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Variational quantum algorithms for dimensionality reduction and classification
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In this work, we present a quantum neighborhood preserving embedding and a quantum local discriminant
embedding for dimensionality reduction and classification. We demonstrate that these two algorithms have an
exponential speedup over their respectively classical counterparts. Along the way, we propose a variational
quantum generalized eigenvalue solver that finds the generalized eigenvalues and eigenstates of a matrix pencil
(G,S ). As a proof of principle, we implement our algorithm to solve 25 × 25 generalized eigenvalue problems.
Finally, our results offer two optional outputs with quantum or classical form, which can be directly applied in
another quantum or classical machine learning process.
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I. INTRODUCTION

Dimensionality reduction is significant to many algorithms
in pattern recognition and machine learning. It is intuitively
regarded as a process of projecting a high-dimensional data to
a lower-dimensional data, which preserves some information
of interest in the data set [1,2]. The technique of dimension-
ality reduction has been variously applied in a wide range of
topics such as regression [3], classification [4], and feature
selection [5].

Broadly speaking, all of these techniques were divided into
two classes: linear and nonlinear methods. Two most popular
methods for linear dimensionality reduction are principal
component analysis (PCA) and linear discriminant analysis
(LDA). PCA is an orthogonal projection that minimizes the
average projection cost defined as the mean squared distance
between the data points and their projections [6]. The pur-
pose of LDA is to maximize the between-class variance and
minimize within-class scatter when the data has associated
with class labels [7]. The most popular algorithm for non-
linear dimensionality reduction is manifold learning [8]. The
manifold learning algorithm aims to reconstruct an unknown
nonlinear low-dimensional data manifold embedded in a high-
dimensional space [9]. A number of algorithms have been
proposed for manifold learning, including Laplacian eigen-
map [10], locally linear embedding (LLE) [11], and isomap
[12]. Manifold learning has been successfully applied for
video-to-video face recognition [13]. These nonlinear meth-
ods consider the structure of the manifold on which the data
may possibly reside compared with kernel-based techniques
(e.g., kernel PCA and kernel LDA).

We are witnessing the development of quantum compu-
tation and quantum hardware. The discovery of quantum
algorithm for factoring [14], database searching [15], and
matrix inverse [16] has shown that quantum algorithms have
the capability of outperforming existed classical counterparts.
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Recently, quantum information combines ideas from artificial
intelligence and deep learning to form a new field: quantum
machine learning (QML) [17]. For classification and regres-
sion, QML algorithms [18–22] also have shown advantages
over their classical machine learning algorithms. However,
many algorithms rely on the large-scale, fault-tolerant, univer-
sal quantum computer which may be achieved in the distant
future. Specifically, these algorithms will require an enormous
number of qubits and long depth of circuit to achieve quantum
supremacy.

Fortunately, noisy intermediate-scale quantum (NISQ) de-
vices are thought of as a significant step toward a more
powerful quantum computer [23]. This NISQ technology
will be available in the near future. In this setting, hybrid
algorithmic approaches demonstrate quantum supremacy in
the NISQ era. This hybridization reduces the quantum re-
sources including qubit counts, numbers of gates, circuit
depth, and numbers of measurements [24]. Variational hybrid
quantum-classical algorithms aim to tackle complex problems
using classical computer and near term quantum computer.
The classical computer finds the optimal parameters by min-
imizing the expectation value of objective function which is
calculated entirely on the quantum computer.

The first class variational quantum algorithms have been
proposed for preparing the ground state of a Hamiltonian [25].
For a Hamiltonian H which is too large to diagonalize, one
can approximate the ground state of the given Hamiltonian
using the Rayleigh-Ritz variational method. After parametriz-
ing the trial quantum states, one can perform an optimization
subroutine to find the optimal state by tuning the optimal
parameter. Variational method is also applied to obtain the
excited state of a Hamiltonian [26,27] and diagonalize a
quantum state [24]. Another class of hybrid algorithms is
designed to find application in machine learning including the
quantum approximate optimization algorithm (QAOA) [28],
variational quantum algorithms for nonlinear partial differen-
tial equations [29], and linear systems of equations [30–33].

Inspired by the significant advantage of quantum al-
gorithms, some authors designed quantum algorithms to
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reduce the dimension of a large data set in high-dimensional
space. Quantum principal component analysis (qPCA) [34]
and quantum linear discriminant analysis (qLDA) [35] are
two potential candidates capable of compressing the high-
dimensional data set and reducing the runtime to be loga-
rithmic in the number of input vectors and their dimensions.
These two protocols yield global mappings for linear dimen-
sionality reduction and obtain the projected vectors with only
quantum form. Thus a complicated quantum tomography [36]
is needed if one would like to know all information of the
projected vectors.

Motivated by manifold learning and quantum computation,
one natural question arises of whether there is a quantum algo-
rithm for dimensionality reduction and pattern classification,
and in which preserves the local structure of original data
space. To tackle this issue, we present two variational quantum
algorithms. The first one is quantum neighborhood preserving
embedding (qNPE) which defines a map both on the training
set and test set. The core of qNPE is a variational quantum
generalized eigensolver (VQGE) based on the Rayleigh quo-
tient, a variant of the quantum variational eigenvalue solver
(QVE) [25], to prepare the generalized eigenpair (λ, x) of
the generalized eigenvalue problem Ax = λBx. Based on the
presented VQGE, we propose a quantum version of local dis-
criminant embedding [37] for pattern classification on high-
dimensional data. We show that these two algorithms achieve
an exponential speedup over their classical counterparts.

The organization of the paper is as follows. In Sec. II, we
give a quantum neighborhood preserving embedding (qNPE)
for dimensionality reduction. The numerical experiments are
conducted using five qubits to demonstrate the correctness of
VQGE in subsection E of Sec. II. In Sec. III, we introduce
the quantum local discriminant embedding (qLDE) in detail
for a classification problem. A summary and discussion are
included in Sec. IV.

