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In this paper, a flexible and effective scheme is proposed to realize nonadiabatic geometric quantum gates
with the invariant based reverse engineering and the nonadiabatic holonomic quantum computation (NHQC+)
presented in recent work [B.-J. Liu et al., Phys. Rev. Lett. 123, 100501 (2019)] for extensible geometric quantum
computation. The scheme provides variabilities for most of control parameters, and can build up multiple
evolution paths with different geometric phases acquired in a cycling evolution. As the computational basis
can be covered by the evolution paths, the realization of the nonadiabatic geometric quantum computation is
possible without auxiliary levels. Moreover, multiple types of nonadiabatic geometric quantum gates can also
be easily constructed by only adjusting boundary conditions of control parameters with the method. To show
the applications of the scheme, we discuss the implementations of nonadiabatic geometric quantum gates of
spin qubits in a double-quantum-dot system with numerical simulations. The results indicate that the scheme
possesses robustness against the errors and noise. Therefore, the scheme may offer some interesting perspectives
for the realization of the nonadiabatic geometric quantum computation.
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I. INTRODUCTION

Quantum computation is one of the most important parts
in the field of quantum information science, which has been
shown as a promising candidate in solving many practical
problems [1–5]. Since the implementations of the quantum
gates are indispensable to the realization of the quantum com-
putation, how to implement quantum gates with high accuracy
and fast speed is a very hot topic in the past decades [6–10],
and many interesting researches [11–17] based on different
viewpoints have been put forward. The geometric quantum
computation [18–25] is a very interesting concept that has
arisen in the previous researches, which makes the use of the
Abelian or non-Abelian geometric phases [26–29] of quantum
states acquired in a cyclic evolution. Since the geometric
phase is mainly depended on the global properties of the
evolution paths, the geometric quantum gates are resistant to
the influence of the local fluctuations [30–35]. This feature
makes the geometric quantum computation receive increasing
attention.

In the early implementations of geometric quantum gates,
the geometric phases usually obtained in an adiabatic cycling
evolution [18,21], where the variations of parameters should
be slow enough to make sure the eigenvectors parallel evolve.
The adiabatic evolution limits the speed of the gate imple-
mentations and causes continuous exposure of the system to
the decoherence. Afterward, to accelerate the geometric quan-
tum computation, the concept of the nonadiabatic geometric
quantum computation been developed, and has subsequently
been applied in the realization of different kinds of quantum
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gates in many physical systems [36–47]. Because the nona-
diabatic geometric quantum computation removes the limit
of speed required by the adiabatic evolution, the gate imple-
mentations have shown the robustness against both noise and
decoherence.

As a typical way to implement nonadiabatic geometric
quantum gates, one can select a set of solutions of the
Schrödinger equation and form a subspace. If the selected
solutions satisfy both the cyclic evolution and the parallel
transport conditions, then one can acquire a non-Abelian
geometric phase [36,37] in the considered subspace. This
approach is known as the nonadiabatic holonomic quantum
computation (NHQC), which has been demonstrated to share
all the holonomic nature of its adiabatic counterpart while be-
ing free of the long run-time requirement [48–50]. The merits
of the NHQC can help to produce high-fidelity quantum gates.
However, the parallel transport conditions may constrain the
selections of control parameters in the Hamiltonian in some
cases, which make NHQC sometimes relatively complex to
combining with some quantum control methods. Since many
quantum control methods are very helpful to study the dy-
namics of a quantum system and optimize the quantum evo-
lution against imperfections, exploiting these methods may
benefit the constructions of geometric gates in more complex
quantum systems, and further promote the gate fidelities. This
point motivates researches to find approaches for reducing
the constrained conditions of NHQC, so that the geometric
quantum computation can be more compatible with most of
quantum control methods.

Recently, a flexible scheme [51] has been proposed, whose
framework is based on a set of vectors, which demand looser
restrictions relative to the solutions of the Schrödinger equa-
tion used in NHQC. With the relaxation of the conditions, the
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nonadiabatic geometric gates can be constructed in an exten-
sible way with the method of the scheme [51], and the method
is called as the NHQC+ because it can collaborate with
many quantum control methods including counteradiabatic
driving (CD) [52–54], dynamical decoupling (DD) [55–57],
single-shot-shaped pulse (SSSP) [58,59], etc., becoming the
compound such as NHQC + CD, NHQC + DD, NHQC +
SSSP, and so forth. The flexibility of the NHQC+ greatly
diversifies the choices of the control parameters. This inspires
us to consider whether the NHQC+ can work together with
more quantum control methods.

Among many quantum control methods, the reverse engi-
neering [60–65] is a very flexible one, which can cooperate
with many useful mathematical tools including the Lie alge-
bra and Lie transforms [66–70], geometric rotation [71,72],
quaternion [72,73], and so on. To date, the reverse engineering
has shown many interesting applications in investigating and
controlling the evolutions of quantum states in multilevel and
multiparticle systems [74–76]. However, the combinations
of the reverse engineering and the NHQC+ have not been
discussed. In fact, the reverse engineering holds the poten-
tial in constructing multiple evolution paths for the quan-
tum computation. Considering the fact that many previous
NHQC schemes work with time-independent eigenvectors of
the Hamiltonian, some control parameters of the Hamiltonian
should not vary with time, and the realizations of the quantum
gates usually require one or more auxiliary energy levels [77].
The exploitations of multiple evolution paths can give more
degrees of freedom to the control parameters, which allow
the nonadiabatic geometric gates to be constructed without
the auxiliary levels. Moreover, different geometric phases
acquired in different evolution paths can enrich the types of
available quantum gates. Hence, the study of the combination
of the reverse engineering and the NHQC+ may make the
implementations of nonadiabatic geometric quantum gates
even more flexible.

In this paper, as an attempt for the combination of the
reverse engineering and the NHQC+, we study the imple-
mentations of nonadiabatic geometric quantum gates with the
invariant based reverse engineering (IBRE) and NHQC+. We
first show the IBRE method can provide multiple evolution
paths, which satisfying all of the conditions of the NHQC+.
Thus, we can build up a compound, read as NHQC + IBRE,
for the multipath quantum computation. The scheme shares
the flexibility of the IBRE, and can benefit the implementation
of geometric quantum gate in many ways. First, all of vectors
in the computational basis can be covered by multiple evolu-
tion paths, so that the requirement of the auxiliary levels can
be avoided. Second, the scheme allows most of the control pa-
rameters to vary in a cycling evolution. Based on the variation
of parameters, different geometric phases can be acquired in
different evolution paths. With the acquired geometric phases,
we can realize multiple types of nonadiabatic geometric quan-
tum gates by only adjusting the boundary conditions of control
parameters. Third, the scheme can be applied in various phys-
ical systems with different dynamic invariants constructed
by the Lie algebra. To demonstrate the application of the
scheme, we discuss the implementations of nontrivial two-
qubit nonadiabatic geometric quantum gates of spin qubits in
a double-quantum-dot system [78,79], where two spins can be

individually driven by magnetic fields and couple with each
other through the Heisenberg interaction. The performance
of the scheme is estimated with the numerical simulations,
and the results indicate the scheme holds robustness against
the errors and noise. Therefore, we hope the scheme can be
helpful to the fast and precise implementation of geometric
quantum computations.

The article is organized as follows. In Sec. II, we briefly
review the Lewis-Riesenfeld invariant theory [80] and the
method for constructing dynamic invariant with the help of
Lie algebra [67]. In Sec. III, we introduce the conditions of
the NHQC+ [51] and show the construction of the NHQC +
IBRE. In Sec. IV, we discuss the physical implementations of
nonadiabatic geometric quantum gates of two coupled spins
in a double-quantum-dot system with the NHQC + IBRE as
an application of the scheme. In Sec. V, we analyze the
performance of the quantum gates with the NHQC + IBRE
under the influence of the errors and noise via numerical
simulations. Finally, the conclusion is given in Sec. IV.

