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A growing body of work has established the modeling of stochastic processes as a promising area of
application for quantum technologies; it has been shown that quantum models are able to replicate the future
statistics of a stochastic process while retaining less information about the past than any classical model must,
even for a purely classical process. Such memory-efficient models open a potential future route to study complex
systems in greater detail than ever before and suggest profound consequences for our notions of structure in their
dynamics. Yet, to date methods for constructing these quantum models are based on having a prior knowledge
of the optimal classical model. Here, we introduce a protocol for blind inference of the memory structure of
quantum models—tailored to take advantage of quantum features—direct from time-series data, in the process
highlighting the robustness of their structure to noise. This in turn provides a way to construct memory-efficient
quantum models of stochastic processes while circumventing certain drawbacks that manifest solely as a result
of classical information processing in classical inference protocols.

DOI: 10.1103/PhysRevA.101.032327

I. INTRODUCTION

Complex processes are prevalent throughout the world,
taking the form of natural processes such as the weather [1,2]
and DNA sequences [3], as well as artificial processes like
the stock market [4] and traffic [5]. We construct models of
these processes in order to better understand their structure
and predict their behavior. Within complexity science, the
field of computational mechanics [6–8] offers a systematic
approach to understanding the intrinsic computation of a
process by identifying the causal links between its past and
future, and has been used to study a diverse set of dynamics
such as deterministic chaos in the logistic map [6,8], cellular
automata [9], the dripping faucet experiment [10], stock mar-
kets [11], and neural spike trains [12]. A key component of
the approach are so-called ε-machines, which as a valuable
byproduct represent the most parsimonious causal model of a
process.

In recent decades, the prospect of using quantum ef-
fects in information processing has emerged, promising ad-
vantages for a range of applications in terms of algorith-
mic speedups [13], secure communication [14], and beyond.
Stochastic modeling is no exception to this, and a grow-
ing body of work has established that when information
is encoded into a quantum memory, causal models of a
stochastic process can be designed that function while re-
taining less information about the past than is classically
possible [15–22]. This quantum memory advantage can grow
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unbounded [19,21,23–26] and has been verified experimen-
tally [27–29]. Like its classical counterpart, the amount of
information stored within these quantum models has been
suggested as a measure of structural complexity in stochastic
dynamics [30–33].

Currently, systematic approaches to constructing such
quantum models are predicated on having a prior exact
statistical description of the process, or knowledge of its
ε-machine. As a result, to apply these tools to real-world
systems we must first use classical inference protocols to
construct an ε-machine [6,34,35] and then use this as a basis
to construct a corresponding quantum model. It is desirable
to instead have a model inference protocol to directly go
from data to the quantum model, avoiding any extra computa-
tional overhead associated with also determining the classical
model. In this vein, here we introduce such a protocol for
directly inferring the memory structure of a quantum model
of a stochastic process—which we show is robust to statis-
tical noise. The protocol is tailored specifically for quantum
models, taking advantage of certain of their features that
allow some approximations that must be made in classical
information processing to be avoided. Figure 1 provides a
schematic of our motivation.

The layout of this article is as follows. In Sec. II we
outline the general framework of stochastic processes and
computational mechanics as is relevant here, as well as the
more efficient quantum models. Section III provides the
core of our results, introducing the inference protocol, show-
ing its robustness to statistical fluctuations and justifying
its accuracy. The efficacy of our inference protocol is then
demonstrated in practice with two toy processes in Sec. IV.
Finally, we conclude in Sec. V and discuss some future
directions.
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FIG. 1. Schematic context of our work. Quantum information
processing has been shown to provide a more memory-efficient route
to stochastic modeling than classically possible. However, current
approaches to constructing quantum models first require classical
models to be inferred; here we introduce a blind inference protocol
for going straight from raw data to quantum structure. The quantities
Cμ, Cq, and C̃q represent the information stored by the minimal clas-
sical, quantum, and inferred quantum causal models, respectively.

II. FRAMEWORK

A. Stochastic processes

We consider discrete-time stochastic processes repre-
sented by a bi-infinite probabilistic string of outcomes

←→
X ≡

X−∞:∞ = . . . X−2X−1X0X1X2 . . ., where Xt are random vari-
ables that take on values xt drawn from an alphabet A, and
the subscript t represents the time step. Consecutive strings
X0:t := X0X1 . . . Xt−1 are called words, with the left index
inclusive and the right exclusive. We consider stationary pro-
cesses, such that P(X0:L ) = P(Xt :t+L ) ∀ t, L ∈ Z. We partition
the process into (semi-infinite) pasts and futures, denoted as←−x ≡ x−∞:0 and −→x ≡ x0:∞, respectively, where t = 0 is taken
to be the present.

