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Mediator-assisted cooling in quantum annealing
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We show a significant reduction of errors for an architecture of quantum annealers where bosonic modes
mediate the interaction between qubits. These systems have a large redundancy in the subspace of solutions,
supported by arbitrarily large bosonic occupations. We explain how this redundancy leads to a mitigation of
errors when the bosonic modes operate in the ultrastrong coupling regime. Numerical simulations also predict
a large increase of qubit coherence for a specific annealing problem with mediated interactions. We provide
evidence that noise reduction occurs in more general types of quantum computers with similar architectures.
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I. INTRODUCTION

An adiabatic quantum computer is a device that slowly
evolves a quantum system from an easy-to-prepare initial
ground state, to a final one that encodes the solution of a given
problem [1]. This scheme can provide the same computational
power of a gate-based model under some mild assumptions
on the device dynamic [2,3]. A quantum annealer is a class of
adiabatic quantum computer where the final Hamiltonian is a
classical one [4–6]. Although quantum annealing (QA) cannot
reproduce the full power of a universal quantum computer,
it can tackle optimization problems [7] and it may provide
a quantum speedup in some of them [8]. Furthermore, it
has been argued that these devices may have some intrinsic
robustness against decoherence when compared to the gate-
based model [9]. However, the adiabatic condition demands
long evolution times [10], during which noisy devices can be
excited, ruining the adiabatic computation.

There are two main strategies to reduce the effect of noise
in quantum devices. In error-protection schemes, the quantum
register decouples from the noise by design [11–15], typically
with the help of symmetries or topology. Decoupling from the
noise of a transmission line has also been reported at discrete
values of time [16]. In error-correcting schemes, information
is stored redundantly in logical qubits [17], composed of
multiple physical qubits, with protocols to detect and correct
errors. These strategies have been applied to mitigate the
effect of noise in an adiabatic quantum computer. There are
protection schemes based on energy gaps [18,19], dynamical
decoupling [20], the Zeno effect [21], or nested quantum
computing [22] and some error correction schemes have been
proposed and tested in the D-wave QA [23]. Almost all of
these schemes have a considerable experimental overhead
(additional qubits for redundant encoding, error detection,
and correction operations) that may be comparable to the
resources demanded by error-corrected gate-based quantum
computers [24,25].

Here we show a large suppression of the effect of noise
in an architecture of QA where the interactions between
qubits are mediated by bosonic modes: the LC resonator (or
transmission line) in superconducting circuits [26–28] and

phonons in ion traps [29]. The mechanism is based on a
transfer of energy and entropy from errors in the quantum
register, to excitations in the bosonic degrees of freedom,
see Fig. 1. This autonomous error correction is favored by
the ultrastrong coupling regime of qubit-boson interactions
[30–33] and has no real overhead since bosonic couplers are
already present in many blueprints of quantum computers, as
agents to facilitate short- and long-range interactions [34–36].

II. QUANTUM ANNEALING WITH
MEDIATED INTERACTIONS

We will compare two designs of QA’s, one with direct and
the other with mediated interactions. Our reference is an Ising
model with direct interactions (h̄ = 1),

His =
Ls∑

i=1

hi

2
σ z

i +
Ls∑

i, j=1

Ji jσ
x
i σ x

j . (1)

We can design an annealing schedule that starts with J = 0
and ends up with |J| � |h|, to prepare the ground state of the
Ising problem. We will also consider a generalized spin-boson
(SB) model with mediated couplings

Hsb =
Ls∑

i=1

hi

2
σ z

i +
Ls,Lb∑
i,r=1

girσ
x
i (br + b†

r ) + ω

Lb∑
r=1

b†
rbr . (2)

This model differs from the traditional SB Hamiltonian
where modes implement a local bosonic environment [37–41].
The previous Hamiltonian mimics the Ising one at low
energies [42,43], using Lb bosonic modes to simulate
Ji j ∼ ∑

r girg jr/ω. It is possible to engineer an annealing
schedule [43] for Eq. (2) that reproduces the outcome of
Eq. (1). However, success in the SB annealing is more general,
as we may afford having bosonic excitations that introduce no
errors in the quantum register.