II. QUANTUM NEIGHBORHOOD
PRESERVING EMBEDDING

Local linear embedding (LLE) [11] is an unsupervised
method for nonlinear dimensionality reduction; thus it does
not evaluate the maps on novel testing data points [38]. Neigh-
borhood preserving embedding (NPE) is thought of as a linear
approximation to the LLE algorithm [38]. NPE tries to find a
projection suitable for the training set and testing set. Differ-
ent from other linear dimensional reduction methods (PCA
and LDA), which aim at maintaining the global Euclidean
structure, NPE preserves the local manifold structure of data
space. We assume that the regions will appear to be locally
linear when the size of neighborhood is small and the mani-
fold is sufficiently smooth. Experiments on face recognition
have been conducted to demonstrate the effectiveness of NPE
[38]. Here, we introduce a quantum neighborhood preserving
embedding (qNPE). Given a set of points {xi}M−1

i=0 ∈ M and
M as a nonlinear manifold embedded in a D-dimensional
real space RD, our qNPE attempts to retain the neighborhood
structure of the manifold by representing xi as a convex
combination of its nearest neighbors. In particular, qNPE finds
a transformation matrix A that maps these M points and test
point xtest into a set of points y0, y1, . . . , yM−1, ytest ∈ Rd in

Algorithm 1: Quantum K nearest-neighbors search

step 1: Estimate the overall square of inner product
value via swap test costing O( M(M−1)

2 log2 D).
Repeat the following steps K times:
step 2: Define an index set Ts = [0, 1, . . . , s − 1] where s
is initialized as M.
step 3: Apply the minimum searching algorithm [39] and
output a minimum index j in runtime O(

√
s) with

probability at least 1
2 .

step 4: Delete the minimum index and reset s = s − 1.
Outputs: N = { j1, j2, . . . , jK }.

a lower-dimensional manifold space, where yi = A†xi, ytest =
A†xtest , d � D, and the superscript † denotes the conjugate
transpose.

In the quantum setting, a quantum state preparation routine
is necessary to construct the quantum states {|xi〉}M−1

i=0 cor-
responding to classical vectors {xi}M−1

i=0 . Assume that we are
given oracles for data set {xi|xi ∈ RD}M−1

i=0 that return quantum
states {|xi〉}M−1

i=0 . Mathematically, an arbitrary D-dimensional
vector �xi = (xi0, xi1, . . . , xi(D−1))† is encoded into the D am-
plitudes {xi0, xi1, . . . , xi(D−1)} of an O(log2 D)-qubits quantum
system, |xi〉 =∑D−1

j=0 xi j | j〉, where {| j〉} is the computational
basis [20].

A. Find the K-nearest neighbors

The first step of qNPE is the construction of a neighbor-
hood graph according to the given data set. The construction
of an adjacency graph G with M nodes relies on the K nearest
neighbors of xi. If x j is one of the K nearest neighbors of
xi, then a directed edge will be drawn from the ith node to
the jth node; otherwise, there is no edge. To preserve the
local structure of the data set, we first develop an algorithm
(Algorithm 1) to search the K nearest neighbors of point xi.

Some notations are needed to understand Algorithm 1. Let
{ f (i)|i ∈ [0, 1, . . . , M − 1]} be an unsorted table of M items.
We would like to find K indexes set N = { j1, j2, . . . , jK} of
the element such that f ( j1) � f ( j2) � · · · � f ( jK ) � f ( j),
where { j1, j2, . . . , jK , j ∈ [0, 1, . . . , M − 1]} and j /∈ N . We
call it quantum K nearest-neighbors search, which is a direct
generalization of the quantum algorithm for finding the mini-
mum [39]. One of our results is the following theorem.

Theorem 1. For a given quantum state set {|xi〉}M−1
i=0 , let

[0, 1, . . . , M − 1] be an unsorted database of M items, each
holding an inner product value. Algorithm 1 finds all lower K
indexes with probability at least 1

2 costing

O

(
M(M − 1)

2
log2 D

)
,

with query complexity O(KM
√

M ).
Proof. Quantum K nearest-neighbors search tries to find

the K lower values of an unsorted data set. In step 1, given a
state set ⎧⎨

⎩|xi〉 =
D−1∑
j=0

xi j | j〉
⎫⎬
⎭

M−1

i=0

,
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we first estimate the square of inner product |〈xi|xk〉|2 over
all data points for i, k = 0, 1, . . . , M − 1 via swap test each
running costs O(log2 D) [40]. The number of performing swap
test is

Tswap =
M−1∑
i=0

i = M(M − 1)

2
.

Thus the overall costs of estimating square of inner product is
O( M(M−1)

2 log2 D).
In steps 2–4, we find K lower index set N of one point |xi〉.

By adjusting s = s − 1, the index set Ts deletes one element
every time. We repeat K times on the updated index set Ts to
obtain the K lower index N mapping to K smallest values.
Dürr and Hoyer [39] have shown the query complexity of
finding the minimum value is O(

√
M ). In our algorithm, the

query complexity of finding K nearest neighbors of one state
|xi〉 is

O

(
K∑

k=1

√
M − (k − 1)

)
< O(K

√
M ), (1)

which has an upper bound O(K
√

M ). Thus the overall query
complexity of traversal of all M quantum states has an upper
bound Q = O(KM

√
M ). �

Contrasting this to the situation where the entire algorithm
is applied on a classical computer, we require exponential
resources in both storage and computation. First, storage of
the quantum state |x〉 using the known quantum encoding
technique requires 2D complex numbers. Moreover, each dis-
tance calculation is O(D), and thus the time complexity is
O( MD(M−1)

2 ). Finally, the classical search complexity is O(M )
for an unsorted data set containing M elements. For our K
nearest-neighbor algorithm, the overall search complexity has
an upper bound O(KM2). The computational complexity of
the classical nearest-neighbor algorithm has been analyzed
in [41]. We roughly estimate that the time complexity is
O( MD(M−1)

2 ) and the query complexity is O(KM2).
It is clear to see that the quantum K nearest-neighbors

search achieves an exponential speedup in the dimensionality
of quantum states.

The query complexity of the presented Algorithm 1 can
be further reduced to O(M

√
KM ) using the idea of [42,43].

Dürr et al. [42] transformed the problem of finding d smallest
values to finding the position of the d zeros in the matrix
consisting of Boolean matrices with a single zero in every row,
which can be seen as a part of the graph algorithm. Different
from [42], Miyamoto and Iwamura [43] first found a good
threshold by quantum counting and then values of all d indices
are found via amplitude amplification. The values of all d
indices are less than the value of the threshold index.