II. REVIEW OF INVARIANT BASED
REVERSE ENGINEERING

A. Lewis-Riesenfeld invariant theory

We now briefly review the Lewis-Riesenfeld invariant the-
ory [80]. Let us consider a system with Hamiltonian H (t ).
By introducing a Hermitian invariant operator I (t ), which
satisfies (h̄ = 1)

i
∂

∂t
I (t ) − [H (t ), I (t )] = 0, (1)

the solution |ψ (t )〉 of the time-dependent Schrödinger
equation

i
∂

∂t
|ψ (t )〉 = H (t )|ψ (t )〉 (2)

can be expanded by eigenvectors of I (t ) as

|ψ (t )〉 =
∑

k

Ckeiαk (t )|φk (t )〉. (3)

Here, |φk (t )〉 is the kth eigenvector of I (t ), Ck = 〈φk (0)|ψ (0)〉
is the corresponding coefficient, and αk (t ) is the Lewis-
Riesenfeld phase for |φk (t )〉. Assuming the initial time is
ti = 0, αk (t ) reads as

αk (t ) =
∫ t

0
〈φk (t ′)|i ∂

∂t ′ − H (t ′)|φk (t ′)〉dt ′. (4)

B. Constructing dynamic invariants with Lie algebra

In this section, we review the method for the construct-
ing of invariants with Lie algebra [67]. Consider a system
whose Hamiltonian is H (t ). We suppose that H (t ) could be
described by

H (t ) =
N∑

j=1

λ j (t )Gj, (5)

with {Gj} being a set of Hermitian generators spanning a
Lie algebra (dynamical algebra [81]), which satisfies the
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orthogonal condition with the Hilbert-Schmidt inner product
(X1,X2) = Tr(X1X †

2 ). Assuming

[Gj,Gj′ ] = i
∑

j

μ j j′j Gj ( j, j′, j ∈ {1, 2, 3, . . . ,N}), (6)

if an invariant I (t ) of the system could be written by

I (t ) =
N∑

j=1

ξ j (t )Gj, (7)

we have

ξ̇j (t ) =
N∑

j, j′=1

λ j (t )ξ j′ (t )μ j j′j , (8)

when combining Eq. (1) and Eqs. (5)–(7).
As the existence of invariant in the form as Eq. (7) is very

important for the construction of the invariant, we first prove
that when {λ j (t )} are given, one can obtain solutions of {ξl (t )}
from Eq. (8). Thus, we define an N × N matrix P (t ) with
matrix element

P j′j (t ) =
N∑

j=1

λ j (t )μ j j′j , (9)

and an N-dimension vector

�ξ (t ) =

⎡
⎢⎢⎣
ξ1(t )
ξ2(t )
. . .

ξN (t )

⎤
⎥⎥⎦, (10)

such that Eq. (8) can be rewritten as

�̇ξ (t ) = P (t )�ξ (t ). (11)

Equation (11) describes first-order linear differential equa-
tions. According to the existence theorem of solutions for
first-order linear differential equations [82], one can find a
solution for �ξ (t ) theoretically. Thus, there exists an invariant
in the form of Eq. (7).

Based on the results above, one can always find an invariant
from the differential equations shown in Eq. (11) with a given
set of {λ j (t )}, theoretically. However, the process of solving
the invariant I (t ) in Eq. (7) is usually very complex. Thus,
rather than solving the invariant I (t ) with known {λ j (t )},
reversely constructing control Hamiltonian of the system with
parameters {ξ j (t )} of the invariant is a good idea in some
cases. For this sake, an N × N matrix M(t ) with matrix
element and an N-dimension vector are defined as

M jj (t ) =
N∑

j′=1

ξ j′ (t )μ j j′j (12)

and

�λ(t ) =

⎡
⎢⎢⎣
λ1(t )
λ2(t )
. . .

λN (t )

⎤
⎥⎥⎦. (13)

Then, Eq. (8) can be rewritten as

�̇ξ (t ) = M(t )�λ(t ). (14)

Reversely solving �λ(t ) from Eq. (14), one can design the

control Hamiltonian by design �ξ (t ) and �̇ξ (t ), with the question
about solving a set of complex differential equations being
avoided. We show in Appendices D and E that the matrix
M(t ) is always not a full-rank matrix, and Eq. (14) can be
solved with constraint equations.

III. COMBINATION OF THE NHQC+ AND THE IBRE

A. Conditions of the NHQC+
In this section, to make the combination of the NHQC+

and the IBRE more clear, we briefly review the conditions
of the NHQC+ [51]. We consider a complete basis V =
{|ψm(t )〉|m = 1, 2, . . . ,M}, in which all the vectors follow
the Schrödinger equation. Besides, there exists a subspace
S1 spanned by the vectors in the subset V1 of V . Generally
speaking, to realize the NHQC in S1, two conditions should
be satisfied [36,37]:

(i)
∑

|ψm〉∈V1

|ψm(T )〉〈ψm(T )| =
∑

|ψm〉∈V1

|ψm(0)〉〈ψm(0)|, (15)

(ii) 〈ψm(t )|H (t )|ψm′ (t )〉 = 0, (|ψm〉, |ψm′ 〉 ∈ V1), (16)

which ensure a cyclic evolution without dynamic phases
being accumulated during the time interval [0,T ]. Since
the condition shown in Eq. (16) requires constraints for all
|ψm〉, |ψm′ 〉 ∈ V1, the evolution may sometimes be relatively
complex to be combined with some pulse design methods
and optimization methods. To remove some of the constraints,
the NHQC+ suggests to find an alternative basis as Ṽ =
{|ψ̃m(t )〉|m = 1, 2, . . . ,M}, in which |ψ̃m(t )〉 is connected
with |ψm(t )〉 at the initial and the final time as |ψ̃m(T )〉 =
|ψ̃m(0)〉 = |ψm(0)〉. According to the results of Ref. [51],
to construct a nonadiabatic geometric quantum gate with
NHQC+, the vectors in Ṽ should satisfy several conditions.
First, defining �m(t ) = |ψ̃m(t )〉〈ψ̃m(t )|, �m(t ) should satisfy
the von Neumann equation

d

dt
�m(t ) = −i[H (t ), �m(t )]. (17)

Besides, for each |ψ̃m(t )〉 ∈ Ṽ , the condition in the following
should be fulfilled:

ϑm(T ) = −
∫ T

0
〈ψ̃m(t )|H (t )|ψ̃m(t )〉dt = 0, (18)

to make the dynamic phase ϑm(T ) acquired in the whole
process vanish, such that the evolution becomes purely
geometric as

U (T, 0) =
∑

m

ei
m (T )|ψ̃m(0)〉〈ψ̃m(0)|, (19)

with


m(t ) = i
∫ t

0
〈ψ̃m(t ′)| ˙̃ψm(t ′)〉dt ′. (20)

Comparing the condition shown in Eq. (18) with that shown in
Eq. (16), the constraints for m �= m′ are removed. Moreover,
the condition shown in Eq. (16) should be satisfied at each
moment, while the condition shown in Eq. (18) is only relative
to the integral in the time interval [0,T ]. Thus, the NHQC+
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may be compatible with different pulse design methods and
optimization methods.

B. NHQC + IBRE for multipath nonadiabatic geometric
quantum computation

Here, we show that the IBRE is compatible with the
NHQC+, thus, IBRE can be integrated with NHQC+ and
become a compound, the NHQC + IBRE. First, we assume
that the eigenvectors {|φ�(t )〉} of a dynamic invariant I (t ) form
a complete and normal orthogonal basis of a Hilbert space.

Thus, when adjusting the initial values of the parameters
in eigenvectors {|φ�(t )〉}, any complete and orthogonal set
formed by the solutions of the Schrödinger equation can be
connected with {|φ�(t )〉} at the initial and the final time of a
cycling evolution. As |φ�(t )〉 is the eigenvector of the dynamic
invariant I (t ), exploiting Eq. (1), we can derive

i(ε� − ε�′ )〈φ�′ (t )|φ̇�(t )〉 = (ε� − ε�′ )〈φ�′ (t )|H (t )|φ�(t )〉,
(21)

where the result 〈φ̇�′ (t )|φ�(t )〉 + 〈φ�′ (t )|φ̇�(t )〉 = 0 is used.
For ε�′ �= ε�, we have

〈φ�′ (t )|φ̇�(t )〉 + i〈φ�′ (t )|H (t )|φ�(t )〉 = 0

⇒ |φ�′ (t )〉〈φ�′ (t )|φ̇�(t )〉〈φ�(t )| + i|φ�′ (t )〉〈φ�′ (t )|H (t )|φ�(t )〉〈φ�(t )| = 0

⇒
∑
�′ �=�

|φ�′ (t )〉〈φ�′ (t )|φ̇�(t )〉〈φ�(t )| + i|φ�′ (t )〉〈φ�′ (t )|H (t )|φ�(t )〉〈φ�(t )| = 0

⇒
∑
�′ �=�

|φ�′ (t )〉〈φ�′ (t )|[|φ̇�(t )〉〈φ�(t )| + iH (t )�̃�(t )] = 0, (22)

with �̃�(t ) = |φ�(t )〉〈φ�(t )|. Assuming that |φ�(t )〉 is a nondegenerate eigenvector of the dynamic invariant, one can
further obtain

|φ̇�(t )〉〈φ�(t )| + iH (t )�̃�(t ) = |φ�(t )〉〈φ�(t )|[|φ̇�(t )〉〈φ�(t )| + iH (t )�̃�(t )], (23)

based on the completeness of basis {|φ�(t )〉}. From Eq. (23), the following results can be derived:

|φ̇�(t )〉〈φ�(t )| + iH (t )�̃�(t ) = 〈φ�(t )|φ̇�(t )〉�̃�(t ) + i�̃�(t )H (t )�̃�(t ),
(24)

|φ�(t )〉〈φ̇�(t )| − i�̃�(t )H (t ) = 〈φ̇�(t )|φ�(t )〉�̃�(t ) − i�̃�(t )H (t )�̃�(t ).