To be precise, let us define the effective Hamiltoni-
ans H (n) = PnH̃sbPn for any configuration of the bosonic
modes of the form n = (n0, n1, . . . , nLb ), where the tilde
denote that it has been transformed by the polaron uni-
tary U = exp [

∑
ir σ x

i φir (b†
r − br )] with φir = gir/ω [42]. The
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FIG. 1. Scheme for the Hilbert space of a QA architecture
in which the interaction between qubit (arrows) are mediated by
bosonic modes (springs). Effective qubit Hamiltonians at different
energies can be defined for different bosonic configurations. All of
them become equal at the end of the annealing passage, which im-
plies a large redundancy of the subspace of solution. This redundancy
is used to attenuate the effect of noise in the ultrastrong coupling
regime where qubit and bosonic excitation become close in energy.

renormalization of the transverse field can be computed taking
into account that U†σ z

i U = σ z
i exp [2

∑
r σ x

i φir (b†
r − br )] and

the expression of a displacement operator in the Fock base
[44], which gives

Pnσ̃
z
i Pm =

∏
r

e
1
2 |φir |2 L(mr−nr )

nr
(4|φir |2)σ z

i

(
2φirσ

x
i

)mr−nr
, (3)

where L(b)
a (x) are generalized Laguerre polynomials. Using

this last formula, one can obtain that all the effective models
are Ising-like, as Eq. (1), H (n) = His(h(n), J (n) ) with renormal-
ized parameters

J (n)
i j = J (0)

i j , (4)

h(n)
i = h(0)

i

Lb∏
r=1

L(0)
nr

(
4φ2

ir

)
, (5)

where J (0)
i j = ω

∑
r φirφ jr and h(0)

i = hie−2
∑

r φ2
ir are the low-

energy effective parameters. At the end of the quantum an-
nealing passage hi = 0, all Hamiltonians are identical and
have the same spin configurations as low-energy states. There-
fore, if the annealing succeeds, it can do so for many different
configurations of the bosonic modes, many of which include
excited sectors of the Hilbert space.

III. MODEL AND ITS COMPLEXITY CLASS

We will analyze how redundancy in the subspace of solu-
tions can mitigate the effects of noise for quantum annealing
in the one-dimensional Ising model. For that, we compare
annealing passages in both architectures, parameterized by the
relative annealing time s = t/T . For direct coupling Eq. (1),
we use a one-dimenional chain with equal fields hi = ω0(1 −
s) and interactions Ji j = −ηδi,i+1ω0s (ferro or antiferromag-
netic η = ±1). For mediated couplings Eq. (2), we use the
same number of qubits and bosonic modes L, local fields
are h = ω0[1 − κ (s)], and couplings gir = √

ω0ωκ (s)(δi,r +
ηδi,r+1). The ramps κ (s) are designed to have the same ground

FIG. 2. Minimum gap as a function of number of spins L for
annealing in the Ising model with transverse field. The symbols +
corresponds to direct interactions implemented with an Ising-like
Hamiltonian, while symbols •, �, × are used for SB model in the
ultrastrong coupling regime with different cutoffs in the number of
bosonic excitations allowed in each resonator. The solid (Ising) and
dashed (SB with cutoff 2) lines are fittings to a law a ∗ L−1 + b ∗ L−2.
The results given for Ising model a = 5.36, b = −0.36 and for SB
a = 2.17, b = −0.0034.

state expected values of C = ∑
i〈 σiσi+1 〉 in both models

at all s, κ (s) = C−1
sb [Cis(s)]. This condition is approximately

equivalent to h(0)(s) = ω0(1 − s) and J (0)(s) = ω0s. The typ-
ical value of the qubit frequency is ω0 and we consider the
ultrastrong coupling regime, where ω0 � ω. For all of our
numerical simulations we chose frequencies ω0 = ω.