In summary, Algorithm 1 finds the K nearest neighbors
Ni = {xi

0, xi
1, . . . , xi

K−1} of quantum state |xi〉 [44]. The pre-
sented algorithm is based on two algorithms: finding mini-
mum and swap test. First, we reformulate the algorithm for
finding K indices by updating the search set. Secondly, we
explicitly analyze the time complexity and query complexity.

For implementation of the quantum K nearest-neighbors
search, only one free parameter, K , is taken into account. The
threshold K affects the performance of qNPE. Specifically, it

remains unclear how to select the parameter K in a principled
manner. The qNPE will lose its nonlinear character and be-
have like traditional PCA if K is too large. In this case, the
entire data space is seen as a local neighborhood. Moreover, if
the threshold K is bigger than the dimension of data point, the
loss function (2) described in subsection B will have infinite
solutions and the optimal question will be irregular.

B. Obtain the weight matrix

Let W denote the weight matrix with element ωi
j having the

weight of the edge from node i to node j, and zero if there is no
such edge. For maintaining the local structure of the adjacency
graph, we assume each data node can be approximated by the
linear combination of its local neighbor nodes [38]. It is the
weight matrix that characterizes the relationship between the
data points. The weights can be calculated by the following
convex optimization problem:

min �(ωi
j ) =

M−1∑
i=0

∥∥∥∥∥∥xi −
K−1∑
j=0

ωi
jx

i
j

∥∥∥∥∥∥
2

,

such that
K−1∑
j=0

ωi
j = 1, i = 0, 1, . . . , M − 1.

(2)

Using the Lagrange multiplier to enforce the constraint con-
dition
∑

j ω
i
j = 1, the optimal weights are given by

ωi = (ωi
0, ω

i
1, · · · , ωi

K−1

)† = G−1
i

�1
�1†G−1

i
�1 , (3)

where the covariance matrix is defined as Gi = A†
i Ai,

and Ai = Xi − Ni ∈ RD×K , Xi = (xi, xi, . . . , xi ) ∈ RD×K , �1 =
(1, 1, . . . , 1)† ∈ RK , and Ni = (xi

0, xi
1, · · · , xi

K−1) ∈ RD×K .
The column vector xi

j ∈ Ni of Ni represents the K-nearest
data points close to the data point xi. The detailed derivation
of Eq. (3) is shown in [11]. Each K-nearest data point is in
a D-dimensional real space RD. Our goal is to find weight
quantum state |ωi〉 that satisfies

|ωi〉 ∝ ∣∣G−1
i

�1〉 = G−1
i

�1
‖G−1

i
�1‖ . (4)

A key idea is to find the inverse of the matrix Gi with
quantum technique. If the weight is not unique, some further
regularization should be imposed on the cost function of Eq.
(2) [11].

In the following process, we make use of the matrix inverse
algorithm shown in [16,45] to prepare the quantum state |ωi〉.
Let the singular value decomposition (SVD) of Ai be Ai =
U�V † =∑ j σ

i
j |ui

j〉〈vi
j |; then the eigenvalue decomposition

of covariance matrix Gi [46] is

Gi =
K−1∑
j=0

(
σ i

j

)2∣∣vi
j

〉〈
vi

j

∣∣. (5)

Thus |G−1
i

�1〉 can be reexpressed as

∣∣G−1
i

�1〉 =
√

1∑K−1
j=0

∣∣β i
j

∣∣2/∣∣σ i
j

∣∣4
K−1∑
j=0

β i
j(

σ i
j

)2 ∣∣vi
j

〉
, (6)
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where β i
j = 〈vi

j |�1〉. Assume that we are given a matrix oracle
Oi which accesses the element Ai

mn of the matrix Ai:

|m〉|n〉|0 · · · 0〉 
→ |m〉|n〉∣∣Ai
mn

〉 = |m〉|n〉∣∣xi
m − xi

mn

〉
. (7)

This oracle Oi can be provided by quantum random ac-
cess memory (qRAM) using O(KD) storage space in
O(log2

2 max(K, D)) operations [47]. With these preparations,
we are able to efficiently simulate the unitary eıÂi and prepare
the weight’s state |ωi〉, where

Âi =
(

0 Ai

A†
i 0

)
.

To understand our algorithm quickly, we will give some
details below. First of all, we perform quantum singular value
decomposition (QSVD) of the matrix Ai on an initial state
|0 · · · 0〉|�1〉 to obtain the state

∑
j β

i
j |σ i

j〉|vi
j〉 containing singu-

lar values and right singular vectors of Ai. The first register
is assigned to store the singular values and the second register
to decompose |�1〉 in the space spanned by the right singular
vectors of Ai. The quantum state |�1〉 =∑K−1

j=0
1√
K
| j〉 can be

easily prepared by applying O(log2 K ) Hadamard gates on
O(log2 K ) qubits |0⊗ log2 K〉. Mathematically,

H⊗ log2 K |0⊗ log2 K〉

= 1

(
√

2)log2 K
(|0〉 + |1〉)⊗ log2 K

=
K−1∑
j=0

1√
K

| j〉. (8)

Now, we apply a unitary transformation taking σ i
j to Ci

|σ i
j |2 σ

i
j ,

where Ci is a normalized constant. Actually, this rotation
can be realized by applying Ry(2 arcsin Ci

|σ i
j |2 ) [48,49] on the

ancilla qubit |0〉,
K−1∑
j=0

β i
j

∣∣σ i
j

〉∣∣vi
j

〉|0〉

Ry−→
K−1∑
j=0

β i
j

∣∣σ i
j

〉∣∣vi
j

〉( Ci∣∣σ i
j

∣∣2 |1〉 +
√√√√1 − C2

i∣∣σ i
j

∣∣4 |0〉
)

. (9)

Next, uncompute the singular value register and measure the
ancilla qubit to obtain 1. The system is left with a state
proportional to

|ωi〉 ∝
√

1∑K−1
j=0

∣∣Ciβ
i
j

∣∣2/∣∣σ i
j

∣∣4
K−1∑
j=0

Ciβ
i
j∣∣σ i

j

∣∣2
∣∣vi

j

〉
. (10)

It is clear to see that the weight states {|ωi〉}M−1
i=0 can be

prepared by repeating the above process M times separately
with the gate resources scaling as O(MTg), where Tg denotes
the number of required gate in the process of preparing the
state |ωi〉. However, taking into account the extraction of
embedding vectors requiring a reconstructed weight matrix,
we introduce an improved approach which achieves a par-
allel speedup in the preparation of the weight matrix. We
reconstruct the weight matrix W = (|ω0〉, |ω1〉, . . . , |ωM−1〉)

via preparing an entanglement state |ψW 〉 =∑M−1
i=0 |ωi〉|i〉.