The Markov order is an important property of a process
that defines an effective history length; a process is said to
have Markov order R if R is the smallest value such that
P(X0|←−X ) = P(X0|X−R:0 ) is satisfied [36]. That is, it is the
smallest block length of the most recent past that provides a
sufficient statistic of the future. When R = 1 the process is
said to be Markovian.

B. Models

a. Computational mechanics. Computational mechanics
[6–8] provides a formal statistical framework for identifying
and analyzing structure in complex processes. We outline key
elements of computational mechanics here, providing further
detail in Appendix A. Its modus operandi involves the mini-
mal causal representation1 of stochastic processes, which may
be determined by a systematic clustering of pasts. Specifically,
the causal states of a process are a set of equivalence classes
on the pasts, defined according to the relation

←−x ∼ε
←−x ′ ⇔ P(

−→
X |←−X = ←−x ) = P(

−→
X |←−X = ←−x ′); (1)

1Here, by causal we mean that the representation stores no informa-
tion about the future of the process that could not be deduced from
past observations.

that is, two pasts belong to the same causal state if and only
if (iff) they give rise to statistically identical futures. We label
the causal states as s j ∈ S .

Because of the deterministic assignment of pasts to causal
states, it can be seen that transitions between causal states are
also deterministic conditional on the output symbol; that is,
given a past ←−x ∈ s j , upon emission of the next symbol x
the new past ←−x x must belong to causal state sλ(x, j), where
λ(x, j) is a deterministic update function. This deterministic
transition structure is sometimes referred to as unifilarity
and allows us to represent the process as a deterministic
edge-emitting hidden Markov model (HMM), known as the
ε-machine, where the causal states form the hidden states of
the model and the edge emissions the observed symbols [6,7].

The amount of information stored by the ε-machine can be
quantified by the Shannon entropy of the stationary distribu-
tion on causal states:

Cμ := H[P(s j )] = −
∑
s j∈S

P(s j ) log2[P(s j )], (2)

where P(s j ) = ∑
←−x ∈s j

P(←−x ). Across all (classical) causal
representations of a process, the ε-machine minimizes the
information cost of its corresponding memory states, and it is
in this sense we refer to it as being minimal (or optimal). Be-
cause of this distinguished feature, Cμ is called the statistical
complexity and is considered as a quantifier of structure in the
process [8], in some sense representing how much information
about the past is needed to produce the future. This quantity
is lower bounded by the mutual information between the past
and future I (

←−
X ;

−→
X ) [7]; in general this bound is not strict, and

the difference is referred to as the modeling overhead [37].
When dealing with raw data, one must estimate the prob-

abilities through inference, which will be subject to unavoid-
able statistical fluctuations due to the finite amount of data.
As such, when applying the equivalence relation Eq. (1),
a threshold δ tolerance must be permitted, where pasts are
assigned to the same causal state if their conditional future
distributions are “close enough” [6].2 Adjusting the strictness
of this tolerance induces different levels of coarse graining:
If too narrow then the fluctuations will lead to additional
spurious causal states that would have been merged with
knowledge of the exact distributions; if too loose then pasts
with different conditional futures can be merged. Depending
on this degree of coarse graining, the obtained value of Cμ

will vary; the statistical complexity is sensitive to statistical
fluctuations and is generally not robust to noise.

b. Quantum computational mechanics. When considering
quantum methods of information processing, the minimality
of ε-machines no longer holds; it has been shown that causal
quantum models can be found with lower information costs
[15] using nonorthogonal memory states to reduce the mod-
eling overhead. The current state-of-the-art quantum models

2It should be noted that there is not a fixed definition of how
this tolerance should be implemented, but typically it would be
appropriate to use some form of statistical distance between the
conditional distributions, with some maximal allowed distance for
merging parameterized by δ.
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FIG. 2. Unitary quantum models of stochastic processes. Re-
peated unitary interactions between a quantum memory and probe
ancilla produces a string of stochastic outputs when the probe is
measured. The specific form of the interaction depends on the
particular process being modeled; the output statistics will then be
as specified by this process.