The complexity class in QA is given by the functional
relation between the annealing time needed to be adiabatic
and the number of qubits T = T (L). This complexity class
is found from the scaling of the minimum gap along the
passage with system size 	m = 	m(L), as the adiabatic con-
dition implies T � 	2

m. The minimum gap for direct and
mediated couplings obey the same law in the thermodynamics
limit 	m = a L−z with dynamical critical exponent z = 1 and
constant a [42]. So both architectures are within the same
complexity class.

We compare the proportionality constant a for direct and
mediated couplings. In Fig. 2, we plotted the minimum gap
for Ising-like and SB Hamiltonians. In the latter case, three
different cutoffs in the number of bosons have been used.
The curves for different cutoffs are quite similar, so we use
the largest cutoff data as a good approximation of the full
SB model. We fitted the minimum gap of the Ising and SB
to a law 	m = aL−1 + bL−2, with free parameters a, b. The
parameters b is introduced to allow for irrelevant corrections.
The result of the fittings gives constants for Ising-like and SB
that are related by ais ≈ 2.5asb. We conclude that the amount
of errors coming from nonadiabatic transitions are similar for
mediated and direct coupling architectures.

IV. ERROR SUPPRESSION AND ERROR CORRECTION

Errors in an adiabatic passage can be seen as transitions
to excited states. Let us now study the dynamics of those
errors for the transitionally invariant Ising chain introduced
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FIG. 3. Errors in quantum annealing occur when the qubit sys-
tem is excited from its lowest-energy configuration. We present
schematically a low-energy state with momenta q for architectures
with direct (Ising) and mediated (spin-boson) couplings. In the latter
case, the spectrum also contains an excited solution—a pure bosonic
excitation with momenta q and denoted by |esq〉—which does not
produce errors, as they do not affect the state of the quantum register.
Avoided-level crossings, as the one at scr , are likely to appear in the
strong-coupling regime as the energy scales of the qubits and bosons
are similar ω0 ≈ ω. The error-correction mechanism proposed here
is based on the interchange of population between errors and excited
solutions at those avoided-level crossings.

above. The qubit operator γ †
q that creates an error with mo-

mentum q has an analog in the SB that creates a pure qubit
excitation |erq〉 = γ̃ †

q |ψ̃ (0)
gs 〉 , where |ψ̃ (0)

gs 〉 = U |ϕ(0)
gs , 0〉 is the

ground state of the Ising model H (0) and the bosonic vacuum
transformed to the polaron basis. However, the SB model
also supports bosonic excitations |esq〉 = b̃†

q |ψ̃ (0)
gs 〉 , which

implement excited solutions. The dynamic in the spin sector
of these solutions is given by H (q) = His(h(q), J (0) ) with

h(q)
i = h(0)

i

L

L∑
r=1

[
L1

(
4φ2

ir

) + 4 cos(q)φirφir+1
]
. (6)

Both H (q) and H (0) give rise to the same solutions along the
annealing process, with the same complexity class. When we
perform the annealing passage in the ultrastrong coupling SB
model ω0 ≈ ω, the error states |erq〉 and the excited solutions
|esq〉 experience avoided crossings at specific values of the
dimensionless time scr , see Fig. 3. At those points, large
fluctuations in the bosonic modes cannot be captured by the
polaron ansatz, and the states couple with strength [42]

gq = | 〈erq|Hsb|esq〉 | ∼
√

scrω0

ω
(1 − scr )ω0. (7)

The SB model eigenstates are actual superpositions |±〉 =
1√
2
(|erq〉 ± |esq〉), which facilitate two new mechanisms that

improve the annealing. First, an error created at early times
s 
 scr can be transferred to an excited solution around the
crossing point. This mechanism for error correction only
works when the passage is adiabatic with respect to the level
crossing T � 1/gq. The other possibility is that the error
states |φ(t0)〉 = |erq〉 dephase under the action of the effective
Hamiltonian around the crossing. Initially, the reduced density
matrix ρ(t ) of the error state in the spin sector has no overlap
with the ground-state manifold, that is, F (t0) = tr[Pgsρ(t )] =
0 for the ground-state projector Pgs. However, the overlap
improves to around F ≈ 1/2 as the state dephases at long
time ρ(t � 1/gq ) = 1√

2
(|+〉 〈+| + |−〉 〈−|). We call

this mechanism error suppression.