Adding the two equations in Eq. (24) together, we finally
derive

d

dt
�̃�(t ) = −i[H (t ), �̃�(t )], (25)

under the condition 〈φ̇�(t )|φ�(t )〉 + 〈φ�(t )|φ̇�(t )〉 = 0. Until
now, we have shown the nondegenerate eigenvectors of the
dynamic invariant I (t ) satisfy the von Neumann equation
shown in Eq. (17). However, for two arbitrary degenerate
eigenvectors |φ�1 (t )〉 and |φ�2 (t )〉, the satisfactions of von
Neumann equation could not be ensured since ε�1 = ε�2 .

To ensure the satisfactions of the von Neumann equa-
tion with degenerate eigenvectors, we consider the super-
positions of the degenerate eigenvectors. As an example,
we assume there exist only two degenerate eigenvectors
|φ�1 (t )〉 and |φ�2 (t )〉. Introducing a set of operators as �̃′

�(t ) =
|φ̃�(t )〉〈φ̃�(t )| with∣∣φ̃�1 (t )

〉 = cos[β1(t )]|φ1(t )〉 + eiβ2(t ) sin[β1(t )]|φ2(t )〉,∣∣φ̃�2 (t )
〉 = sin[β1(t )]|φ1(t )〉 − eiβ2(t ) cos[β1(t )]|φ2(t )〉,∣∣φ̃�(t )
〉 = |φ�(t )〉 (� �= �1, �2), (26)

the vectors {|φ̃�(t )〉} also form a complete and normal orthog-
onal basis of the Hilbert space. Then, we substitute �̃′

�1
(t )

and �̃′
�2

(t ) into the von Neumann equation in Eq. (17). After
that, the values of β1(t ), β2(t ) can be reversely solved to
make all of the redefined operators {�̃′

�(t )} fulfill the von
Neumann equation in Eq. (17). For the cases with more than
two degenerate eigenvectors, we just need to consider the

superpositions of all the degenerate eigenvectors with the
same eigenvalues and construct a serial of redefined oper-
ators {�̃′

�(t )}. In this way, one can always obtain a set of
eigenvectors {|φ̃�(t )〉} of dynamic invariant I (t ) with all of
the operators {�̃′

�(t )} satisfying the von Neumann equation
in Eq. (17) (see Appendix B for details).

Now according to the condition in Eq. (18), one thing
remained is to make the Lewis-Riesenfeld phase shown in
Eq. (4) purely geometric. Thus, we calculate the Lewis-
Riesenfeld α̃�(T ) = ϑ̃�(T ) + 
̃�(T ) with the dynamic part
ϑ̃�(T ) and the geometric part 
̃�(T ) acquired by |φ̃�(t )〉 in
a cycling evolution as

ϑ̃�(T ) = −
∫ T

0
〈φ̃�(t )|H (t )|φ̃�(t )〉dt ′ (27)

and


̃�(T ) = i
∫ T

0
〈φ̃�(t )| ˙̃φ�(t )〉dt ′. (28)

Hence, the condition in Eq. (18) is converted to ϑ̃�(T ) = 0.
To sum up the discussions in this section, we have first

shown the approach to find a set of eigenvectors {|φ̃�(t )〉} of
dynamic invariant I (t ) satisfying the von Neumann equation
in Eq. (17). Consequently, the selections of the vectors for
NHQC+ are naturally completed by the IBRE, and the core of
the construction of NHQC + IBRE is selecting proper control
parameters to make ϑ̃�(T ) = 0. As a dynamic invariant I (t )
can be parametrized in a flexible way relating to the number
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of the generators in the dynamical algebra, the dynamic
phases can be flexibly eliminated. Moreover, because all of the
eigenvectors {|φ̃�(t )〉} of the dynamic invariant I (t ) can vary
with the control parameters and acquired different geometric
phases during the evolutions, exploiting them as the evolution
paths, we can realize multipath nonadiabatic geometric quan-
tum computation based on the NHQC + IBRE.

IV. PHYSICAL IMPLEMENTATION OF THE
NONADIABATIC GEOMETRIC QUANTUM GATES WITH

NHQC + IBRE

In this section, let us discuss the applications of the
NHQC + IBRE. The major example considered here is the re-
alization of nontrivial two-qubit nonadiabatic geometric quan-
tum gates in a double-quantum-dot system. The NHQC +
IBRE can also be used to realize arbitrary single-qubit
nonadiabatic geometric quantum gates, which are shown in
Appendix A.

A. Hamiltonian of two coupled spins
in a double-quantum-dot system

We consider a double-quantum-dot system with two spin
qubits l and r confined in the left and right quantum
dots, respectively. The spins l and r are individually driven

by magnetic fields �Bl (t ) = Blx(t )�ex + Bly(t )�ey + Blz(t )�ez,
�Br (t ) = Brx(t )�ex + Bry(t )�ey + Brz(t )�ez, with �ex, �ey, and �ez be-
ing the unit vector along x, y, and z axis, respectively. In
addition, the spins l and r can couple with each other through
the Heisenberg interactions. The Hamiltonian of the system is
described by [78,79]

H (t ) = g�Bl (t ) · �Sl + g�Br (t ) · �Sr + Jx(t )SlxSrx

+ Jy(t )SlySry + Jz(t )SlzSrz, (29)

where g is the gyromagnetic ratio, and �Sl = Slx�ex + Sly�ey +
Slz�ez, �Sr = Srx�ex + Sry�ey + Srz�ez are the spin operators of the
spins l and r. Besides, Jx(t ), Jy(t ), and Jz(t ) are the strengths
of Heisenberg interactions in x, y, and z directions, respec-
tively. As shown by the previous schemes that [78,79,83,84],
the Heisenberg interactions used here can be induced by
the exchange interaction between spins. The strength of the
coupling can be adjusted with fast gate voltage control of a
gate between left and right quantum dots. The speed of the
control of the exchange coupling is in the order of ns to ms,
which allows fast gate implementations [78]. Moreover, the
experiment devices in Ref. [78] can provide exquisite control
of single electrons and nearest-neighbor exchange coupling,
with the potential to scale to at least nine dots in a linear
array. Here, we assume that Jx(t ) = Jy(t ) = J (t ) such that
in the basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}, the matrix form of the
Hamiltonian in Eq. (29) is

H (t ) = 1

2

⎡
⎢⎢⎢⎣

0 gBrx (t ) − igBry(t ) gBlx(t ) − igBly(t ) 0

gBrx(t ) + igBry(t ) −2Brz(t ) − Jz(t ) J (t ) gBlx(t ) − igBly(t )

gBlx(t ) + igBly(t ) J (t ) −2Blz(t ) − Jz(t ) gBrx(t ) − igBry(t )

0 gBlx (t ) + igBly(t ) gBrx(t ) − igBry(t ) −2Blz(t ) − 2Brz(t )

⎤
⎥⎥⎥⎦

+2Blz(t ) + 2Brz(t ) + J (t )

4
, (30)

where the last term could be dropped as it only produces a
global phase.