[22] are based on unitary interactions between the memory
subsystem and a probe ancilla:

U |σ j〉|0〉 =
∑
x∈A

√
P(x|s j )e

iϕx j |σλ(x, j)〉|x〉, (3)

where the first subspace contains the memory, the second the
probe (measured after the interaction to produce the symbol
for that time step), {|σ j〉} are the quantum memory states (in
one-to-one correspondence with the causal states {s j}), and
the phase factors {ϕx j} are tunable parameters. Successive
applications of U on the quantum memory state and probe
at each time step will yield a string of outputs from the
probe measurement that are statistically distributed according
to the modelled process,3 as depicted in Fig. 2.

The corresponding memory cost is called the quantum
statistical memory, given by the von Neumann entropy of the
quantum memory states:

Cq := S[ρ] = −tr(ρ log2[ρ]), (4)

where ρ = ∑
s j∈S P(s j )|σ j〉〈σ j |. The title of quantum statis-

tical complexity is reserved for the minimum of this quantity
over all causal quantum models; there is as yet no system-
atic approach to finding this minimal model, however, and
optimizing over the phase factors is a cumbersome task. For
this reason, we shall here use the best quantum models for
which a systematic construction method is known: phaseless
unitary quantum models [20], given by Eq. (3) with all phase
factors set to zero. Despite not generally being minimal, the
corresponding quantum statistical memory of these models
has still been suggested as quantifier of structure [15,30–33],
often emphasizing different features to the classical statistical
complexity.

3After each time step, the probe ancilla is either reset or a fresh
ancilla is introduced.

III. INFERENCE PROTOCOL

We here introduce an inference protocol for the quantum
statistical memory C̃q

4 of the phaseless unitary quantum mod-
els that can be used to investigate structure in time-series
data. The protocol is tailored specifically to take advantage
of features of the specific model and bypassing the need to
construct the ε-machine as an intermediate step. It is agnostic
to the causal architecture of the process and requires only an
estimate of the Markov order.

The inference protocol is based on a set of postulated
quantum memory states given by clustering pasts in which
the last L symbols are identical; we thus have a memory
state |ςx−L:0〉 for each of the possible L-length words x−L:0.
The choice of L should correspond to the estimated Markov
order of the process (or at least the effective Markov order,
see below). From the data we then estimate the conditional
probabilities P̃(X0|X−L:0 ) and implicitly define the quantum
memory states to satisfy the interaction

U |ςx−L:0〉|0〉 =
∑
x0∈A

√
P̃(x0|x−L:0 )|ςx−L+1:1〉|x0〉. (5)

A set of quantum memory states and corresponding inter-
action can be found through a recursive expression for the
overlaps of the states and employing a reverse Gram-Schmidt
procedure [20]. The estimated quantum statistical memory is
then given by the von Neumann entropy of the corresponding
stationary state of the memory:

C̃q := S[ρ (L)] = −tr(ρ (L) log2[ρ (L)]), (6)

where ρ (L) = ∑
x−L:0

P̃(x−L:0 )|ςx−L:0〉〈ςx−L:0 |.
To show that this protocol provides a faithful estimate of

the quantum statistical memory, we first prove two properties
of the above construction:

A: Self-merging of quantum memory states
We show that when L is at least as large as the Markov

order the overlap of quantum memory states assigned to
different pasts in the same causal state is unity when exact
probabilities are used.

B: Robustness of quantum statistical memory.
We show that the quantum statistical memory of the phase-

less unitary quantum model is insensitive to small perturba-
tions in the probabilities.

With these properties we can then discuss the accuracy of
the inference protocol.

C: Inference protocol.
We indicate how the accuracy of our estimate of quantum

statistical memory scales with the amount of data and how it
converges for sufficiently large data streams.

A. Self-merging of quantum memory states

We first show that the blind construction Eq. (5) will auto-
matically adopt the causal architecture of the process (i.e., that
pasts belonging to the same causal state are assigned to the
same memory state) without explicit need to apply the causal
equivalence relation [21], provided that exact probabilities are

4We use tildes to represent estimated quantities.
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used and the chosen L is at least as large as the Markov
order of the process. That is, the quantum memory states
we construct will correspond to the same states as would
be obtained from the phaseless form of the model Eq. (3)
but without prior knowledge of how the pasts are clustered
into causal states. In turn, this means the blind construction
will faithfully replicate the process, with the same quantum
statistical memory.

To see this, let R denote the Markov order of the process
and recall that this means P(

−→
X |X−R:0 ) = P(

−→
X |←−X ). Since the

Markov order can alternatively be expressed as the longest
history length needed to determine the causal state (i.e.,
R = min{r : H (S0|x−r:0 ) = 0}), all pasts where the latest R
symbols are identical belong to the same causal state [16].
We can see that if L � R, the construction already correctly
merges all pasts where the latest L symbols are identical.