Ising x
Ising z
SB z
SB x

Ising x
SB x

SB x

SB z

FIG. 4. Time evolution for the ferromagnetic Ising in transverse
field with parameter s = 0.25 and L = 3 spins using direct couplings
(Ising) and mediated ones (SB). The power spectrum of the noise is
flat with strength γ = 0.2. (a) Decay of correlations and (b) total
number of bosons, Nb = ∑

i b†
i bi, as a function of time. The SB

model with x noise corresponds to the wide blue line and z noise
to dashed red line. In panel (a), there are two semidashed lines that
almost coincide which correspond to the case of Ising with x and z
noise. (c) Decay of the density matrix (reduced spin density matrix
in SB) fidelity with the Ising ground state as a function of time.
We obtain the value of parameters shown in the legend by fittings
to Y (T ) = {[1 + a exp ( − (t/Tq )p)]/2}L . A cutoff in the number of
bosons per site nco = 8 is used.

V. NUMERICAL SIMULATIONS

We studied the one-dimensional Ising model with trans-
verse field in a noisy environment. We add a stochastic term
ω0/2

∑N
i=1 fi(t )σ θ

i to Eqs. (1) and (2) [25]. This is a sum of
uncorrelated white Gaussian noises fi(t ) with power spectra
S(ω) = γ 2

2πω0
, as described in the Appendix. The numerical

integration of the resulting equations of motion have been
performed with exact Lanczos methods and full wave func-
tions for several realizations of the noise. This noise couples
to the spins along one of two directions θ = x, z with strengths
γ = 0.1, 0.2. This extreme form of noise excites all energy
scales with equal probability, heating and dephasing the spins
to infinite temperature at timescales ω0T1 = ω0T �

2 = 1/(2γ 2)
[45]. We assume that bosons are not affected by the noise
because resonators and cavities have a consistently larger
quality factor than superconducting qubits.

We analyze the error suppression mechanism by compar-
ing the qubit dynamics in both QA architectures, at a quarter
of an adiabatic passage s = 0.25 with L = 3 qubits. At this
point, spins and bosons are strongly hybridized. In Fig. 4(a),
the decay of two-qubit correlations is plotted as a function of
time, for the Ising and SB Hamiltonians, with noise along the
x or z directions. The decoherence of the SB model is signifi-
cantly slowed down, particularly for noise along x. Figure 4(b)
shows the total number of bosons in the hybrid model. Note
how it grows rapidly for noise along the z direction, indicating
a stronger heating of the interaction mediators.
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FIG. 5. Error probability for QA as a function of total time of
evolution T for a system of L = 3 spins with direct (Ising) and
with mediated couplings (SB). Annealing is performed for the Ising
with transverse field model with (a) ferro and (b) antiferromagnetic
interactions. The power spectrum of the noise is flat with strength
γ = 0.1. A cutoff in the number of bosons per site nco = 8 is used.

We characterize the error suppression for noise along the
x direction using the overlap with the ground-state manifold
Y (t ) = tr[ρ(t )Pgs], of the spin-reduced density matrix ρ(t )
in both the Ising and SB passages. As shown in Fig. 4(c)
the hybrid SB model exhibits a slower decay, extending the
lifetime of information by, at least, one order of magnitude.
The data can be fitted to a law (semidashed black lines) that is
a generalization of the decay of L uncorrelated qubits

Y (t ) =
[

1 + a e−(t/Tq )p

2

]L

, (8)

with free parameters a, Tq, p. The fits give Tq = 15.41 ± 0.06
and p = 0.86 ± 0.02 for Ising model, and Tq = 58.3 ± 0.1
and p = 0.47 ± 0.01 for SB. This is a significant noise reduc-
tion that extends the lifetime of the combined model beyond
the decoherence time of noninteracting qubits T1 and T2. Note
that Y (t = 0) < 1 and a < 1 in the SB is a consequence
of hybridization, but this is irrelevant because the spin sec-
tor always reproduces good normalized expectation values
[Fig. 4(a)].