B. Construction of the dynamic invariant

To simplify construction of the dynamic invariant based on
the Hamiltonian in Eq. (30), we set

Blx(t ) = −
∑
ι=1,2

Blι (t ) sinωlιt, Bly(t ) =
∑
ι=1,2

Blι (t ) cosωlιt,

Brx(t ) =
∑
ι=1,2

Brι (t ) cosωrιt, Bry(t ) =
∑
ι=1,2

Brι (t ) sinωrιt,

Blz(t ) = Brz(t ) = Bz(t ), �1(t ) = −Bz(t ) − Jz(t )/2,

�2(t ) = −2Bz(t ). (31)

Here, �1(t ) and �2(t ) are both considered to be time inde-
pendent and satisfy the conditions as

ωl1 = ωr1 = −�1, ωl2 = ωr2 = �1 − �2. (32)

Under the condition |gBlι (t )|, |gBrι (t )| � |2�1 − �2|, the
rapidly oscillating terms are discarded in the rotation frame

of R(t ) = e−iH0t with

H0 = �1(|↑↓〉〈↑↓| + |↓↑〉〈↓↑|) + �2|↓↓〉〈↓↓|, (33)

such that the effective Hamiltonian He(t ) of the system in the
rotating frame can be described in the s̃o(4) algebra [which is
isomorphic to the standard so(4) Lie algebra, see Appendix C
for details] spanned by

G1 =

⎡
⎢⎣

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦, G2 =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦,

G3 =

⎡
⎢⎣

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤
⎥⎦, G4 =

⎡
⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎦,

G5 =

⎡
⎢⎣

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎤
⎥⎦, G6 =

⎡
⎢⎣

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎤
⎥⎦,

(34)

032322-5



KANG, SHI, HUANG, SONG, AND XIA PHYSICAL REVIEW A 101, 032322 (2020)

as

He(t ) = [gBr1 (t )G1 + gBr2 (t )G2 + J (t )G3

+ gBl1 (t )G5 + gBl2 (t )G6
]
/2. (35)

Now, let us begin to find a dynamic invariant of the
evolution with Lie algebra. First, according to Eq. (7), the
invariant is assumed to be

I (t ) =
6∑

j=1

ξ j (t )Gj . (36)

Then, by using Eq. (14), one can derive

2ξ̇1 = −gBl1ξ3 − gBl2ξ4 + Jξ5,

2ξ̇2 = gBl2ξ3 + gBl1ξ4 − Jξ6,

2ξ̇3 = gBl1ξ1 − gBl2ξ2 − gBr1ξ5 + gBr2ξ6, (37)

2ξ̇4 = gBl2ξ1 − gBl1ξ2 + gBr2ξ5 − gBr1ξ6,

2ξ̇5 = −Jξ1 + gBr1ξ3 − gBr2ξ4,

2ξ̇6 = Jξ2 − gBr2ξ3 + gBr1ξ4.

According to Eq. (37), the matrix form of M(t ) in Eq. (14)
can be obtained as

M(t ) = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ξ5 −ξ6 −ξ3 −ξ4

0 0 −ξ6 −ξ5 ξ4 ξ3

−ξ5 ξ6 0 0 ξ1 −ξ2

−ξ6 ξ5 0 0 −ξ2 ξ1

ξ3 −ξ4 −ξ1 ξ2 0 0
ξ4 −ξ3 ξ2 −ξ1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(38)

Since the rank of matrix M(t ) is rank[M(t )] = 4, two
constraint equations for {ξ j (t )| j = 1, 2, 3, 4, 5, 6} can be
found as

(ξ1 − ξ2)2 + (ξ3 + ξ4)2 + (ξ5 + ξ6)2 = C2
1 ,

(39)
(ξ1 + ξ2)2 + (ξ3 − ξ4)2 + (ξ5 − ξ6)2 = C2

2 ,

from Eq. (37) with C1 and C2 being two real constants. As one
way to parametrize {ξ j (t )}, we suppose C1 = C2 = 1 and

ξ1 = cos θ cos η, ξ2 = − sin θ sin η, ξ3 = sin θ cos η sin ϕ,

ξ4 = − cos θ sin η sin ϕ, ξ5 = sin θ cos η cosϕ, ξ6 = − cos θ sin η cosϕ. (40)

Then, by substituting the parametrization of Eq. (40) into Eq. (14), the expressions of the control parameters are derived as

gBl1 (t ) = (J cosϕ + 2θ̇ ) cscϕ, gBl2 (t ) = −2η̇ cscϕ,

gBr1 (t ) = −2ϕ̇ − 2η̇ sin 2η cot ϕ − (J + 2θ̇ cosϕ) sin 2θ cscϕ

cos 2η − cos 2θ
,

gBr2 (t ) = 2η̇ sin 2θ cot ϕ − (J + 2θ̇ cosϕ) sin 2η cscϕ

cos 2η − cos 2θ
. (41)

In addition, the eigenvectors corresponding to the eigenvalues ε1 = 0, ε2 = 0, ε3 = 1, and ε4 = −1 of the dynamic
invariant are

|φ1(t )〉 =

⎡
⎢⎣

i cosϕ sin η
− sin ϕ sin η

0
− cos η

⎤
⎥⎦, |φ2(t )〉 =

⎡
⎢⎣

− sin θ sin ϕ
i sin θ cosϕ

cos θ
0

⎤
⎥⎦,

|φ3(t )〉 = 1√
2

⎡
⎢⎣

− cos θ sin ϕ + i cos η cosϕ
− cos η sin ϕ + i cos θ cosϕ

− sin θ
sin η

⎤
⎥⎦, |φ4(t )〉 = 1√

2

⎡
⎢⎣

cos θ sin ϕ + i cos η cosϕ
− cos η sin ϕ − i cos θ cosϕ

sin θ
sin η

⎤
⎥⎦, (42)

respectively. Since the eigenvectors |φ1(t )〉 and |φ2(t )〉 are degenerate, we use the suppositions shown in Eq. (26) to find
another set of eigenvectors {|φ̃�(t )〉|� = 1, 2, 3, 4}. Based on the von Neumann equation, β1(t ) = π/4 and β2(t ) = 0 are derived.
Moreover, the time derivatives of the dynamic phases and geometric phases acquired by |φ̃�(t )〉 are calculated as

˙̃ϑ1(t ) = (J + 2θ̇ cosϕ) sin η cos θ cscϕ − 2η̇ cos η sin θ cot ϕ

cos 2η − cos 2θ
− ϕ̇ sin η sin θ,

˙̃ϑ2(t ) = 2η̇ cos η sin θ cot ϕ − (J + 2θ̇ cosϕ) sin η cos θ cscϕ

cos 2η − cos 2θ
+ ϕ̇ sin η sin θ,

(43)
˙̃ϑ3(t ) = 2η̇ sin η cos θ cot ϕ − (J + 2θ̇ cosϕ) cos η sin θ cscϕ

cos 2η − cos 2θ
+ ϕ̇ cos η cos θ,

˙̃ϑ4(t ) = (J + 2θ̇ cosϕ) cos η sin θ cscϕ − 2η̇ sin η cos θ cot ϕ

cos 2η − cos 2θ
− ϕ̇ cos η cos θ,
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and
˙̃
1(t ) = ϕ̇ sin θ sin η, ˙̃
2(t ) = −ϕ̇ sin θ sin η,

˙̃
3(t ) = −ϕ̇ cos θ cos η, ˙̃
4(t ) = ϕ̇ cos θ cos η. (44)

Based on the results of Eqs. (43) and (44), we can further design control parameters for the elimination of the dynamic phases
and the acquisition of different geometric phases.

C. Implementations of two-qubit nonadiabatic geometric quantum gates with NHQC + IBRE

Let us now demonstrate the construction of nontrivial two-qubit nonadiabatic geometric quantum gate with NHQC + IBRE.
We consider a process that the geometric phases acquired after an interaction time T are 
̃1(T ) = 
̃2(T ) = 0, 
̃3(T ) =
−
̃4(T ) = −π , and the dynamic phases acquired in the process are all zero. Moreover, all of the parameters θ (t ), η(t ), and
ϕ(t ) vary along loops, i.e., θ (0) = θ (T ) + 2κ1π , η(0) = η(T ) + 2κ2π , and ϕ(0) = ϕ(T ) + 2κ3π (κ1, κ2, and κ3 are integers).
In this case, the evolution operator U (t ) at t = T can be described as

U (T ) =
4∑

�=1

ei
̃�(T )�̃′
�(T )

=

⎡
⎢⎢⎢⎣

− cos 2η cos2 ϕ − cos 2θ sin2 ϕ i(cos 2η − cos 2θ ) sin 2ϕ/2 − sin 2θ sin ϕ −i sin 2η cosϕ

−i(cos 2η − cos 2θ ) sin 2ϕ/2 − cos 2θ cos2 ϕ − cos 2η sin2 ϕ i sin 2θ cosϕ sin 2η sin ϕ
− sin 2θ sin ϕ −i sin 2θ cosϕ cos 2θ 0
i sin 2η cosϕ sin 2η sin ϕ 0 cos 2η

⎤
⎥⎥⎥⎦, (45)

where parameters θ , η, and ϕ take the values of θ (T ),
η(T ), and ϕ(T ), respectively. As examples, we investi-
gate the implementations of two types of two-qubit gates.
More specifically, when η(T ) = 0, θ (T ) = π/4, ϕ(T ) =
0, we can implement a SWAP-like two-qubit gate [85,86]
(S gate for short in the following discussions) with the
NHQC + IBRE as

US =

⎡
⎢⎣

−1 0 0 0
0 0 i 0
0 −i 0 0
0 0 0 1

⎤
⎥⎦. (46)

Besides, for η(T ) = 0, θ (T ) = π/4, ϕ(T ) = −π/2, a
controlled-not-like two-qubit gate (C gate for short in the
following discussions)

UC =

⎡
⎢⎣

0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎦, (47)

with spin r as the controlled qubit can be obtained based on
NHQC + IBRE.