By analogy with the corresponding methods for phaseless
unitary models [20], we can express〈
ςx−L:0

∣∣ςx′
−L:0

〉 = 〈
ςx−L:0

∣∣U †U
∣∣ςx′

−L:0

〉
=

∑
x0∈A

√
P(x0|x−L:0 )P(x0|x′

−L:0 )
〈
ςx−L+1:1

∣∣ςx′
−L+1:1

〉
.

(7)

Iteratively applying this relation, we obtain that〈
ςx−L:0

∣∣ςx′
−L:0

〉 =
∑
−→x

√
P(−→x |x−L:0 )P(−→x |x′

−L:0 ), (8)

and if L � R, we then have〈
ςx−L:0

∣∣ςx′
−L:0

〉 =
∑
−→x

√
P(−→x |←−x )P(−→x |←−x ′), (9)

where the full pasts ←−x and ←−x ′ can be taken as any pasts with
the correct corresponding last L symbols. We are thus able to
conclude that〈

ςx−L:0

∣∣ςx′
−L:0

〉 = 1 ⇔ P(
−→
X |←−x ) = P(

−→
X |←−x ′), (10)

which can be seen as an instantiation of the causal equivalence
relation, i.e., two pasts are mapped to the same memory state
iff they have the same conditional future statistics.

B. Robustness of quantum statistical memory

We next show that the quantum statistical memory of our
construction is robust to small perturbations of the probabili-
ties. Consider mapping

P(
←→
X ) → Pε (

←→
X ) = P(

←→
X ) + ε
P(

←→
X ), (11)

where 
P governs the relative changes in the distribution for
each string and ε the strength of the perturbation. We here
outline a proof that the perturbation to Cq scales smoothly with
ε; full details may be found in Appendix B.

The Gram matrix G of a quantum state ρ = ∑
j Pj |σ j〉〈σ j |

is defined as Gjk = √
PjPk〈σ j |σk〉 and can be shown to have

the same spectrum as ρ [17,38,39]. As such, it is possible to
define the Gram matrix of our construction as

Gx−L:0x′
−L:0

=
√

P(x−L:0 )P(x′
−L:0 )

〈
ςx−L:0

∣∣ςx′
−L:0

〉
, (12)

and correspondingly, from its spectrum calculate Cq.

Consider that we have L � R such that it is possible to
express the overlaps of the quantum memory states as〈

ςx−L:0

∣∣ςx′
−L:0

〉 =
∑
x0:L

√
P(x0:L|x−L:0 )P(x0:L|x′

−L:0 ). (13)

Note that we only need consider L steps into the future,
as this uniquely determines the subsequent memory state,
independent of the past. Now replace each of the probability
distributions in this expression by their corresponding per-
turbed forms, which may be obtained from the marginals
of Eq. (11). We can then calculate the perturbed form of
the corresponding Gram matrix using this expression for the
overlaps and show that its spectrum varies smoothly with ε.
Since the von Neumann entropy is a continuous function of
the spectrum of a state [40], we thus find that it, too, smoothly
deforms with ε.

Hence, we can conclude that the quantum statistical mem-
ory is robust to small perturbations in the probability dis-
tributions. Due to the self-merging of our quantum memory
states, we can also see that the quantum statistical memory
of phaseless unitary quantum models is similarly robust in
general. This is in contrast to the classical statistical complex-
ity, which can vary discontinuously with the probabilities—
notably, whenever the perturbation triggers a new merging of
pasts into a causal state, or conversely, the splitting of a causal
state.

C. Inference protocol

With these two results in hand, we are now in a position
to argue the accuracy of our inference protocol. By parsing
the data and adopting a frequentist approach to estimate the
marginal distribution of words of length L + 1 (for some
chosen L), we are able to estimate the conditional probabilities
needed for Eq. (5). Moreover, we can use these marginals to
construct estimates for the probabilities needed to evaluate
Eq. (12) [the conditional probabilities P̃(X0:L|X−L:0 ) can be
obtained from multiplying P̃(X0|X−L:0 ) with the assumption
that L is at least as large as the Markov order] and in turn,
estimate Cq. From the results of the previous two sections,
we can be assured that this should be a faithful estimate,
provided that the estimated marginals are close to the exact
distributions, and L � R.