Theorem 2 validates the gate resources can be further reduced.
Theorem 2. For a given quantum state set {|xi〉}M−1

i=0 , the
task of preparing |ψW 〉 =∑M−1

i=0 |ωi〉|i〉 with error at most ε

has runtime

TW = O

(
log2

2(K + D)

ε3

M−1∑
i=0

‖Ai‖2
max

)
.

The required gate resources are O(Tg + log2 M ).
Proof. We add an ancilla M dimension system which

determines the applied unitary operator, given the initial state
|�1〉1|0 · · · 0〉2|0⊗ log2 M〉3|0〉4. The register 3 gives the number
of data sets. After performing O(log2 M ) Hadamard gates on
register 3, we apply the unitary operator(

M−1∑
i=0

Ui ⊗ |i〉〈i|
)

⊗ 1

on state
M−1∑
i=0

|�1〉1|0 · · · 0〉2|i〉3|0〉4,

where Ui is the quantum phase estimation part of matrix Âi

and 1 denotes the identity operator. This step obtains the state

M−1∑
i=0

K−1∑
j=0

β i
j

∣∣vi
j

〉
1

∣∣σ i
j

〉
2|i〉3|0〉4. (11)

We then rotate the singular value by applying
Ry(2 arcsin Ci

|σ i
j |2 ) on the ancilla qubit |0〉4. The system state is

M−1∑
i=0

K−1∑
j=0

β i
j

∣∣vi
j

〉
1

∣∣σ i
j

〉
2|i〉3

(√√√√1 − |Ci|2∣∣σ i
j

∣∣4 |0〉4 + Ci∣∣σ i
j

∣∣2 |1〉4

)
.

(12)
Finally, uncomputing the second register and measuring the
fourth register to see 1, we obtain the state

M−1∑
i=0

√
1∑K−1

j=0

∣∣Ciβ
i
j

∣∣2/∣∣σ i
j

∣∣4
K−1∑
j=0

Ciβ
i
j∣∣σ i

j

∣∣2
∣∣vi

j

〉|i〉, (13)

which is proportional to the entangled state
∑M−1

i=0 |ωi〉|i〉.
The runtime of preparing the state

∑M−1
i=0 |ωi〉|i〉 is dom-

inated by the quantum singular value estimation of Ai ∈
RD×K . In the process, we consider an extended matrix Âi ∈
R(K+D)×(K+D) and obtain the eigenvalues of Âi by performing
a quantum phase estimate. According to [45], we prepare the
state |ωi〉 with accuracy ε in runtime O(‖Ai‖2

max log2
2(K +

D)/ε3), where ‖Ai‖max is the maximal absolute value of
the matrix elements of Ai. Therefore, the entangled state∑M−1

i=0 |ωi〉|i〉 is prepared in runtime

TW = O

(
log2

2(K + D)

ε3

M−1∑
i=0

‖Ai‖2
max

)
. (14)

Overall, only extra O(log2 M ) Hadamard gates are required
along the way. Thus the quantum parallelism enables the
gate resources to be reduced to O(Tg + log2 M ) rather than
O(MTg).
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C. Variational quantum generalized eigenvalue solver

In this subsection, we compute the linear projection A. The
embedding of xi is accomplished by yi = A†xi. Unlike PCA
and LDA, we obtain the projection matrix A by solving the
following cost function based on the locally linear reconstruc-
tion errors:

�(y) =
M−1∑
i=0

⎛
⎝yi −

K−1∑
j=0

ωi
jy j

⎞
⎠

2

. (15)

Here, the fixed weights ωi
j characterize intrinsic geometric

properties of each neighborhood. Each high-dimensional data
xi ∈ RD is mapped to a low-dimensional data yi ∈ Rd , d �
D. The embedding vector yi is found by minimizing the cost
function (15) over yi. Following some matrix computation
[11,37], the cost function can be reduced to the generalized
eigenvalue problem:

XQX †a = λXX †a, (16)

where X = (x0, x1, . . . , xM−1), Q = (I − W )†(I − W ), and
I = diag(1, . . . , 1). The detailed derivation is shown in [38].

The generalized eigenvalue problem, Gx = λSx, is an im-
portant challenge in scientific and engineering applications.
Although Cong and Duan [35] have presented a Hermitian
chain product to solve the generalized eigenvalue problem by
replacing S−1 with S−1/2, the computation of matrix inverse
is extremely difficult on a classical computer. Alternatively,
quantum phase estimation (QPE) is a better candidate, but
the simulation of eiS−1G remains a fundamental challenge.
Even though one can efficiently perform QPE, it still requires
fully coherent evolution. Due to the above circumstances,
Theorem 3 gives a variational quantum generalized eigenvalue
solver (VQGE) for solving the generalized eigenvalue prob-
lem. Like the variational quantum eigenvalue solver (VQE)
[25], our VQGE can also be run on near-term noisy devices.
Algorithm 2 shows the outline of the variational quantum
generalized eigenvalue solver.

We first briefly review the subroutine quantum expectation
estimation (QEE) [25] in step 2 of Algorithm 2. The QEE
algorithm calculates the expectation value of a given Hamil-
tonian H for a quantum state |ϕ〉. Any Hamiltonian can be
rewritten as M terms [25,50,51], for real parameter hi j...

12...,

H = H1 + H2 + · · ·
=
∑

i1

hi
1σ

i
1 +
∑
i j12

hi j
12σ

i
1 ⊗ σ

j
2 + · · · ,

(17)

where indices i, j, . . . denote the subsystem on which the
operator acts and 1,2 identify the Pauli operator. Each subitem
Hm is a summation of some tensor products of Pauli operators.
According to Eq. (17), the expectation value is

〈H〉 = 〈H1〉 + 〈H2〉 + · · ·
=
∑

i1

hi
1

〈
σ i

1

〉+∑
i j12

hi j
12

〈
σ i

1 ⊗ σ
j

2

〉+ · · · . (18)

As a result, each expectation 〈Hm〉 is directly estimated using
fermionic simulations [52] or statistical sampling [53].