Now, let us design the control parameters according to the
boundary conditions given above Eqs. (46) and (47) to realize
the S gate and the C gate with NHQC + IBRE, respectively.
First, we select η(t ) = 0, such that ˙̃ϑ1(t ) = ˙̃ϑ2(t ) = ˙̃
1(t ) =
˙̃
2(t ) = 0. To make the control parameters vary along loops,
we set

ϕ(t ) = ϕ0 + π

[
1 − cos

(
πt

T

)]
,

θ (t ) = π

4
+ ϒ sin2

(
πt

T

)
, (48)

where ϒ is a time-independent parameter. We set ϕ0 = 0 for
the S gate and ϕ0 = −π/2 for the C gate. By numerically

calculating Eq. (28), ϒ = 0.3867 is obtained to fulfill the
condition 
̃3(T ) = −
̃4(T ) = −π . On the other hand, to
eliminate the dynamic phases, we set

J (t ) = −2θ̇ cosϕ + ϕ̇ sin ϕ sin 2θ, (49)

according to Eq. (43). To estimate the performance of the
quantum gates, we exploit a distance between two N -
dimensional unitary operators U1 and U2 as

d (U1,U2) = 1 − |Tr(U1U
†
2 )|2/N 2, (50)

which describes the upper limit of the average error in the
implementations of quantum gates. In Figs. 1(a) and 1(b), we
plot the distances d (Ue(t ),US ) and d (Ue(t ),UC ) versus t/T ,
respectively, with Ue(t ) being the evolution operator of the
system governed by the effective Hamiltonian He(t ) shown in
Eq. (35). According to the red solid lines in Figs. 1(a) and 1(c),
both d (Ue(t ),US ) and d (Ue(t ),UC ) decrease from 1 to 0 in the
time interval [0,T ]. Thus, the dynamics based on the effective
Hamiltonian is valid with the parameters designed in Eq. (48).
Besides, gBl1 (t ), gBr1 (t ), and J (t ) versus t/T in the implemen-
tations of the S gate and C gate are plotted in Figs. 1(c) and
1(d), respectively. Since we have gBl2 (t ) = gBr2 (t ) = 0 with
the selected parameters, gBl2 (t ) and gBr2 (t ) are not plotted in
the Figs. 1(c) and 1(d). According to Figs. 1(c) and 1(d), we
have the maximal value �max of control fields as

�max = max
t∈[0,T ]

{∣∣gBl1 (t )
∣∣, |gBr1 (t )

∣∣, |J (t )
∣∣} 
 16.76/T, (51)

in both of the implementations of the S gate and the C
gate. Furthermore, to compare the evolution Ue(t ) of the
effective dynamics with the evolution U (t ) governed by the
original Hamiltonian H (t ) in Eq. (29), we also plot the dis-
tances d (U (t ), ŨS ) and d (U (t ), ŨC ) versus t/T in Figs. 1(a)
and 1(b), respectively. Here, we set ŨS (t ) = e−iH0tUS (t ) and
ŨC (t ) = e−iH0tUC (t ), as the implementations of nonadiabatic
geometric quantum gates are discussed in the rotating frame
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FIG. 1. (a) d (Ue(t ),US ) and d (U (t ), ŨS ) versus t . (b) d (Ue(t ),UC ) and d (U (t ), ŨC ) versus t . (c) gBl1 (t ), gBr1 (t ), and J (t ) versus t in the
implementations of the S gate. (d) gBl1 (t ), gBr1 (t ), and J (t ) versus t in the implementations of the C gate.

of R(t ). In addition, �1 = 0 and �2 = 400/T are selected
for the condition �max � |2�1 − �2|, and in this case, �Bl (t )
and �Br (t ) are fixed along the y and x axis, respectively. Seen
from the blue-dashed lines in the Figs. 1(a) and 1(b), we find
that the evolutions governed by the original Hamiltonian H (t )
match well with that governed by the effective Hamiltonian
He(t ). Moreover, we obtained the distances as d (U (T ), ŨS ) =
0.0032 and d (U (T ), ŨC ) = 0.0029. Therefore, the implemen-
tations of the S gate and the C gate can be realized with the
original Hamiltonian H (t ).

V. ANALYSIS OF ERRORS AND NOISE

Since there may exist imperfections in real experiments
due to the influences of the errors and noise, the analysis of
the robustness against these disturbing factors is helpful for
estimating the performance of the scheme in a practical en-
vironment. As examples to test the robustness of the scheme,
we perform numerical simulations for the implementations of
the S gate and the C gate in Sec. IV B.

Because the realization of the geometric gates in the
scheme is based on the driving of the control fields, the er-
rors of the control fields may decrease the fidelities of the

implementations of the geometric gates. Therefore, we first
focus on the systematic errors of the control fields. For the
implementations of the S gate and the C gate, we assume
that the erroneous control fields of Bl1 (t ), Br1 (t ), and J (t ) are
(1 + δ1)Bl1 (t ), (1 + δ2)Br1 (t ), and (1 + δ3)J (t ), respectively,
where δ1, δ2, and δ3 denote the coefficients of the systematic
errors of the corresponding control fields. By substituting
the erroneous control fields in the numerical simulations, we
plot the distances d (U (T ), ŨS ) and d (U (T ), ŨC ) versus δn

(n = 1, 2, 3) in Figs. 2(a) and 2(b), respectively. According
to Fig. 2, both the implementations of the S gate and C gate
are insensitive to the systematic errors of Bl1 (t ) and J (t ),
while are relatively sensitive to the error of Br1 (t ). Since the
fourth component of the eigenvector |φ̃1(t )〉 for the dynamic
invariant keeps unchanged in the evolution with η(t ) = 0, the
variations of the remaining three components can be described
by a curve on a sphere of a three-dimensional parameter space
by defining the axes as xp = sin θ sin ϕ, yp = sin θ sin ϕ, and
zp = cos θ . Considering that the trajectories of (xp, yp, zp)
can help us to analyze the influence of the systematic errors
to the shape of the evolution paths, we plot the trajecto-
ries of (xp, yp, zp) with δn = 0, δ1 = −0.1, δ2 = −0.1, and
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(a) (b)

FIG. 2. (a) d (U (T ), ŨS ) versus δn (n = 1, 2, 3). (b) d (U (T ), ŨC ) versus δn.

δ3 = −0.1 on a sphere in Fig. 3 in the implementations of the
C gate (ϕ0 = −π/2). The trajectory of (xp, yp, zp) without
the systematic errors is shown by the red solid line in Fig. 3,
where we can find that the height zp of the curve is unchanged
after the evolution, and the trajectory is approximate to a circle
with θ = π/4, ϕ ∈ [0, 2π ). Moreover, as shown by the orange
dashed line and the blue dotted line in Fig. 3, the trajectories
of (xp, yp, zp) under the influences of the systematic errors
of control fields Bl1 (t ) and J (t ) are nearly closed loop with
very slight changes of height zp. Furthermore, seen from the
magenta dashed dotted line in Fig. 3, under the influence of
the systematic errors of control field Br1 (t ), the trajectory
of (xp, yp, zp) deviates from a closed loop with the height
zp changed in the evolution. With the trajectories plotted in
Fig. 3, the sensitiveness of the scheme to the systematic errors
of different control fields can be summed up as follows. On
one hand, the geometric phases acquired in the evolution are
mainly dependent on the global property of the evolution

xp

y p

zp

FIG. 3. The trajectories of (xp = sin θ sin ϕ, yp = sin θ
cosϕ, zp = cos θ ) on a three-dimensional sphere (ϕ0 = −π/2) with
δn = 0 (red solid line), δ1 = −0.1 (orange dashed line), δ2 = −0.1
(magenta dashed-dotted line), and δ3 = −0.1 (blue dotted line).

paths. On the other hand, the shapes of the evolution paths
are mainly changed by the systematic error of the field Br1 (t ).
Thus, the influence of the systematic error of Br1 (t ) plays a
major role among the systematic errors of all control fields.
However, for the fields Bl1 (t ) and J (t ), since they are less
related to shape of the evolution paths, the influence of the
systematic errors of Bl1 (t ) and J (t ) to the acquired geometric
phases is much less than Br1 (t ). Even when δ1 and δ3 reaches
10%, d (U (T ), ŨS ) and d (U (T ), ŨC ) are only about 0.01,
which means the average gate fidelities for S gate and C
gate are both higher than 99%. For the systematic errors of
Br1 (t ), when δ2 reaches 10%, d (U (T ), ŨS ) and d (U (T ), ŨC )
are about 0.072, i.e., the gate fidelities for S gate and C gate are
both still higher than 92.8%. If we can control the systematic
errors of Br1 (t ) within 5%, the gate fidelities for S gate and
C gate can be higher than 98%. Thus, the scheme is robust
against the systematic errors of the control fields in a certain
degree.