Let us first consider the error in our estimates of the
marginals. With any inference from finite data there will of
course be statistical fluctuations; this is not problematic for
our inference protocol provided that these fluctuations are
sufficiently small. These fluctuations can be treated in the
same manner as the perturbations of the previous section
but with the perturbation terms 
P now being stochastic
variables. In Appendix C we show that the size of the error in
the inferred Gram matrix and the estimated quantum statistical
memory C̃q approximately scale as O(|A|L/

√
N ), where |A|

is the size of the alphabet and N the size of the data stream.
The next question is how we determine the choice of

L. From the above, we see that taking too large an L will
lead to untenably large fluctuations. We must therefore cap
it at some value Lmax where |A|Lmax/

√
N � 1; as a rough

guideline we suggest Lmax � log|A|(N/1000). On the other
hand, we require L to be large enough that it matches or
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exceeds the Markov order of the process in order to effect the
(approximate) self-merging of quantum memory states.

When a process has a large, or even infinite Markov order,
it may not be possible to have an L that satisfies both of these
requirements. Nevertheless, while the Markov order tells us
how far back into the past memory effects can persist, it does
not inform us how strong they are. It is often the case that these
long-range historical dependencies only have minor influence
on the future and that the recent past is much more relevant. In
such instances, the influence of the distant past can be thought
of as a small perturbation to the statistics with respect to the
recent past alone, and so from the previous section we can
expect that they have minimal impact on the requisite quantum
statistical memory. We therefore introduce the concept of an
effective Markov order Reff that encapsulates the idea that a
sufficiently long string of past observations that is less than
the Markov order may nevertheless still be “good enough” to
capture most of the predictive information contained in the
past.

We define the effective Markov order as the smallest length
of a string of past observations for which the influence of
considering an additional symbol one step further into the past
does not exceed some threshold. Specifically, we define Reff as
the smallest integer r that satisfies

max
xx′

〈D(P(X0|xX−r:0 ), P(X0|x′X−r:0 )〉 < δ, (14)

where δ is the parameter defining the threshold,5 the ex-
pectation value is taken over the distribution of strings of
length r, and D is some distance measure between probability
distributions; for the purposes of this work we will use the
trace distance D(P, Q) := ∑

x |P(x) − Q(x)|/2. We can esti-
mate the effective Markov order from this data and use this as
a guide for choosing a value for L in the inference protocol.

IV. EXAMPLES

We now demonstrate the efficacy of our model with two
toy example processes: The so-called R-k golden mean and
nemo processes. We use an exact HMM representation of the
processes to generate a representative string of outputs and
infer C̃q directly from this time series. We choose the initial
state according to the stationary distribution of the HMM such
that the output statistics are representative of the stationary
state of the process. We will look at how the estimate for
the quantum statistical memory varies both with the amount
of data N and the history length L, highlighting the range
of L values that would be considered appropriate given the
above considerations regarding the (effective) Markov order
and expected size of fluctuations.

A. Golden mean process

We first look at the R-k golden mean process family.
Here, R and k are tunable parameters that correspond to

5Strictly, we have a family of effective Markov orders for the
process, parameterized by δ.
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FIG. 3. Golden mean process. (a) ε-machine for the 3-2 golden
mean process; the notation x|P denotes that the indicated transition
between states involves output of symbol x and occurs with proba-
bility P. (b) Average trace distance for variation L + 1 steps in the
past; hollow circles denote the points where L = log2(N/1000), and
the dashed line δ = 0.01. (c) Comparison of exact and estimated
quantum statistical memory for different lengths of data stream; the
variation with L is shown for the estimated quantities, and the vertical
line indicates the effective Markov order for δ = 0.01. For plots
(b) and (c) we take p = 0.9.

the Markov order and cryptic order6 of the process, respec-
tively [16,37,41,42]. Here, we will consider the 3-2 golden
mean process specifically, as represented by its ε-machine in
Fig. 3(a).

In Fig. 3(b) we plot the expectation of the trace distance
between differing symbols increasingly far into the past [i.e.,
between P̃(X0|0X−R:0 ) and P̃(X0|1X−R:0), from which we can
infer an effective Markov order for the process as defined in
Eq. (14)]. The limits of finite data are already visible in this
plot, with the instability clear when L is too large relative

6The cryptic order is a counterpart to the Markov order, describing
the minimum length of past observations required to be certain of the
present causal state, given that one knows the entire future, i.e., the
smallest k satisfying H [S|X−k:∞] = 0.

