easy to note if there
exists a physical situation in which entanglement is robust or
it may be generated as “sudden birth phenomena” through
the interaction of a common environment. Among the many
physically motivated measures of entanglement for mixed
states, entanglement of formation is intended to quantify the
resources needed to create a given entangled state, but its
exact computation involves a minimization over all possible
pure-state decompositions which makes it inconvenient in the
general case. However, in the particular case of a bipartite
system consisting of two two-level subsystems, the quantity
known as concurrence is monotonically related to entangle-
ment of formation and, while it is not so clearly motivated,
can be taken as a measure of entanglement on its own [57].
The concurrence for the state described by p,(¢) vanishes if
ps(t) is a separable state and ranges monotonically to 1 for
maximally entangled states. It can be computed as

C(p) = max(0, VA1 — Va2 — VA — V), (19)
where A; are the eigenvalues of p = pf(c! ® 0?)ps(o!
® o?).

In Fig. 5, we show the temporal evolution of concurrence
for a bipartite initial state of the form defined in Eq. (16). On
top of the figure, we can see the concurrence for a MES for
different situations considered: evolving under the presence
of solely vacuum fluctuations (solid line), parallel dipole ori-
entation (for each particle) evolving in front of a conducting
plate (dashed line), perpendicular dipole orientation (dotted
line), and an isotropic orientation (dot-dashed line). Therein,
we can note that concurrence tends to zero following the
decoherence timescales hierarchy found before: entanglement
of an initially entangled state is faster destroyed when the
two atoms’ dipole moments are perpendicular oriented to the

032337-6



BOUNDARY-INDUCED EFFECT ENCODED IN THE CORRECTIONS ...

PHYSICAL REVIEW A 101, 032337 (2020)

Maximally entangled initial state

1 —- x-direction
— No plate
0.8 -+« y-direction
bk - . isotropic
0.6 |:
@)
0.4
0.2
0
0 1 2 3 4 5
003 —- x-direction
— No plate
-+ y-direction
- . isotropic
0.02
@)
0.01
0
0 1 2 3 4 5

108

FIG. 5. Temporal evolution of concurrence for an initial maximal
entangled state coupled to vacuum fluctuations (solid line) and
coupled to vacuum fluctuations at a fixed distance to a plate. Top:
Dipole perpendicular orientation is represented with a dotted line
while parallel dipole orientation is represented with a dashed line.
Bottom: Parallel orientation is represented with a dotted line while
parallel dipole orientation is represented with a dashed line.

plane compared to the presence of solely vacuum fluctuations
and dipole moments orientations parallel to the plane. For
some dipole orientations a revival of entanglement is seen,
although its magnitude is much smaller than the initial value.
At the bottom of Fig. 5, we present the temporal evolution
of the concurrence induced by the environment in an initially
separate bipartite state for the same situations considered
on top. Therein, we can see that the strongest environment
(dotted line) is not efficient enough to induce quantum en-
tanglement (at least in the timescale shown). However, if a
much weaker environment is considered, we can find that
there is sudden generation of entanglement. It is easy to
note that the timescale at which entanglement is created
follows the inverse of the decoherence timescales hierarchy
mentioned before. The existence of entanglement revivals and
the entanglement generation should not be thought of as a sign
of non-Markovianity, as we have discarded all contributions

Perpendicular polarization (y direction)

/L

0 0.5 1 1.5 2

10°

-
S~

..o

10°

FIG. 6. Concurrence evolution for an initial maximally entangled
state (p = 0.5), considering the atoms fixed at different distances of
the conducting plate. Top: perpendicular dipole orientation. Bottom:
parallel dipole orientation.

from environmental memory effects when performing the
Markovian approximation. These features of entanglement
dynamics are a consequence of the induced collective dy-
namics [58,59]. The radiated field produced by spontaneous
emission of an atom influences the dynamics of the other atom
through the vacuum field, but there is no information backflow
from the field to the radiating atom.

In Fig. 6, we present the temporal evolution of the concur-
rence for a MES (p = 0.5) when the bipartite system evolves
in front of a conducting plate, as a function of the distance
to the conducting plate d for two different situations: (top)
perpendicular-aligned atoms and (bottom) parallel-aligned
atoms. We can see that the hierarchy is inverted among
the different situations: for perpendicular orientations of the
dipoles, the most destructive situation is nearer the plate.