To understand the combination of error suppression and
correction, we simulated an actual annealing passage using
both ferro and antiferromagnetic couplings. Figure 5 shows
the error probability at the end of the passage, as a function of
the total annealing time, for L = 3 spins. The common feature
of all the curves is a decrease of error probability at early
times followed by an increase for intermediate times [46], and
a saturation at long times [47]. From Fig. 5, it is clear that
mediated couplings improves QA over the pure spin model for
noise coupled in the z and x directions. Similar to the curves in
Fig. 4(c), we find that noise in the z direction leads to a faster
occupation of bosons.

The improvement of QA for mediated couplings and noise
in the x direction is promising, but must be verified for larger
sizes, analyzing finite-size effects. Figure 6 shows the error
probability as a function of the total annealing time T for
[Fig. 6(a)] direct and [Fig. 6(b)] mediated couplings. We
studied three to six qubits, using a similar number of bosonic
modes in the SB, with a cutoff of nco = 4 excitations per

Ising Spin-boson

Ising
SB

Ising
SB

FIG. 6. Quantum annealing in the ferromagnetic Ising with trans-
verse field for (a) direct and (b) mediated coupling and several sizes
L. The first case corresponds to the pure Ising model, sizes range
from L = 3 to L = 7 from bottom to top, while in the second case
the SB model is used, sizes from L = 3 to L = 6 from bottom to
top. The power spectrum of the noise is flat with strength γ = 0.2.

The semidashed black lines are fittings to the law Y (T ) = 1 −
{[1 + a exp ( − (t/Tq )p))]/2}L−1 with free parameters a, p, Tq. The
parameters obtained in the fittings for Tq and p are plotted in (c) and
(d), respectively. A cutoff in the number of bosons per site nco = 4 is
used.

mode. This allows the computation of larger sizes, although
it limits the heat bosonic modes can absorb.

The regions where Perror grows with time can be fitted to
a similar law as the one in Eq. (8), obtaining both the qubit
decay times Tq and the decay power p in Figs. 6(c) and 6(d),
respectively. The Ising model gives a decay time Tq ≈ 50
and p ≈ 1.2 while for SB we obtain Tq ≈ 250 and p ≈ 0.8.

The goodness of the fitting improves significantly if values of
a < 1 are allowed in Eq. (8). This takes into account errors
due to nonadiabatic transitions at small annealing times, and
gives similar values for SB and Ising models. All of these
imply a large extension of the decay time when interactions
are mediated in the ultrastrong coupling regime. This increase
is not an artifact of having a small number of qubits, as p and
Tq do not show significant finite-size effects.

VI. DISCUSSION

All our simulations show an asymmetry in the performance
of the SB quantum annealer under errors, whereby σ x per-
turbations are more heavily suppressed and less harmful than
σ z fluctuations. We can explain this result and argue that it
scales to arbitrary sizes, by studying the SB Hamiltonian in the
polaron basis. In the SB model, noise couples the ground state
to excited spin and boson states |ψ̃ (n)

α 〉 = U † |ϕ(n)
α , n〉, via

matrix elements of the form Mθ
α,n = | 〈ϕ(n)

α , n|σ̃ α
i |ϕ(0)

gs , 0〉 |.
These can be computed for the parametrization from Eqs. (4)
and (5) using the spin operators in the polaron frame, σ̃ x

i =
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σ x
i and σ̃ z

i = σ z
i exp [2σ x

i

∑
r φir (b†

r − br )]. In the polaron-
transformed basis, Mx

α,n � 0 for n �= 0 and noise along σ x

has a negligible probability to excite bosons. Therefore, the in-
crease in boson number in Fig. 4(b) for noise in the x direction
is due to the mechanism of error correction, transforming spin
mistakes into bosonic quasiparticles. Noise along σ z, on the
other hand, couples to all bosonic configurations Mz

q,n �= 0.

This noise can heat the couplers without hybridization of spin
and bosonic excitation, making it harder for the bosons to
absorb or correct errors.