032327-5



MATTHEW HO, MILE GU, AND THOMAS J. ELLIOTT PHYSICAL REVIEW A 101, 032327 (2020)

to N , due to undersampling of the process statistics. The
hollow circle on each plot represents the point at which L =
log2(N/1, 000)—beyond this point we consider the statistics
to be undersampled. Setting a threshold δ = 0.01, we would
assign an effective Markov order of Reff = 3, which aligns
with the true Markov order of the process. Figure 3(c) displays
the estimated C̃q; we see that at the Markov order the estimate
is very close to the exact value Cq, with statistical noise grad-
ually degrading the quality of the estimate at larger L when
we have insufficient data. This highlights both the efficacy
of protocol and importance of selecting an appropriate value
for L. The corresponding statistical complexity of the process
Cμ ≈ 1.435 is omitted as it is much larger than both Cq

and C̃q.

B. Nemo process

As a second example, we consider the nemo process, which
can be represented by its ε-machine as in Fig. 4(a). A key
feature of this process is that it has infinite Markov order:
A contiguous string of zeros of any length cannot be exactly
synchronized to a causal state. As such, with this example it
is not possible to choose an L that matches the Markov order
of the process. Nevertheless, we will show that the effective
Markov order can provide a suitable proxy.

Figure 4(b) shows the expected trace distance for variation
in the symbol L + 1 steps into the past; setting a tolerance δ =
0.01, we assign an effective Markov order Reff = 6. Examin-
ing the estimated quantum statistical memory C̃q [Fig. 4(c)],
we see that setting L = 6 does indeed appear to provide an
accurate estimate of Cq, striking a balance between allowing
sufficiently long histories to capture most of the past depen-
dency while not going as far as to underfit. Note that in this
case we should consider N = 10 000 to be insufficient data
to provide a good estimate, as the prescribed Lmax is signif-
icantly smaller than the effective Markov order—practically,
this could be deduced from the trace distance, which never
drops below the threshold value. The corresponding statistical
complexity of the process Cμ ≈ 1.583 is again omitted from
the figure.

V. DISCUSSION

We have introduced a protocol for estimating the informa-
tion cost of quantum simulation of stochastic processes. We
have shown that both this quantity and our protocol are robust
to small statistical perturbations. This provides a means to
characterize structure in a process according to the amount of
(quantum) resources needed to capture its behavior, analogous
to corresponding classical quantities [6,34,35]. Moreover, this
provides a key step towards blind construction of quantum
models that efficiently replicate the behavior of such pro-
cesses.

An essential consideration to be made in this latter vein
is the capabilities of current and near-term quantum tech-
nologies. Our inference protocol accurately captures the in-
formation that must be stored by a quantum model of a
process—appropriately indicating the amount of structure in
the process—at the expense of indicating a multitude of
memory states, typically ∼|A|L, in excess of the number
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FIG. 4. Nemo process. (a) ε-machine for the nemo process.
(b) Average trace distance for variation L + 1 steps in the past;
hollow circles denote the points where L = log2(N/1000), and the
dashed line δ = 0.01. (c) Comparison of exact and estimated quan-
tum statistical memory for different lengths of data stream; the
variation with L is shown for the estimated quantities, and the vertical
line indicates the effective Markov order for δ = 0.01. For plots
(b) and (c) we take p = 0.1 and q = 0.9.

of causal states. The number of memory states is param-
eterized by a companion metric, the topological memory
Dq = log2[dim(ρ)]; quantum advantages can also be found
in terms of this measure [22,25,26,29,43]. Future work will
investigate methods of compression in this parameter via
truncation in terms of the quantum state space, opening up
the possibility to implement the inferred constructions exper-
imentally. The accuracy of these inferred models can then
be explored using recently developed quantifiers of process
distinguishability [44].
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APPENDIX A: COMPUTATIONAL MECHANICS PRIMER

Computational mechanics [6–8] is a branch of complexity
theory originating from studies of structure and intrinsic com-
putation in dynamical systems and stochastic processes. The
core of computational mechanics is in isolating information
contained in the past of the process that is relevant to its future.
This is achieved through the causal equivalence relation:

←−x ∼ε
←−x ′ ⇔ P(

−→
X |←−X = ←−x ) = P(

−→
X |←−X = ←−x ′). (A1)

This relation groups together two pasts ←−x and ←−x ′ iff their
future outputs are statistically indistinguishable. The result-
ing equivalence classes are called causal states s j ∈ S; this
grouping is illustrated in Fig. 5. Put simply, if two pasts
give rise to identical future statistics, retaining any further
information that would distinguish between them yields no
predictive power. It transpires that this is the optimal grouping
of pasts: Causal states are the minimal sufficient statistic of the
past with respect to the future [7].