Apart from the systematic errors, the random noise is also a
source inducing the imperfect operations in a real experiment.
Therefore, studying the implementations of the quantum gates
in a noisy environment is also helpful to estimate the perfor-
mance of the scheme. As the additive white Gaussian noise
(AWGN) is a nice model for emulating the effect of many
stochastic processes, we investigate the implementations of
the S gate and the C gate by adding AWGN to the control
fields. The control fields with AWGN read as

B′
l1 (t ) = Bl1 (t ) + AWGN

(
Bl1 (t ), ς

)
,

B′
r1

(t ) = Br1 (t ) + AWGN
(
Br1 (t ), ς

)
, (52)

J ′(t ) = J (t ) + AWGN(J (t ), ς ),

in which AWGN(·, ς ) denote a function to generate AWGN
with the signal-to-noise ratio (SNR) ς for the corresponding
control field. Because the AWGN behave randomly in ev-
ery single simulation, to estimate the effect of AWGN, we
should perform repeated simulations for an average. Hence,
we respectively perform 10 times of simulations for the
implementations of S gate and C gate with SNRs ς = 10,
ς = 5, and ς = 2. Distances d (U (T ), ŨS ) and d (U (T ), ŨC )
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(a) (b)

Simulation counts Simulation counts

FIG. 4. (a) d (U (T ), ŨS ) in the implementation of the S gate under the influence of AWGN versus simulation counts. (b) d (U (T ), ŨC ) in
the implementation of the C gate under the influence of AWGN versus simulation counts.

in each repeated simulation are shown in Figs. 4(a) and
4(b), respectively. According to Fig. 4, when the AWGN
is added, the distances d (U (T ), ŨS ) and d (U (T ), ŨC ) are,
respectively, fluctuating around 0.0032 and 0.0029 [the values
of distances d (U (T ), ŨS ) and d (U (T ), ŨC ) obtained in the
case without AWGN]. Moreover, when decreasing the SNR,
the fluctuations of d (U (T ), ŨS ) and d (U (T ), ŨC ) become
more significant. However, even when ς = 2, d (U (T ), ŨS )
and d (U (T ), ŨC ) are still approximate to 0.0032 and 0.0029,
respectively. Thus, the scheme is robust against AWGN. The
robustness of the scheme to the AWGN is not hard to be
understood. Since the AWGN produce random values added
on the original control fields with zero average, the total effect
of AWGN to the shape of the evolution paths are nearly
neutralized, i.e., the AWGN only makes the trajectories in the
parameter spaces slightly fluctuate around the original ones.
As the geometric phases are mainly dependent on the global
property of the evolution paths, the local fluctuations do not
lead much errors in the accumulations of geometric phases.
Accordingly, the advantage of the geometric phase makes the
scheme insensitive to the random noise.

Finally, the resonant conditions in Eq. (32) are also key
points to successfully realize the scheme. Since �1 and �2

are also controlled by the fields in the scheme, it is also
necessary to discuss the influence of the errors of �1 and �2

to the scheme. Here, we consider that the �1 and �2 have
perturbations as δ�1 and δ�2, respectively. To compare the
perturbations of �1 and �2 with other control fields, �max

shown in Eq. (51) is used as the unit of the perturbations in
the following discussions. We plot the distances d (U (T ), ŨS )
and d (U (T ), ŨC ) versus δ�1 and δ�2 in Figs. 5(a) and 5(b),
respectively. As shown in Fig. 5, both the implementations
of S gate and C gate are insensitive to the perturbations
of �2, while are more sensitive to the perturbations of �1.
This is because in the implementations of S gate and C
gate, we set Bl2 (t ) and Br2 (t ) as zeros. Thus, the condition
ωl2 = ωr2 = �1 − �2 is not so important, and we just need to
ensure that the condition |gBl1 (t )|, |gBr1 (t )| � |2�1 − �2| is
fulfilled. However, since the fields Bl1 (t ) and Br1 (t ) are used in

the implementations of S gate and C gate, the condition ωl1 =
ωr1 = −�1 is still important. When δ�1/�max and δ�2/�max

are controlled within 5%, the worst situations for the imple-
mentations of S gate and C gate both appear at δ�1/�max =
δ�2/�max = −5%, where we obtain d (U (T ), ŨS ) = 0.0858
and d (U (T ), ŨC ) = 0.0946, respectively. The results show
the scheme also possesses some robustness against the per-
turbations of �1 and �2.

VI. CONCLUSION

In conclusion, we have proposed a flexible scheme to
realize nonadiabatic geometric quantum gates based on the
NHQC+ and the IBRE. First, we showed the approach to
make the IBRE cooperate with NHQC+. Thus, a compound,
the NHQC + IBRE, was built up for multipaths nonadiabatic
geometric quantum computation. With the flexibility of the
NHQC + IBRE, the scheme showed advantages in many
ways. (i) Different types of nonadiabatic geometric quantum
gates can be readily constructed with only the adjustment of
the boundary conditions of control parameters. (ii) The full
uses of the multiple evolution paths are helpful to reduce
the requirements of energy levels of quantum systems. Con-
sequently, the NHQC + IBRE can be even realized without
any auxiliary levels or qubits. This may simplify the physi-
cal implementations of quantum gates in several cases. For
example, in the implementation of the geometric two-qubit
gate of spin qubits in the scheme, the computational basis
{|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} spanned the full space of states of
two spins. To implement the HNQC in a standard way, the
condition in Eq. (16) implies that the Hamiltonian should
be always a null matrix. Therefore, auxiliary spin qubits are
required. However, in the current scheme, the implementa-
tion of geometric two-qubit gates can be achieved with only
two spins. (iii) The dynamic invariant can be constructed
with the help of Lie algebra, which provides a powerful
tool to study the nonadiabatic geometric quantum compu-
tation in various physical systems possessing different dy-
namic symmetry. To show the applications of the scheme, we
considered the implementation of nontrivial two-qubit gates
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(a) (b)

FIG. 5. (a) d (U (T ), ŨS ) versus δ�1 and δ�2. (b) d (U (T ), ŨC ) versus δ�1 and δ�2.

of spin qubits in a double-quantum-dot system. We also
estimated the performance of the quantum gates with the nu-
merical simulations. The results demonstrated that the scheme
holds robustness against systematic errors of the control fields,
the influence of the random noise, and the perturbations in the
resonant conditions. Therefore, the scheme may provide some
useful perspectives for the implementations of high-fidelity
nonadiabatic geometric quantum gates.
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APPENDIX A: ARBITRARY SINGLE-QUBIT
NONADIABATIC GEOMETRIC QUANTUM GATES WITH

NHQC + IBRE

We consider that a spin is driven by a magnetic field �B(t ) =
Bx(t )�ex + By(t )�ey + Bz(t )�ez. The Hamiltonian of the system is

Hs(t ) = g�B(t ) · �S, (A1)

with �S = Sx�ex + Sy�ey + Sz�ez being the spin operator of the
spin. The dynamics of the system can be investigated by the
su(2) Lie algebra with generators

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
,

σz =
[

1 0
0 −1

]
. (A2)

We assume that the dynamic invariant Is(t ) of the single
spin is

Is(t ) = ξx(t )σx + ξy(t )σy + ξz(t )σz. (A3)

With the help of Eq. (14), one can derive

ξ̇x = Byξz − Bzξy, ξ̇y = Bzξx − Bxξz, ξ̇z = Bxξy − Byξx.