In Fig. 7, we plot the induced entanglement generation for
an initially separate state for different distances of the bipartite
to the plate. Therein, it is easy to note that entanglement birth
is more likely to occur when the dipoles are oriented parallel
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FIG. 7. Concurrence evolution (as a function of natural periods)
for an initial separable state (p = 1), considering the atoms fixed at
different distances of the conducting plate. Top: perpendicular dipole
orientation. Bottom: parallel dipole orientation.

to the conducting plate. On top of Fig. 7, we can see that
for short distances to the plate no entanglement generation
is induced when the dipoles are oriented perpendicular to
the plate, in agreement with the result obtained in Fig. 6. It
can be seen that this correction tends to delay the revival for
atoms polarized along the x direction, while it is suppressed
for atoms polarized along the perpendicular y direction. By
exploring the dependence of this correction with the distance
from the atoms to the plate, as it is shown in Fig. 6, we
found that the revival is suppressed for atoms polarized along
the perpendicular direction when they are placed close to
the plate, appearing as the distance is increased. When the
dipolar coupling is along the x direction, the presence of the
plate seems to delay the appearance of the revival and extend
its duration. Even when this behavior is not monotonic with
distance, it can be seen that it is indeed monotonic for those
distance intervals for which the correction is stronger.

In summary, we must note that the most decoherent situa-
tion for a MES state is when the bipartite system evolves in

front of a conducting plate in the presence of vacuum fluctua-
tions, with a perpendicular dipole moment orientation. In this
case, the environment destroys initial quantum entanglement
in a shorter time than if the evolution would have been done
in free quantum vacuum fluctuations. This means that in this
particular situation the presence of a conducting boundary
deteriorates quantum entanglement and does not help in the
search of experimental situations that would preserve quan-
tum entanglement. However, the opposite situation, that is to
say the bipartite system with parallel dipole orientation in
front of a conducting plate, leads to an encouraging better
situation: the decoherence time is delayed by the presence of a
boundary and thus quantum entanglement is preserved longer.
If an experimental situation definitely contains a conducting
plate, quantum entanglement is better preserved for a parallel
dipole orientation at short distances of the plate.

V. GEOMETRIC PHASE

In this section we shall study the geometric phase accumu-
lated by the bipartite system when evolving under the pres-
ence of vacuum fluctuations. We shall study the corrections
to the unitary geometric phase acquired and compare it with
that obtained when there is a conducting plate. The geometric
phase for a mixed state under nonunitary evolution has been
defined in the kinematic approach as [13,14]

Gy = arg Y /er()er(T)(Wi(0)| Wi(r))e™ o il
k

where €, (¢) are the eigenvalues and |\W/(¢)) are the eigenstates
of ps(t). For a pure initial state, the expression above is
simplified to

¢ = arg(V(0)[W (7)) — Im/g di(¥|W), (20)

with |W(z)) the eigenstate associated to the eigenvalue A(t)
that satisfies A(0) = 1. In the last definition, T denotes a time
after the total system completes a cyclic evolution when it is
isolated from the environment. Taking into account the effect
of the environment, the system no longer undergoes a cyclic
evolution. However, we shall consider a quasicyclic path for
a time interval ¢ € [0, t] with T = 7 /wy. When the system is
open, the geometric phase that would have been obtained if
the system had been closed, ¢,, is modified. This means, in a
general case, the phase is ¢, = ¢, + §¢, where §¢ is the cor-
rection to the unitary phase, induced by the presence of the en-
vironment (electromagnetic field and conducting plate) [18].
The eigenvalues of the reduced density matrix of the system
can be found to be

A= 1pi + pas £ V(i1 — paa)? + 4 pa?]
2= 12 + p33 £ V(22 — p33)? + 4lpn 21,

and it is easy to see that XL(O) = 1 while the rest of the eigen-
values vanish at = 0. The eigenstate appearing in Eq. (20) is
then

= (pas — ALY + p41100)

V) =
\/(,044 =22+ pa 2

. 21
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FIG. 8. Correction to the GP for different relations of the dis-
tance between atoms L and the distance of the atoms to the plate d,
for an initial state with p = 0.5. Top: atoms polarized perpendicular
to the plate. Bottom: atoms polarized parallel to the plate.