When considering bi-infinite, discrete-time stationary
stochastic processes (as done in this work), the causal states
can be represented as the latent states of an edge-emitting
hidden Markov model (HMM), where the emissions on edges
correspond to the output symbols of the process, and the
probabilistic transition structure is defined by the process.
Specifically, if a past ←−x ∈ s j has a probability P(x| j) of
emitting x, and ←−x x ∈ sk , then an edge s j → sk exists with
emission x and with transition probability P(x| j). Note that
when appending a particular symbol x to any of the pasts {←−x }
in a given causal state s j their concatenated pasts {←−x x} will
all belong to the same causal state sk . That is, given the initial
causal state and output symbol, the subsequent causal state
is uniquely determined. This follows directly from the causal
equivalence relation and within computational mechanics is
referred to as unifilarity.

The corresponding HMM is referred to as the ε-machine
of the process and is the (classically) provably minimal—in
terms of number of states and their information content—
representation of the process. Due to its privileged position,
this information content—which can be seen as the amount
of information that must be tracked about the past in order to

FIG. 6. General form of a two-symbol Markov chain. Aside from
special parameter sets the states of the chain represent the causal
states of the process. The notation x|p on an edge indicates the
transition occurs with probability p, accompanied by an emission x.

produce a statistically accurate future set of outputs—is taken
in computational mechanics as a measure of structure called
the statistical complexity Cμ:

Cμ := H[P(s j )] = −
∑
s j∈S

P(s j ) log2[P(s j )], (A2)

where P(s j ) = ∑
←−x ∈s j

P(←−x ) is the probability that an ob-
served past belongs to s j . This quantity can also more ab-
stractly be thought of as the information communicated from
the past of the process to the future.

There exist a number of methods for reconstructing ε-
machines from data [6,34,35]; we do not detail these here.
Further background and details on computational mechanics
can be found within, e.g., Refs. [6–8,45].

As an example of how computational mechanics can be
deployed, consider a two-symbol Markov chain (sometimes
referred to as the perturbed coin [15]), as illustrated in Fig. 6.
Given that the process is Markovian, we can immediately
conclude that every past for which the most recent symbol
is the same can be grouped into the same causal state; in other
words, the causal states are either the states of the Markov
chain or a coarse graining thereof. Indeed, we can see that
with the exception of certain special cases, the two states in
the chain provide different future statistics and so form the
two causal states of the process.

The aforementioned special cases are when either of the
following occur:

(i) q0 = 0 or q1 = 0, wherein the process consists of either
an infinite string of 1s, or an infinite string of 0s, respectively;

(ii) q0 = q1 = 1, wherein the process will be an infinite
string of alternating 0s and 1s (i.e., . . . 010101010101 . . .);

(iii) q0 = 1 − q1 (and q1 = 1 − q0), wherein the outputs
are stochastic but both states produce identical future statis-
tics.

In all these cases, there is only a single causal state, and
trivially Cμ = 0.

For all other parameter sets, the steady-state distribution
of the causal states can be found from the (normalized)
eigenvector of the transition matrix T of the ε-machine with
unit eigenvalue. Specifically, we have

T =
(

1 − q0 q1

q0 1 − q1

)
, (A3)

for which the corresponding eigenvector is (q1, q0)T /

(q0 + q1). The Shannon entropy of the elements of this vector
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then yield the statistical complexity

Cμ = log2(q0 + q1) − q0

q0 + q1
log2(q0) − q1

q0 + q1
log2(q1).

(A4)

Notably, whenever q0 = q1 �= {0, 0.5, 1} we have that
Cμ = 1.