Algorithm 2: Variational quantum generalized eigenvalue
solver

step 1: Design a quantum circuit U (�θ ), controlled by a
set of experimental parameters �θ = (θi ), which can
prepare states |ϕ〉 = |ϕ({θi})〉.
step 2: Define an objective function f ({θi}) = 〈ϕ|HG |ϕ〉

〈ϕ|HS |ϕ〉 ,
which f maps parameters to a Rayleigh quotient of |ϕ〉 if
〈ϕ|HS |ϕ〉 = 0.
step 3: Find all the generalized eigenvalues and
corresponding generalized eigenstates.

(a) Compute the expectation 〈H1
G(S )〉, 〈H2

G(S )〉, . . ., on
|ϕn〉 = |ϕn({θi})〉 for all terms of HG(S ) by quantum
expectation estimation [25], which n denotes the
iteration times of repeating step 3.

(b) Sum these values with weights to obtain

fn = 〈ϕn|HG |ϕn〉
〈ϕn|HS |ϕn〉 .

(c) Apply the classical minimization algorithm (e.g.,
gradient descent) to minimize fn and determine the new
parameter {θn

i }.
(d) Use step 1 to generate the state |ϕn〉 = |ϕn(θ n

i )〉.
step 4: Update the Hamiltonian:

(a) if HS commutes with HS , HG = (HG − τHS )2,
HS = (HS )2, else go to (b).

(b) let H′
G = HG − τHS , H′

S = HS , and update fn to
new cost function R′

1, where τ is a parameter.
step 5: Perform Step 3 for a searched parameter τ .
Output: eigenstates |ϕ0〉, |ϕ1〉, . . . with eigenvalues
λmin = λ0 = f0 � λ1 � · · · � λmax.

In step 1, given a series of parameter vectors �θ =
(θ1, . . . , θL ), the quantum circuit U is defined as

U (�θ ) = UL(θL )UL−1(θL−1) · · ·U1(θ1), (19)

with L components. Mathematically, after preparing an N
qubits initial quantum state |0〉⊗N , the generated quantum
state is defined as

|ϕ〉 = L
i=1Ui(θi)|0〉⊗N . (20)

Note that the number of parameters and N are logarithmi-
cally proportional to the dimension of the generated state |ϕ〉
[54–56]. These parametrized quantum circuits have shown
significant potential in generative adversarial learning [57,58]
and quantum circuit Born machines [59].

In step 3, we show how to obtain the generalized eigenstate
and corresponding generalized eigenvalue. Our results rely on
the fact that the Rayleigh quotient [60]

R(|ϕ〉;G,S ) = 〈ϕ|G|ϕ〉
〈ϕ|S|ϕ〉 , 〈ϕ|S|ϕ〉 = 0 (21)

is stationary at |ϕ〉 = 0 if and only if (G − λS )|ϕ〉 = 0 for
some scalar λ where S is positive definite [60]. Let HG =
G and HS = S , which also have the decomposition like
Eq. (17). The first iteration obtains the generalized eigenstate
with the lowest generalized eigenvalue by minimizing the
R(|ϕ〉;G,S ).

To find eigenstates of S−1G, we first introduce two cost
functions for tackling two different cases. When G commutes
with S , we update the Hamiltonian HG = (HG − τHS )2,
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HS = (HS )2, where τ is a parameter close to the energy of
the generalized eigenstates, which turns the generalized eigen-
values into the ground-state energy of updated Hamiltonian
(HG,HS ). The following derivation ensures this modification
provides all generalized eigenvalues. We consider the equa-
tion

(HG − τHS )2|ϕ〉 = (H2
G + τ 2H2

S − 2τHGHS
)|ϕ〉

=
(

λ + τ 2

λ
− 2τ

)
HGHS |ϕ〉

(22)

= (λ − τ )2 1

λ
HGHS |ϕ〉

= (λ − τ )2H2
S |ϕ〉.

The second equality uses the assumption that G commutes
with S (HGHS = HSHG). Therefore, the Rayleigh quotient is

R1 = 〈ϕ|(HG − τHS )2|ϕ〉
〈ϕ|H2

S |ϕ〉 = (λ − τ )2. (23)

Clearly, since Eq. (23) is a quadratic function of the variable τ ,
the ground generalized eigenstate of the updated Hamiltonian
is found on the unique minimum point.

However, the above approach is useless when it is applied
to the general situation such as GS = SG. Our second alter-
native approach now is presented. We update the Hamiltonian
to the following form:

H′
G = HG − τHS , H′

S = HS .

The presented Hamiltonian induces a new cost function

R′
1 =
( 〈ϕ|(HG − τHS )|ϕ〉

〈ϕ|HS |ϕ〉
)2

= [〈ϕ|(HG − τHS )|ϕ〉]2

(〈ϕ|HS |ϕ〉)2

= (λ − τ )2, (24)

which is calculated by performing QEE for the updated
Hamiltonian.

We next estimate the energy gap � = λmax − λmin by find-
ing the minimum and maximum of Eq. (21). After estimating
the energy interval [λmin, λmax], one tunes the parameter τ

from λmin to λmax with a step size d , for example, d =
λmax−λmin

1000 . For each parameter τ , one can estimate the mini-
mum of cost function R1(R′

1) by measuring the corresponding
expectation values. When the experimental minimal value of
cost function R1(R′

1) tends to zero, it indicates τ is close to
the generalized eigenvalue of (G,S ). Notice that the mini-
mum corresponds to a generalized eigenvalue and an optimal
parameter vector �θopt, which is applied for preparing the
generalized eigenstates by requesting the variational circuits
U (�θopt ). The searched method is similar to the idea of [61,62].
Finally, we sort the generalized eigenvalues and output all
eigenstates via the unitary circuit in step 1.