With this eigenstate, Eq. (20) reduces to the integral

T

| P41
o (paa —AL)? + 1 par?

We shall start by studying the geometric phase acquired under
the influence of the environment. If the correction to the GP is
negligible (8¢ <K ¢,,), the GP acquired would be very similar
to the unitary one ¢, ~ ¢,, and thus 1 — ¢,/¢, ~ 0. If the
correction becomes considerable, then this quantity would
increase. In Fig. 8, we show the GP acquired by an initial
maximally entangled state for different winding numbers
N =t/t. On top, we can find the situation where the dipoles
are perpendicular oriented while at bottom the dipoles are
oriented parallel to the plate. In both cases, we show how
the correction to the GP is modified as the bipartite system is
located at different distances from the plate d /L and compare
each case to the correction obtained when the system is only
coupled to vacuum fluctuations (solid line). If we choose a
fixed time or cycle, i.e., N = 5, we can see that the correction
to the GP is smaller for small distances to the conducting

g = —(wo +c11) (22)

plate when the dipoles are oriented parallel to the surface.
In contrast, if the dipoles are perpendicular to the surface,
the smallest correction belongs to a fixed distance far enough
from the plate (as if there were no plate at all). The correction
to the GP tends in most cases to be enlarged when compared
to the correction induced in the free (no mirror) space when
the particles are polarized in the y direction and to be dimin-
ished when they are polarized in the parallel X direction, in
accordance with the results obtained for the coherences and
the concurrence of the state. As expected, these corrections
tend to the free-space correction for big enough distances in
all cases.

In order to obtain an analytical expression of the correction
8¢ and get an insight into its functional dependence, we can
further perform an expansion of this phase for small yy/wq
(weak-coupling limit) up to second order:

1 2 p
¢y ~ =21(1 — p)| 1 + (c11 + 27 pay) —+ + —— [3aicn
wo 3(,()0
Yo ’
X +dmwpal, —4n(l — 3p)a%1]:|+0<—) . (23)
o
The first term in the above expansion is ¢, = =27 (1 — p),

the unitary geometric phase (this is the phase we would have
obtained when the system is isolated). We can see that the
first-order correction depends only on a;; and c¢;; meaning
the correction is, to this order, independent of the separation
between the atoms L, which contributes only to the following
order. However, it is not independent of the fact that there are
two particles, as it is reflected in the quadratic dependence of
the first-order correction, compared to the cubic dependence
found in works previously done [39,60]. Further analysis can
be done over the phase if we write the expressions for a; and
c11 so that the correction, to first order in y/wy, reads

8¢ ~ —am(1 — p)pﬁ[l -
wo

3

11
—3Z(r;1)2<b11(d,w0)——h (d"”(’))}, (24)

2
— 21°p

where it becomes clear that the correction has a free-space
component —472(1 — p)p and a contribution induced by the
presence of the plate. The correction to the phase obtained in
Eq. (24) has a strong dependence on the distance to the plate
at which the atoms are fixed due to the 1/y* dependence of the
frequency shift 4'!. For distances in the considered range the
correction takes its maximum value at

1 3 231:1 (";L)zhll(d, o)
p==—
2 41350 (rh) 01 (d. wo)]

(25)

for any polarization. For this last particular case (25) there is

a maximum correction to the phase given by
Qmay +cip)?
8¢max = -
46111(1)()

It is clear that the maximum correction to the phase (to first
order in yy/wp) occurs for the maximally entangled state in
the free-space case and it is modified by the presence of the
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FIG. 9. Exact GP correction compared to first-order approxima-
tion for different initial states. Top: perpendicular-oriented dipoles.
Bottom: parallel-oriented dipoles.

conducting plate. In order to get a picture of the range of valid-
ity of this approximation we have studied the variation of both
the exact phase difference and the first-order approximation
as a function of the expansion parameter yy/wg, as shown in
Fig. 9. We did so for different initial states and for both studied
polarization directions of the atoms, considering they are fixed
at a distance d = L from the plate.