APPENDIX B: DETAILED PROOF OF ROBUSTNESS
OF QUANTUM STATISTICAL MEMORY

Recall from the main text that the Gram matrix G of
a quantum state ρ = ∑

j Pj |σ j〉〈σ j | is defined as Gjk =√
PjPk〈σ j |σk〉 [17,38,39]. If one considers a purification of the

original state |�〉 = ∑
j

√
Pj |σ j〉| j〉, then ρ can be recovered

by taking a partial trace over the second subsystem and G
by tracing out the first. The Gram matrix thus has the same
spectrum as the original state and so can be used to calculate
functions of this spectrum, such as the entropy. As stated in
Eq. (12), for our construction the Gram matrix is given by

Gx−L:0x′
−L:0

=
√

P(x−L:0 )P(x′
−L:0 )

〈
ςx−L:0

∣∣ςx′
−L:0

〉
. (B1)

Using Eq. (13), this can be expanded as

Gx−L:0x′
−L:0

=
√

P(x−L:0 )P(x′
−L:0 )

×
∑
x0:L

√
P(x0:L|x−L:0 )P(x0:L|x′

−L:0 )

=
∑
x0:L

√
P(x−L:0x0:L )P(x′

−L:0x0:L ). (B2)

We now examine how this changes when the probabilities
P are replaced by their perturbed versions Pε := P + ε
P.
Consider expanding out the square root of the product of two
such perturbations:√

PεQε =
√

(P + ε
P)(Q + ε
Q)

=
√

PQ

√
1 + ε

(

P

P
+ 
Q

Q

)
+ ε2


P
Q

PQ

≈
√

PQ + ε

√
PQ

2

(

P

P
+ 
Q

Q

)
+ O(ε2). (B3)

Substituting this into Eq. (B2), we obtain

Gε
x−L:0x′

−L:0
=

∑
x0:L

√
Pε (x−L:0x0:L )Pε (x′

−L:0x0:L )

≈
∑
x0:L

√
P(x−L:0x0:L )P(x′

−L:0x0:L )

+ ε
∑
x0:L

√
P(x−L:0x0:L )P(x′

−L:0x0:L )

2

×
(


P(x−L:0x0:L )

P(x−L:0x0:L )
+ 
P(x′

−L:0x0:L )

P(x′
−L:0x0:L )

)
+ O(ε2).

(B4)

Thus, we can write

Gε
x−L:0x′

−L:0
≈ Gx−L:0x′

−L:0
+ ε
Gx−L:0x′

−L:0
+ O(ε2), (B5)

where


Gx−L:0x′
−L:0

=
∑
x0:L

√
P(x−L:0x0:L )P(x′

−L:0x0:L )

2

×
(


P(x−L:0x0:L )

P(x−L:0x0:L )
+ 
P(x′

−L:0x0:L )

P(x′
−L:0x0:L )

)
. (B6)

From Weyl’s inequality, it then follows that the pertur-
bation to the eigenvalues of G are bounded by the spectral
norm of ε
G [39]. Clearly, this norm scales with ε, and so
the perturbation to the spectrum of G varies continuously
with ε. Finally, since the von Neumann entropy of a quantum
state is given by the Shannon entropy of its spectrum—and
is a continuous function of it [40]—the quantum statistical
memory is smoothly deformed by the perturbation and so is
robust.

APPENDIX C: SCALING OF STATISTICAL NOISE

We now examine the effects of statistical noise in our esti-
mates of word probabilities on C̃q. These fluctuations can be
considered as a (stochastic) perturbation, i.e., P̃ = P + ε
P,
allowing us to employ the results above. We will set ε to
1, folding the full scaling of the perturbation with L and N
into 
P.

Recall that the corrections to the eigenvalues arising from
the perturbation are bounded by the spectral norm of 
G, i.e.,
its largest eigenvalue, which in turn is bounded by the product
of the dimension of the matrix with its largest element. The
elements of this matrix are given in Eq. (B6); to assess
how they scale we will replace the statistical variables by
their standard errors. Since the word probabilities P(X−L:L )
are described by binomial distributions (a randomly selected
string can be assigned as either being the given word x−L:L or
not), the standard error is given by

σP̄(x−L:L ) =
√

P(x−L:L )[1 − P(x−L:L )]

N
. (C1)

Inserting this into Eq. (B6) we obtain


Gx−L:0x′
−L:0

= 1

2
√

N

∑
x0:L

√
P(x′

−L:0x0:L )[1 − P(x−L:0x0:L )]

+
√

P(x−L:0x0:L )[1 − P(x′
−L:0x0:L )]. (C2)

The probability of obtaining a given word of length L falls off
approximately exponentially with L. Let us assume all long
words are roughly evenly distributed and take P(X−L:L ) ∼
|A|−2L. Considering that there are roughly |A|L terms in
the sum, we have 
Gx−L:0x′

−L:0
∼ 1/

√
N . Finally, since the

dimension of the matrix scales as |A|L, the spectral norm (and
thus the bound on the size of perturbations to the spectrum of
the Gram matrix) scales ∼|A|L/

√
N .
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