The main result of this subsection is the following theorem.
Theorem 3. For a Hermitian matrix pencil (G,S ) with

invertible matrix S , let ε > 0 be a precision parameter. Al-
gorithm 2 has the coherence time O(1) that outputs all gen-
eralized eigenstates of the following generalized eigenvalue
problem:

G|ϕ〉 = λS|ϕ〉,

requiring Õ(1/ε2) repetitions, where G,S ∈ Rn×n and |ϕ〉 is
the generalized eigenstate corresponding to the generalized
eigenvalue λ.

Proof. The time the quantum computer remains coherent
is O(1), which is determined by the extra depth of used
circuit for preparing the parametrized state. If the desired
error is at most ε, the cost of the expectation estimation
of local Hamiltonian Hm is O(| max{hi j...

12...}|2/ε2) repetitions
of the preparation and measurement procedure [25]. The
overall generalized eigenstates can be prepared via n times
queries for the parameter quantum circuit and M Hamiltonian
items. Thus we require Õ(1/ε2) = O(nMP| max{hi j...

12...}|2/ε2)
samples from the parametrized circuit with coherence time
O(1), where the constant P is determined by the classical min-
imization method used and the Õ suppresses constant items.
Due to the fact that our cost function occurs on the quantum
computer, our Algorithm 2 has a speedup over classical cost
evaluation. �

With the assistance of Theorem 3, only replacing G, S
with XQX † and XX † can we find the d lower eigenstates
{|ai〉}d−1

i=0 as the column of the projection matrix A with run-
time Õ(1/ε2). Note that XQX † and XX † are positive definite
matrices in RD×D [38]. One calculates these two Hermitian
matrices by a matrix multiplication algorithm on a classical
computer [63]. Assuming that these two matrices can be
regarded as a row-computable Hamiltonian, Berry et al. [50]
have shown that XQX † and XX † may be decomposed as a
sum of at most O(6D2) one-sparse matrices each of which is
efficiently simulated in O(log2 D) queries to the Hamiltonian.

D. Extract the lower-dimensional manifold

We now extract the low-dimensional manifold based upon
the projection matrix A. The embedding state is given as

|xi〉 
→ |yi〉 = A†|xi〉,
A = (|a0〉, |a1〉, . . . , |ad−1〉), (25)

where |yi〉 is a d-dimensional vector and A is a D × d matrix.
Our qNPE maps arbitrary high-dimensional vector to a lower-
dimensional vector. Thus if one is given a test vector |xtest〉,
then the embedding vector is |ytest〉 = A†|xtest〉.

Here, we propose two optional methods for the extraction
of the embedding states. One of them is based on QSVD. Like
[45], an extended matrix is considered as

Ã =
(

0 A†

A 0

)
. (26)

Assume that Ã has eigenvalue decomposition

Ã =
∑

j

σ j |ũ j
+〉〈ũ j

+| − σ j |ũ j
−〉〈ũ j

−|, (27)

with singular value decomposition A† =∑ j σ j |u j〉〈v j |,
where |ũ j

±〉 = 1√
2
(|0〉|u j〉 ± |1〉|v j〉). We then perform quan-

tum phase estimation on the initial state |0, xi〉|0, . . . , 0〉 and
obtain a state ∑

j

α±
j |ũ j

±〉
∣∣∣∣± σ j

d + D

〉
|0〉, (28)
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where α±
j = ±〈v j |xi〉√

2
. Performing a Pauli operator σz on the

flag qubit and applying Ry(2 arcsin σ j

d+D ) on an ancilla qubit
|0〉, we generate a state

∑
j

α+
j |0〉|u j〉

[
σ j

d + D
|1〉 +
√

1 −
(

σ j

d + D

)2

|0〉
]
. (29)

To this end, we project onto the |uj〉 part and measure the final
qubit to 1 resulting in a state∑

j

σ j

d + D
α+

j |u j〉 ∝
∑

j

σ j |u j〉〈v j |xi〉 = A†|xi〉. (30)

Repeating the above process M times, the embedding state
|y0〉, |y1〉, . . . , |yM−1〉 will be prepared with error ε in time
O(M ‖A‖2

max log2
2(D + d )/ε3).

Alternatively, another approach is based on the well-known
swap test [40]. Since the embedding low-dimensional data is

|yi〉 = A†|xi〉 = (〈a0|xi〉, 〈a1|xi〉, . . . , 〈ad−1|xi〉)†, (31)

we convert formula (25) into a computation of inner prod-
uct item 〈ak|xi〉. The swap test calculates the square of the
inner product by the expectation of operators. But here the
magnitude and sign of these inner products are also re-
quired. Fortunately, the inner product can be estimated with
O(log2 D) number of measurements [64,65]. The embedding
low-dimensional vector can be computed using resources
scaling as O(M d log2 D). In summary, this two approaches
help one to obtain the embedding vectors with quantum (clas-
sical) form which can be directly applied in other quantum
(classical) machine learning processes.

E. Numerical simulations and performance analysis

In this subsection, we conduct a numerical experiment
to simulate the proposed VQGE. For the implementation,
we consider the following two 32 × 32 matrices (using five
qubits).

Example 1:

G1 = 1 + 0.2σ 1
1 ⊗ σ 2

3 + 0.5σ 1
1 ⊗ 1,

S1 = 1 + 0.441σ 1
1 ⊗ σ 2

3 + 0.3939σ 1
1 ⊗ 1,

(32)

which has four different generalized eigenvalues λ1 =
0.6685, λ2 = 0.9265, λ3 = 1.3643, and λ4 = 1.8171. In ex-
ample 1, we only consider the case when G commutes with
S .

Example 2:

G2 = 1 + 0.63σ 1
1 ⊗ σ 2

3 ⊗ 1 + 1.2σ 1
1 ⊗ 1 + 0.2σ 1

3 ⊗ 1,
(33)

S2 = 1 + 0.1741σ 1
1 ⊗ σ 2

3 ⊗ 1 + 0.2981σ 1
1 ⊗ 1.

Example 2 gives a general case for G2S2 = S2G2, which
also has four different generalized eigenvalues λ1 =
−1.5872, λ2 = 0.4480, λ3 = 1.4396, and λ4 = 1.9370.