For most studied p values the first-order approximation
faithfully reproduces the exact behavior for yy/w values
ranging up to 107, starting to be distinguishable for y,/wy
values of order 2 x 10™*. This range of validity seems to be
similar for both polarization directions. The specific case of
p = 0.99, which represents an initial state very close to |11),
exhibits a different behavior as the approximation remains
valid for yy/wq values up to three times bigger.

VI. CONCLUSIONS

In this paper, we have studied the complete dynamics of a
bipartite two-level state system (atoms) coupled to an electro-
magnetic field. We have derived the complete master equation

and obtained the reduced density matrix. When computing the
environmental kernels for the vacuum fluctuations, we further
contemplate the situation of having a conducting plate at a
fixed distance d of the bipartite system. In this way, we have
obtained environmental kernels composed of terms depending
solely upon vacuum fluctuations and other terms with a clear
dependence upon the distance to the plate. Once we have
obtained the reduced density matrix for a general state of
the bipartite system, we study the dynamics of a Bell-like
initial state. We have defined the decoherence timescale for
vacuum fluctuations and compared the decoherence timescale
when there is a conducting plate. As for the latter situation,
we defined two clear situations: (i) atomic dipole orientations
parallel to the boundary and (ii) atomic dipole orientations
perpendicular to the plate. We have obtained that there is
a hierarchy in the decoherence timescales for the different
situations considered. This result could be easily understood
in terms of the image method, concluding that having a dipole
orientated perpendicular to the plate can be demonstrated to
originate a more noisy environment and therefore lead to a
decoherence timescale shorter than in the case of the dipole
that is parallel oriented.

Further, we have studied the temporal evolution of concur-
rence for the initial bipartite state, starting with an entangled
initial state. We have also analyzed the creation of entangle-
ment in a separable initial state due to the interaction with the
environment. We have found that entanglement is most likely
to be created for an initially separate state if the dipoles are
oriented parallel to the surface.

Finally, we have computed the accumulated geometric
phase acquired by a bipartite system in the presence of the
external environment. We have considered an initial maxi-
mally entangled state and studied how the geometric phase
is corrected for each case considered, and compared the
results to the correction obtained if the bipartite has evolved
in free space (only vacuum fluctuations). We have further
considered how the GP is corrected if the bipartite state is
located at different distances to the plate, finding that it is
most corrected for small distances to the plate in the case the
dipoles are oriented perpendicular to the boundary. We have
also performed an analytical expansion in order to determine
the different contributions to the correction of the geomet-
ric phase. We have found two types of contribution to the
correction of the GP: (i) a contribution induced by vacuum
fluctuations and (ii) a contribution induced by the presence
of a conducting boundary. This interesting result reinforces
the idea that the geometric phase has become a fruitful venue
to explore indirectly quantum properties of a system with the
emergence of new technologies.

All in all, we have presented a model in which we can
exploit the quantum vacuum structure rendering a good sce-
nario for measurements of the geometric phase. It has been
argued that the observation of GPs should be done in times
long enough to obey the adiabatic approximation but short
enough to prevent decoherence from deleting all phase in-
formation. This means that while there are dissipative and
diffusive effects that induce a correction to the unitary GP the
system maintains its purity for several cycles, which allows
the GP to be observed. Particularly, we have shown that if
we want to take advantage of the boundary-induced structure
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modification of quantum vacuum we can explore an exper-
imental setup at short distance of a reflecting mirror with
a bipartite system composed of parallel oriented dipoles.
In such a situation, we shall find that the geometric phase
acquired is similar to the unitary one at short times.
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APPENDIX A: ENVIRONMENT KERNELS

The environment a;;(¢) and c;;(t) kernels are defined as

()1 (wp) — 3b(d, o),

aii = Yo

M-

m=1

3
y ..
i =—— h” d, ),
c - Ez (d, wo)

ap = ay =3y Zr,l,,”,zn[fm(L, wo) — b (L, d)],

[g"*(L, wo) — W'*(L, d, wot)]. (Al)

3
12
crp = ¢ =3% E |

m=1

In the above set of equations, yy = Ir l i , remembering we are
working in natural units c = 7 = 1. Thereln we can identify
different contributions of the environment.