Another factor that explains the performance of errors is
when they become relevant during the QA passage. Noise
along the x and z directions are more likely to create errors
at the beginning and at the end of the passage, respectively.
This means that the error correction mechanism is more
efficient in mitigating the first type of noise because errors that
happen at later times have a lower probability of finding the
correct avoided level crossing. This is also consistent with our
numerical results in Fig. 5, which shows a large decrease of
error probability for annealing with mediated coupling under
x noise.

We can extract an important conclusion for a realistic
QA. We assume that the target Hamiltonian has a gap of the
order of the effective qubit coupling J (T ) at the end of the
passage [48] and that the minimum gap along the passage
is much smaller [48–53]. Then, one can design the couplers
with frequency ω � J (T ), so that avoided level crossings
between low-energy excitations and bosonic modes would
occur after the minimum gap is attained. If thermal noise
with small temperature is the main source of decoherence,
errors are likely to occur due to low-energy excitations created
around the minimum gap. This situation is similar to our
computations with noise in the x direction because avoided
level crossings take place after errors are introduced and noise
cannot heat up the bosons for low-enough temperature. As
our results for noise in x, the error correction mechanism
may well produce improvements of more than one order of
magnitude in the effective qubit lifetime for realistic annealers
with mediated ultrastrong couplings.

In summary, we provided strong evidence that the mecha-
nisms of error reduction and error correction explained here
could significantly reduce the effect of noise in intermediate-
scale architectures of a QA. A first experimental test of our
ideas should be possible with a few qubits’ device that can be
constructed with state-of-the-art technology in superconduct-
ing circuits [30,31,34,54]. We have also seen that the bosonic
couplers improve the coherence of the quantum register, even
when the Hamiltonian is not changed, as shown in Fig. 4. This
improvement in the information lifetime is due to the error
suppression mechanism, which attenuates external fluctua-
tions. The same idea can be used to improve the performance
of other devices, such as quantum simulators, where one is
interested in low-temperature dynamical properties [55].
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APPENDIX: NUMERICAL IMPLEMENTATION OF NOISE

We now provide details about how we implement the
noise in our numerical simulations. First, we introduce the
definitions for one-single qubit:

H = 1
2 [ω0σ

z + f (t )σ θ ], (A1)

where ω0 is the qubit frequency and the function f (t ) is a
random process that represent the noise acting on the qubit.
This noise couples with the qubit in a direction with angle
θ with respect to the z axes: σ θ = cos(θ )σ z + sin(θ )σ x. De-
phasing and relaxation times depend on the angle θ and power
spectrum. One way to define these times is via the decay of the
initial qubit state after averaging over different realizations of
noise:

〈+z|σ z(t )|+z 〉 = exp (−t/T1), (A2)

〈+x|σ x(t )|+x 〉 = cos(ω0t ) exp (−t/T2). (A3)

The average over disorder realization is denoted by a line over
the quantity to average. The values of these times depends on
the angle of coupling between the qubit and noise and on the
power spectrum of the noise [45]

1

T1
= π sin2(θ )S(ω0), (A4)

1

T �
2

= π cos2(θ )S(ω → 0), (A5)

1

T2
= 1

T �
2

+ 1

2T1
. (A6)

The autocorrelation function and power spectrum of the noise
that appears in previous formulas are defined as

Ŝ(τ ) = 〈 f (t + τ ) f (t ) 〉, (A7)

S(ω) = 1

2π

∫ ∞

−∞
S(τ )e−iωτ dτ, (A8)

where the notation 〈 . . . 〉 means time average.
We use Gaussian noise, so the distribution probability is at

any time

P[ f (t )] = e
− [ f (t )]2

2γ 2√
2πγ 2

. (A9)

Furthermore, we work with noise that is correlated only on
small times. Theoretically, one can define white noise with
the property of

〈 f (t ) f (t + τ ) 〉 = γ 2δ(τω0). (A10)

The power spectrum is easy to compute using the previous
equation:

S(ω) = 1

2π

γ 2

ω0
. (A11)
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FIG. 7. The power spectrum described in Eq. (A16) which cor-
responds to a noise with autocorrelations as in Eq. (A14). The values
of parameter are γ = 2π and τm = 0.1/ω0, being ω0 qubit frequency.
In the inset we can see a zoom to the region of small frequencies.