Here, we utilize a common variational circuit U (�θ ) intro-
duced in [54,66]. The variational circuit U (�θ ) is parametrized
by �θ ∈ R2n(L+1), U (�θ ) = U L

R (θL )Uent · · ·U 2
R (θ2)UentU 1

R (θ1),
which contains L layers. We alternate layers of entangled
gates Uent = (i, j)Z (i, j) with full layers of single-qubit ro-
tations Ut

R(θt ) = ⊗n
i=1U (θ t

i ), with U (θ t
i ) ∈ SU(2). The entan-

gled unitary Uent consists of the controlled Z gates applied
on the i and j qubits. This short-depth circuit can generate
any unitary if sufficiently many layers L are applied [66].
Appendix A presents a detailed analysis on this ansatz and
our experiment’s setting.

The experiment’s results of the VQGE implementation are
shown in Fig. 1. The first and the last eigenvalue is estimated
by finding the minimum and maximum of Eq. (21). Other
generalized eigenvalues is found by scanning τ from λmin to
λmax with a step size d , for example, d = λmax−λmin

1000 . For each
parameter τ , one can estimate the minimum of cost function
R1(R′

1) by measuring the corresponding expectation values.
The minimum of each cost function corresponds to a τ which
is equal to a generalized eigenvalue. The cost function R1

is applied for example 1 and R′
1 for example 2 according to

the analysis in Sec. II C. Finally, once all optimal parameters
are determined, we obtain the generalized eigenvalues via the
expectation values of different Hamiltonians.

Figure 2 shows the required resources of quantum and
classical methods. Classically, performing Theorem 2 has a
runtime O((K + D)3M ). The runtime complexity of solving
the generalized eigenvalue problem is of order O(n3) on
classical computation devices [67]. And we have explained
the required classical resources of Theorems 1 and 3 in
subsections A and C.

However, as Aaronson has pointed out in [68], it is also not
clear whether the qNPE achieves an exponential speedup over
the classical part for practical instances of a dimensionality
reduction problem. It is due to the fact that one requires a
more efficient state preparation technique for uploading the
classical points into a quantum state before the swap test
and the QSVD. One recent result indicates that there is a
quantum-inspired classical recommendation system exponen-
tially faster than previous classical systems [69]. In this work,
the qNPE is based on the amplitude encoding using log2 D
qubits for a D-dimensional classical data point. Currently, the
preparation of arbitrary quantum states is still a nontrivial
topic, although some techniques have been developed such as
the well-conditioned oracle [70] and the quantum RAM [47].
Thus we need to treat the exponential speeds carefully for a
machine learning problem.

III. QUANTUM LOCAL DISCRIMINANT EMBEDDING

In this section, based on the variational quantum general-
ized eigenvalues (VQGE), we develop a quantum algorithm
for pattern classification which preserves the local manifold.
This algorithm is a quantum version of local discriminant
embedding [37] (qLDE). The task is to classify a high-
dimensional vector into one class, given M data points of
the form {(xi, ci ) : xi ∈ RD, ci ∈ {1, 2, . . . , P}}M−1

i=0 , where ci

depends on the class to which xi belongs. Figure 3 shows the
expected effect of local discriminant embedding. After finding
an associated submanifold of each class, the qLDE separates
the embedded data points into a multiclass lower-dimensional
Euclidean space.

First of all, one needs to construct two neighborhood
graphs: the intrinsic graph Gw (within-class graph) and the
penalty graph Gb (between-class graph). For each data point
xi, we define a subset Nw,i,K (Nb,i,K ′ ), which contains the K
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FIG. 1. Search process for generalized eigenvalues of (a) Example 1 and (b) Example 2. After estimating the energy interval [λmin, λmax],
one tunes the parameter τ from λmin to λmax with a step size d , for example, d = λmax−λmin

1000 . For each parameter τ , one can estimate the other
two generalized eigenvalues by minimizing the cost function R1(R′

1). The minimum of each cost function corresponds to a τ which is equal to
a generalized eigenvalue with optimal vector �θopt.

(K ′) neighbors having the same (different) class label with
xi. For graph Gw, we consider each pair of xi and x j with
ci = c j . An edge is added between xi and x j if x j ∈ Nw,i,K .
To construct Gb, likewise, we consider each pair of xi and x j

with ci = c j . An edge is added if x j ∈ Nb,i,K ′ . Theorem 1 can
help us to finish the construction of Gw and Gb by finding K
(K ′) neighbors.

Next, we determine the weight matrix Ww(b) = (Ww(b),i j )
of graph Gw(Gb) by the following convex optimization
formulation:

min
M−1∑
i=0

∥∥∥∥∥∥xi −
∑

j

Ww(b),i jx j

∥∥∥∥∥∥
2

such that
K−1∑
j=0

Ww(b),i j = 1, i = 0, 1, · · · , M − 1. (34)

Theorem 2 prepares two weight states

|ψWw
〉 =

M−1∑
i=0

|ωwi〉|i〉, |ψWb〉 =
M−1∑
i=0

|ωbi〉|i〉,

FIG. 2. Required resource complexity of quantum and classical
methods.

with error at most ε in runtime

O

(
log2

2[K (K ′) + D]

ε3

M−1∑
i=0

‖Ai‖2
max

)
.

The required gate resource count is O(log2 M + Tg).
We next turn to find the projection matrix A that maximizes

the local margins among different classes and pushes the
homogenous samples closer to each other [71]. The overall
process corresponds to the below mathematical formula:

min
A

1

2

∑
i j

‖A†(xi − x j )‖2Ww(b),i j . (35)

After simple matrix algebra (see details in [37]), the columns
of the projection matrix A are the generalized eigenvectors

LDE

1x

2x

3x

4x

5x

6x

1y
2y

3y

4y

5y

6y

FIG. 3. Expected effect of LDE [71]. The point x1 has three
neighbors (x2, x3, x5). The points with the same shape belong to
the same class. The within-class graph connects nearby points with
the same label. The between-class graph connects nearby points
with different labels. After LDE, the local margins between different
classes are maximized and the distances between local homogeneous
samples are minimized.
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with the d largest different eigenvalues in

Tb|a〉 = λTw|a〉, (36)

where Tw(b) = X (Iw(b) − Ww(b) )X †, X = (x0, x1, . . . , xM−1),
and Iw(b) is a diagonal matrix with Iw(b),ii =∑ j Ww(b),i j . Then,
we apply Theorem 3 to obtain the d generalized eigenvectors
with d largest different eigenvalues of (36).