(A4)
As the rank of matrix

Ms(t ) = 1

2

⎡
⎣ 0 ξz −ξy

−ξz 0 ξx

ξy ξx 0

⎤
⎦ (A5)

is 2, a constraint equation for {ξx, ξy, ξz} can be found:

ξ 2
x + ξ 2

y + ξ 2
z = C2, (A6)

with a real constant C. By parametrizing {ξx, ξy, ξz} with C =
1, we have

ξx = sin χ sin ζ , ξy = sin χ cos ζ , ξz = cosχ. (A7)

Resolving Eq. (A4) with the parametrizations in Eq. (A7),
the control fields are derived as

Bx(t ) = (Bz + ζ̇ ) sin ζ tan χ − χ̇ cos ζ ,
(A8)

By(t ) = (Bz + ζ̇ ) cos ζ tan χ + χ̇ sin ζ .

The eigenvectors of Is(t ) can be also derived with Eq. (A7) as

∣∣φs
1(t )
〉 =
[

cos χ

2

ie−iζ sin χ

2

]
,
∣∣φs

2(t )
〉 = [ieiζ sin χ

2

cos χ

2

]
. (A9)

The time derivatives of the dynamic phases ϑ s
1(t ), ϑ s

2(t ) and
the geometric phases 
s

1(t ), 
s
2(t ) acquired by |φs

1(t )〉 and
|φs

2(t )〉, respectively, read as

ϑ̇ s
1(t ) = −1

2
secχ (Bz + ζ̇ sin2 χ ), ϑ̇ s

2(t ) = −ϑ̇ s
1(t ),


̇s
1(t ) = ζ̇ sin2 χ

2
, 
̇s

2(t ) = −
̇s
1(t ). (A10)

Therefore, to eliminate the dynamic phases, Bz(t ) =
−ζ̇ sin2 χ is a choice. Thus, the evolution of the single spin
after a cycling evolution becomes

Us(T ) =
[

cos
s + i cosχ sin
s eiζ sin χ sin
s

−e−iζ sin χ sin
s cos
s − i cosχ sin
s

]

= ei
s �n·�σ , (A11)

where we have


s =
∫ T

0
ζ̇ (t ) sin2

[
χ (t )

2

]
dt, �n = ξx�ex + ξy�ey + ξz�ez,

�σ = σx�ex + σy�ey + σz�ez. (A12)

Us(T ) shown in Eq. (A11) represents a rotation which can
generate a set of universal single-qubit gates [48]. As an ex-
ample, we discuss the design of parameters for the realization
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FIG. 6. (a) d (Us(t ),UN ) versus t . (b) gBx (t ), gBy(t ), and gBz(t ) versus t .

of the NOT gate UN [ζ (0) = π/2, χ (0) = π/2, 
s = π/2].
For a cycling evolution, the parameters are selected as

ζ (t ) = π

2
+ π

[
1 − cos

(
πt

T

)]
,

(A13)

χ (t ) = π

2
− ϒs sin2

(
πt

T

)
,

with ϒs being a time-independent parameter. To obtain 
s =
π/2, we obtain ϒs = 0.8089 by numerically calculating
Eq. (A12). We plot the distance d (Us(t ),UN ) versus t/T in
Fig. 6(a). Moreover, gBx(t ), gBy(t ), and gBz(t ) versus t/T are
plotted in Fig. 6(b). Seen from Fig. 6, the NOT gate can be
successfully implemented with NHQC + IBRE.

APPENDIX B: EXISTENCE OF THE OPERATOR �̃�(t )
SATISFYING THE VON NEUMANN EQUATION FOR

DEGENERATE EIGENVECTORS OF THE INVARIANT

Assuming E is the set of all the eigenvectors of I (t ), E1

is a subset of E containing all the degenerate eigenvectors of
I (t ), and D is the set of all the solutions of the Schrödinger
equation. On one hand, according to the Lewis-Riesenfeld
invariant theory, for a nondegenerate eigenvector |φ�(t )〉 ∈
E − E1 of I (t ), |ψ�(t )〉 = eiα�(t )|φ�(t )〉 [α�(t ) is the Lewis-
Riesenfeld phase of |φ�(t )〉] is a solution of the Schrödinger
equation. Therefore, one can build a subset of D as

D2 = {|ψ�(t )〉 = eiα�(t )|φ�(t )〉||φ�(t )〉 ∈ E − E1}. (B1)

On the other hand, based on the completeness of E and
D, the degenerate eigenvectors |φ�(t )〉 ∈ E1 can be ex-
pressed by the superpositions of solutions in D1 = D − D2 as
|φ�(t )〉 = V1(t )|ψ�(t )〉 via a unitary operator V1(t ) [|ψ�(t )〉 ∈
D1, V1(t )|ψ�(t )〉 ∈ E1]. Thus, one can obtain |ψ�(t )〉 =
V †

1 (t )|φ�(t )〉 on the contrary. Consequently, |ψ�(t )〉 is also
an eigenvector of I (t ) as it can be expanded by degenerate
eigenvectors |φ�(t )〉 ∈ E1. Since the density operator ρ�(t ) =
|ψ�(t )〉〈ψ�(t )| satisfies the von Neumann equation d

dt ρ̃�(t ) =
−i[H (t ), ρ̃�(t )], V †

1 (t ) provide a way of superposition to con-
struct redefined operator �̃′

�(t ). Noticing that for an arbitrary

angle ς̃ (t ), eiς̃ (t )|ψ�(t )〉 can also be used in constructing �̃′
�(t )

to satisfy the von Neumann equation, V †
1 (t ) is not the only

choice of the superpositions. Thus, we have the conclusions
that there exist multiple choices for the coefficients of the
superpositions to find �̃′

�(t ) obeying the von Neumann equa-
tion. When substituting the redefined degenerate eigenvectors
{|φ̃�(t )〉} ∈ span{E1} into the von Neumann equation, we can
derive the condition to make the von Neumann equation
satisfied is

〈φ̃�(t )|
[

i
∂

∂t
− H (t )

]
|φ̃�′ (t )〉 = 0 (� �= �′). (B2)

Therefore, for an Ñ-fold degenerate eigenvalue, the number of
independent conditions to construct redefined operator �̃′

�(t )
is Ñ (Ñ − 1)/2.

As an example to construct the superposition, we show how
to derive the coefficients β1(t ) and β2(t ) of superpositions in
a twofold-degenerate subspace with Eq. (26). By substituting
Eq. (26) into the equation

〈
φ̃�2 (t )

∣∣[i
∂

∂t
− H (t )

]∣∣φ̃�1 (t )
〉 = 0, (B3)

we derive

sin 2β1[γ11(t ) + γ22(t ) + iβ̇2(t )]/2 − cos2 β1e−iβ2γ ∗
12(t )

+ sin2 β1eiβ2γ12(t ) − β̇1(t ) = 0, (B4)

with

γqq′ (t ) = 〈φ�q (t )
∣∣[i

∂

∂t
− H (t )

]∣∣φ�q′ (t )
〉

(q, q′ = 1, 2).

(B5)

If γqq(t ) �= 0, we first construct two new vectors |φ̄1(t )〉 =
ei�11(t )|φ1(t )〉 and |φ̄2(t )〉 = ei�22(t )|φ2(t )〉 with �qq(t ) =∫ t

0 γqq(t ′)dt ′. In this case, we have

γ̄qq(t ) = 〈φ̄�q (t )
∣∣[i

∂

∂t
− H (t )

]∣∣φ̄�q (t )
〉 = 0. (B6)
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Therefore, the condition for β1(t ) and β2(t ) can be
simplified as

iβ̇2(t ) sin 2β1/2 − cos2 β1e−iβ2 γ̄ ∗
12(t )

+ sin2 β1eiβ2 γ̄12(t ) − β̇1(t ) = 0, (B7)

with

γ̄12(t ) = 〈φ̄�1 (t )
∣∣[i

∂

∂t
− H (t )

]∣∣φ̄�2 (t )
〉
. (B8)

Assuming |γ̄12(t )| = γ̄ (t ) and arg[γ̄12(t )] = υ(t ), we have

β̇1 = −γ̄ cos 2β1 cos(β2 + υ ),
(B9)

β̇2 = −2γ̄ csc 2β1 sin(β2 + υ ).

With the equation above, it is possible to obtain numerical
solutions for β1(t ) and β2(t ). The solution becomes very
simple when υ = 0, where we can obtain time independent
β1 and β2 as β1 = π/4 and β2 = 0, respectively.