The formulas for decoherence and relaxation times are for
white noise:

1

T1
= sin2(θ )

γ 2

2ω0
, (A12)

1

T �
2

= cos2(θ )
γ 2

2ω0
. (A13)

a. Approximation of white noise

White noise is a theoretical idealization that involves
arbitrary large frequencies which cannot be reproduced in
numerical simulations. Here, we use uncorrelated noise for
the typical frequencies of the qubit ω0 but correlated for much
larger frequencies ω � ω0. This can be done by splitting a
time interval T in N subintervals and set a noise as follows:

f (t ) =
⎧⎨⎩ fi

√
γ 2

τmω0
if i ∗ τm < t < (i + 1) ∗ τm

⎫⎬⎭,

(A14)

where τm = T/N 
 1 and t run from 0 to T. The fi are
uncorrelated dimensionless numbers following a Gaussian
distribution with zero mean and variance 1. The autocorre-
lation for this type of noise is

Ŝ(τ ) =
{

0 if τ > τm,
γ 2

ω0 τm
if τ < τm.

(A15)

The power spectrum is then

S(ω) = γ 2

2πω0

[
sin(τmω)

τmω

]
. (A16)

This noise has an approximated constant power for frequen-
cies ω < 1/τm, while it oscillates for larger ones. The power
spectrum of the noise and a square function with width given
by τmω0 = 0.1 are plotted in Fig. 7. As commented before,
this type of noise produces a flat spectrum for frequencies
smaller than 1/τm. Setting τm � 1/ω0 allows to have a pretty

FIG. 8. Time evolution under noise of 〈 σ x 〉 (semidotted) and
〈 σ z 〉 (bullets) of one qubit with initial states in +x and in +z
directions. Noise is coupled to the qubit in directions θ = 0 and
θ = π/2 for each case. Results for two different time steps in the
Lanczos method, dt = 0.1 in green and dt = 0.05 in blue, give
the same decay for 〈 σ z 〉. The theoretical predictions Eqs. (A12)
and (A13) for noise in the z direction are represented with black
solid curves. Each panel corresponds to different values of γ which
are 0.1 (left) and 0.2 (right). Averages have been performed over,
approximately, 5000 realizations of the noisy signal.

flat spectrum for the relevant energies when simulating a
system with typical energy given by ω0.

b. Numerical method

The numerical simulations of a system of L qubits have
been performed using L uncorrelated random process as the
one in Eq. (A14). Each of these functions represent a local
noise, so the total Hamiltonian is

H = H0 + 1

2

∑
i

fi(t )σ θ
i , (A17)

where noise couples with all the qubits in the same angle θ.

The Hamiltonian H0 contains the dynamic of the noise-free
system.

We used Lanczos’ method for numerical simulation of the
time evolution of Hamiltonians as in Eq. (A17) for the results
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presented in the main body of the work. This method can
cope with the time-dependent Hamiltonian, as it is needed in
quantum annealing, but one has to approximate the Hamil-
tonian as a constant during an integration time step dt . For
the simulation of noise, this implies that Lanczos’ method
imposes the high-frequency cutoff in the power spectrum of
the noise at ωh = 1/dt . We then chose a correlated noise with
τm = dt , as described in Eq. (A14), and set dt = 0.1ω0. We
checked that simulations for dt = 0.1 and dt = 0.05 give the
same results.

Finally, let us discuss the results of time evolution for the
Hamiltonian of one-single qubit, Eq. (A1), using our method.
We studied the cases of pure dephasing θ = 0 and relax-
ation θ = π/2. The results for γ = 0.1, 0.2 appear in Fig. 8.
Simulations with two timesteps in the Lanczos algorithm for
θ = π/2 and γ = 0.1 appear with green and blue circumfer-
ences and show no differences as expected. The solid lines
represent the decay following laws Eqs. (A12) and (A13).
The agreement between numerical curves and theory is
excellent.
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