(i) First, there are terms derived from solely vacuum fluc-
tuations, such as f%, which does not depend on any distance
and represents the effect of the environment as a generator of
spontaneous emission process.

(i1) Second, there are terms derived from solely vacuum
fluctuations, such as £/ and g/, expressed in terms of an adi-
mensional variable x = Lwy, where L is the distance among
quantum particles and represents an effective influence of
each particle on the other due to their coupling with the
electromagnetic field. This influence manifests itself both in
an effective dipole-dipole interaction and in the collective
damping factor.

(iii) Third, there are terms comprising the presence of the
reflecting plate, such as b and A", expressed in terms of
adimensional variables y = 2dwy and z = \/x2 + y?, where
d is the distance of both particles to the plate. Those terms
depending on y = 2d can be thought of as effective actions
exerted on an atom by its image dipole while those depending
on z = 1/x2 + y? can be thought of as effective actions exerted

J

11
o) = ate™,

Copll g0l
p41([) — O_*ae 2r 621()/ +w0[)’

on an atom by the image dipole of the other atom. This can be
seen from Fig. 1 where it is clear that those are the distances
between the referred particles.

The explicit form of these contributions is

fii — 1’

8ml +8m3 A()’) B(y)

Vi) = R b=
i ml + 8m3 . .. e
h'(y) = 2—[)1 — cosint(y)A(y) — sinint(y)A(y)]
3
8m2 . .. ~
— —5 [cosint(y)B(y) — sinint(y)B(y)],
y
Sm1 + B2 A(x) B(x)
FRa) = TR =
b]z( ) IA(Z) C(Z) . 31712 D(Z)
- Z3 m3 Z3 ) Z3 s
8m +8m2 A()C) B()C)
gIZ(x) = 1 ) 3 m3 3 >
]’llz( ) — (Sml A(Z) m2 D(Z) C(Z)
B T2 g s

among the definition of the functions appearing therein:
A(x) = xcos(x) + (x> — 1) sin(x),

A(x) = xsin(x) — (x* — 1) cos(x),

B(x) = xcos(x) — sin(x),

B(x) = xsin(x) + cos(x),

y? y?
Clu) = [(? — z2>ucos(u) + (x2 + 3(”2 - 1)) sin(u)},

Cu) = y? 2 . 2 y? 2
u) = 3—z usin(u) — | x —i—E(u — 1)) cos(u) |,

D(u) = {(x* — 2y*)ucos(u) + [2y* + x*(u® — 1)] sin(u)},
D) = {(x* = 2yH)usin(u) — [2y* + x> (> — 1)] cos(u)}.

One can easily verify that the corrections b and h'/
induced by the presence of the conducting plate vanish for
long enough distances of the particles to it, as they behave as
inverse powers of this distance.

APPENDIX B: REDUCED DENSITY-MATRIX ELEMENTS

Herein, we show the analytic expression of the components
of the reduced density-matrix elements, after having solved
the master equation Eq. (7) by assuming an initial quantum
state of the form ) = «|11) 4+ B[10) 4+ y|01) + o ]00):

<gii> _ |:(18 ';5)0‘ (i)erlze”"z + (B _2‘3)“ (_})er'zeiy'z}e3F"ei(y'1+wnt)’
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043 2 1

P2 i 52 1

023 — (X2F(t)+u _1 €2F12+ de(t)'i‘
032 4 —1

P33 L

<p4z) _[lo +a GOIB +3) (1>e_rlzeiyn L lote F’g)](ﬂ —9) <_l)erlze_iy12i|e_r11ei(yll+2w0t)’

1

—cos2y 2

isin2y'?
cos2y!?

1
(/3+5)2) 1 2" e,2r11+—/32+52 —isin2y 2 o
4 1 2 '
1

(B1)

The time-dependent factors appearing in these expressions are obtained after tracing out the degrees of freedom of the

environment:

t
rv I/ dt’aij(t’),
0

yU = fotdt/cu(t/), (B2)
F'(t)= /0 A Tan () — (@l "),
G()= /0 "t fan () + an@)le 2,
F(1)= /0 't fan (') — an@le 20T, (B3)

t
G(t) = f dt' [ay, (1) + ap(¢')]e 2T,
0
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