Once we have learned the projection matrix A using
qLDE, the embedding state is obtained via the following
transformation:

|xi〉 
→ |yi〉 = A†|xi〉,
A = (|a0〉, |a1〉, . . . , |ad−1〉),

where |yi〉 is a d-dimensional vector and A is a D × d matrix.
Similarly, a given test state is projected to a state |ytest〉 =
A†|xtest〉. Finally, a quantum nearest-neighbor algorithm [19]
is directly applied on multiclass classification tasks by com-
puting the distance metrics between the test point |ytest〉 and
other training points with a known class label. For example,
for a given two clusters {U } and {V }, if

min
u∈{U }

D(|ytest〉, |u〉) � min
v∈{V }

D(|ytest〉, |v〉), (37)

then we can assign |ytest〉 to cluster class {U }, where D de-
notes the trace distance. The classification performance shows
exponential reductions with classical methods [19].

IV. CONCLUSIONS AND DISCUSSION

In conclusion, this work presented qNPE and qLDE for
dimensionality reduction and classification. Both of them
preserve the local structure of the manifold space in the
process of dimensionality reduction. We demonstrated that
qNPE achieves an exponential advantage over the classical
case since every step of qNPE has an exponential speedup.
The performance of qLDE on classification tasks is also
competitive with classical analog.

Along the way, we developed two useful subroutines in
machine learning and scientific computation. The first one is
the quantum K nearest-neighborhood search, which finds K
lowest values in an unordered set with O(K

√
M ) times. It may

help us sort an unordered list with an upper bound O(M
√

M ).
Another subroutine is a variation hybrid quantum-classical
algorithm for solving the generalized eigenvalue problem.
In electronic structure calculations, for instance, the electron
density can be computed by obtaining the eigenpairs (Em, �m)
of the Schrödinger-type eigenvalue problem H�m = EmS�m

with different discrete energies Em, where H denotes the
Hamiltonian matrix and S is a symmetric positive matrix
[72]. Our variational quantum generalized eigenvalue solver
can obtain the eigenpairs (Em, �m) in runtime Õ(1/ε2) with
error ε independent of the size of the Hamiltonian. Notice that
our VQGE does not use the Hamiltonian simulation, ampli-
tude amplification, and phase estimation. We have performed
numerical experiments solving the generalized eigenvalue
problems with size 25 × 25. In the main text, we consider
the noiseless evolution of quantum states. Actually noise re-
silience may be a general phenomenon when one applies vari-
ational quantum algorithms (including our VQGE) on NISQ
computer [73,74]. Although we have considered measurement

noise and given an error bound in Appendix B, this problem
is still required to be considered in our near future work.

While we have presented two algorithms for dimension-
ality reduction and classification, some questions still need
further study. For example, how to construct the Hamil-
tonian X †QX (X †X ) from the entanglement state |ψW 〉 =∑M−1

i=0 |ωi〉|i〉. Finally, as the effect of artificial neural net-
works to the quantum many-body problem [75], it would be
interesting to investigate if our algorithms can also reduce
the exponential complexity of the many-body wave function
down to a tractable computational form.
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APPENDIX A: VARIATIONAL ANSATZ

In this section, we analyze two different variational ansatz
circuits which are performed to generate the trial state.

The first variational circuit is the product ansatz. For ex-
ample, an n qubits quantum state |ϕ(�θ )〉 is represented by a
tensor product

|ϕ(�θ )〉 = U (�θ )|0〉⊗n = ⊗n−1
i=0 Ry(θi )|0〉⊗n

=
n−1⊗
i=0

(
cos

θi

2
|0〉 + sin

θi

2
|1〉
)

.
(A1)

The vector �θ is defined as �θ = (θ0, θ1, . . . , θn−1)† and the
rotation operator is Ry = e−iθY/2. Since the trial state |ϕ(�θ )〉
is a separated state, it can only be applied on special matri-
ces which have separated eigenvectors. However, in general,
the eigenvectors of a given matrix may be an entangled
eigenvector. Thus one can choose the following variational
ansatz circuit U (�θ ) to prepare an entangled trial state |ϕ(�θ )〉 =
U (�θ )|0〉⊗n.

The variational circuit U (�θ ) is represented as

U (�θ ) = U L
R (θL )Uent · · ·U 2

R (θ2)UentU
1
R (θ1), (A2)

where Uent = (i, j)Z (i, j) and Ut
R(θt ) = ⊗n

i=1U (θ t
i ) with

U (θ t
i ) ∈ SU(2). The entangled unitary Uent consists of the

controlled Z gates. In [54], Havlíček et al. have used the
variational quantum circuit to solve a classification problem
of supervised machine learning.

In our experiment, the trial state |ϕ(�θ )〉 is prepared by
repeating one time after applying a rotation operator Ry =
e−iθY/2 on five qubits. The variational circuit is shown in
Fig. 4.

APPENDIX B: ERROR ANALYSIS

In the main text, we consider the ideal situation without
any noise. However, noise may be a general phenomenon
when one applies variational quantum algorithms (including
our VQGE) on a NISQ computer, such as, for example,
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measurement noise, gate noise, and Pauli channel noise. In
this section, we only consider the measurement noise and find
an error bound of generalized eigenvalues.

Let δ > 0 denote the error in estimating expectation value
〈G〉, 〈S〉. We easily obtain that the error E of the generalized
eigenvalue of matrix pair (G,S ) is

E =
∣∣∣∣ 〈G〉 + δ

〈S〉 + δ
− 〈G〉

〈S〉
∣∣∣∣ �
∣∣∣∣ 〈G〉 + δ

〈S〉 − 〈G〉
〈S〉
∣∣∣∣

� δ

〈S〉 � δ

λS
min

,

(B1)

where λS
min is the minimum eigenvalue of S . Thus the error

E has an upper bound O(δ/λS
min). If we require this error to

be of O(ζ ), we need to take the measurement error to be δ =
O(λS

minζ ).

1
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1
4yR0

1
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Z

Z

Z
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Z 2
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2
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FIG. 4. Variational circuit for preparing the trial state |ϕ(�θ )〉,
where �θ = (θ1

1 , . . . , θ1
5 , θ2

1 , . . . , θ2
5 )†. The dashed box indicates the

repeated block.
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