APPENDIX C: RELATION BETWEEN LIE ALGEBRAS
s̃o(4) AND so(4)

We now show that the Lie algebra s̃o(4) is isomorphic
to the Lie algebra so(4), and thus the Lie algebra s̃o(4) can
inherit the properties of so(4) up to isomorphism. First, the
generators of Lie algebra so(4) can be derived via the rotation
matrices in group SO(4),

R℘, ℘′ ("℘, ℘′ ) = 1 + [cos("℘, ℘′ ) − 1](|℘〉〈℘| + |℘′〉〈℘′|)
+ sin("℘, ℘′ )(|℘′〉〈℘| − |℘〉〈℘′|), (C1)

with ℘, ℘′ ∈ {1, 2, 3, 4}, ℘ < ℘′ and 1 being the identity
operator, as

G̃℘,℘′ = i
∂

∂"℘,℘′
R℘,℘′ ("℘, ℘′ )|"℘, ℘′=0 = i(|℘′〉〈℘| − |℘〉〈℘′|),

(C2)
which is an antisymmetric matrix with pure imaginary ele-
ments. Then, we construct a mapping F : so(4) �→ s̃o(4) as

F (G̃12) = G1, F (G̃13) = G5, F (G̃14) = G4,

F (G̃23) = G3, F (G̃24) = G6, F (G̃34) = G2. (C3)

In fact, the mapping F is a one-to-one mapping, and it can
be considered as a representation transform with a unitary
operator

Ṽ = i(|1〉〈1| + |3〉〈3|) + (|2〉〈2| + |4〉〈4|). (C4)

Therefore, we have

[G1,G2] = [F (G̃12),F (G̃34)]

= [Ṽ †G̃12Ṽ , Ṽ †G̃34Ṽ ] = [G̃12, G̃34]. (C5)

Similarly, one can obtain the results that for any pair of
generators in s̃o(4) and the corresponding pairs of generators
in so(4), the commutation operations are preserved by the
mapping F . Consequently, F is an isomorphic mapping
between so(4) and s̃o(4), and we can say so(4) and s̃o(4) are
isomorphic.

APPENDIX D: RANK OF MATRIX M(t ) WITH so(N)
LIE ALGEBRA

Let us show that the rank of matrix M(t ) is always less
than the numbers of generators when the Hamiltonian and the
invariant are described with so(N) (N � 3) Lie algebras. First,
for any generator of Lie algebra so(N), we define an operation
L℘, ℘′ acting on an arbitrary element X of so(N) as

L℘, ℘′X = −i[G̃℘, ℘′ ,X ], (D1)

which can be written as a matrix in basis {G̃℘, ℘′ |℘, ℘′ =
1, 2, . . . ,N, ℘ < ℘′}. Considering the fact that
[G̃℘, ℘′ , G̃℘̃,℘̃′] = 0 happens in two cases: (i) ℘ = ℘̃ and
℘′ = ℘̃′; (ii) any two indexes of ℘, ℘′, ℘̃, and ℘̃′ are different
with each other, the rank of L℘, ℘′ is always less than the
total number [N (N − 1)/2] of generators of so(N). For
example, for so(4) Lie algebra, we have [G̃12, G̃12] = 0 and
[G̃12, G̃34] = 0, thus rank[L12] = 4 < 6. Besides, as ℘, ℘′,
℘̃, and ℘̃′ are arbitrary indexes in the discussions above, it is
not hard to derive

rank[L℘, ℘′] = rank[L℘̃,℘̃′ ] = [N (N − 1)

− (N − 2)(N − 3)]/2 + 1 = 2(N − 2). (D2)

On the other hand, considering two arbitrary elements X and
Y in so(N), we have the Hilbert-Schmidt inner product

(X,L℘, ℘′Y ) = −i Tr{X [G̃℘, ℘′ ,Y ]}
= i Tr{Y [G̃℘, ℘′ ,X ]} = −(Y,L℘, ℘′X ),(D3)

L℘, ℘′ is always an antisymmetric matrix in basis
{G̃℘, ℘′ |℘, ℘′ = 1, 2, . . . ,N, ℘ < ℘′}. Since L℘, ℘′ and
L℘̃,℘̃′ are two antisymmetric matrices with the same rank,
there exists a nonsingular matrix V℘̃,℘̃′,℘,℘′ satisfying

L℘, ℘′ = VT
℘̃,℘̃′,℘,℘′L℘̃,℘̃′V℘̃,℘̃′,℘,℘′ . (D4)

Especially when ℘̃ = 1 and ℘̃′ = 2, we have

L℘, ℘′ = ṼT
℘, ℘′L12Ṽ℘, ℘′ , (D5)

with Ṽ℘, ℘′ = V1,2,℘,℘′ .
Assuming that the Hamiltonian and the invariant of the

system are

H (t ) =
∑
℘<℘′

λ̃℘, ℘′ (t )G̃℘, ℘′ (D6)

and

I (t ) =
∑
℘<℘′

ξ̃℘, ℘′ (t )G̃℘, ℘′ , (D7)

respectively, the matrix M(t ) can be decomposed as

M(t ) =
∑
℘<℘′

ξ̃℘, ℘′ (t )L℘, ℘′ . (D8)

Using the results of Eqs. (D2) and (D5), we can derive

M(t ) =
⎡
⎣∑

℘<℘′
ξ̃℘, ℘′ (t )Ṽ℘, ℘′

⎤
⎦L12, (D9)
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consequently,

rank[M(t )] � min

⎧⎨
⎩rank

⎡
⎣∑

℘<℘′
λ̃℘, ℘′ (t )Ṽ℘, ℘′

⎤
⎦, rank(L12)

⎫⎬
⎭

� rank(L12) = 2(N − 2). (D10)

The results can also be applied to the Lie algebras isomorphic
to so(N). For example, in the implementation of the two-
qubit gate in Sec. IV, s̃o(4) is isomorphic to so(4), thus
rank[M(t )] � 2 × (4 − 2) = 4. Moreover, for the implemen-
tation of the single-qubit gate, as su(2) is isomorphic to so(3),
the rank of Ms(t ) is less or equal to 2 × (3 − 2) = 2. This
result indicates that, if a system possesses so(N) dynamical
structure, and the number of available couplings are more than
2(N − 2), there may exist auxiliary couplings that help us to
eliminate the dynamic phases like J (t ) in Eq. (49) and Bz(t )
below Eq. (A10).

As a side note, we also make some brief discussions about
the general Lie algebra to characterize the evolution of an
N-dimensional system, namely, the su(N) algebra. When the
dynamical invariant is described by su(N) algebra, although
the rank of matrix M(t ) is more difficult to be estimated,
M(t ) can also not be a full-rank matrix as M(t )I (t ) =
−i[I (t ), I (t )] = 0. Since the total number of generators of a
su(N) algebra is N2 − 1, the rank of M(t ) must less or equal
to N2 − 2. Interestingly, as

(X,M(t )Y ) = −i Tr{X [I (t ),Y ]}
= i Tr{Y [I (t ),X ]} = −(Y,M(t )X ), (D11)

M(t ) is always an antisymmetric matrix in the basis of gen-
erators, and thus it has even-number rank. When N is odd, the
rank of M(t ) must less than N2 − 3. Therefore, for a system
holding su(N) dynamical structure, it may also be possible to
find out some couplings in eliminating the dynamic phases.

APPENDIX E: NOTE ABOUT THE SOLUTIONS OF EQ. (14)

First, we consider the case that all the couplings in the
considered Lie algebra are available (all elements of �λ can
be freely designed). The condition to make the solution
exist is

rank(M(t )) = rank(M̄(t )), (E1)

with M̄(t ) = [M(t )|�̇ξ (t )] being the augmented matrix for
Eq. (14). Assuming that the total number of generators is N,
and the rank of M(t ) is N1, M̄(t ) can be changed into

M̄′(t ) =
[
M′

N1×N(t ) f1(�̇ξ )

ON2×N f2(�̇ξ )

]
, (E2)

by a serial of elementary row transformation, where
M′

N1×N(t ) is a rank-N1 matrix, ON2×N is a (N2 × N)-

dimensional null matrix (N2 = N − N1), f1(�̇ξ ) [f2(�̇ξ )] is
an N1-dimensional (N2-dimensional) column vector, whose
elements are linear superpositions of the elements of �̇ξ .

Therefore, we obtain the condition to make rank(M(t )) =
rank(M̄(t )) satisfied as f2(�̇ξ ) = 0. f2(�̇ξ ) = 0 is the origin
of the constraint equations for {ξ j (t )}. Thus, when all the
couplings in the considered Lie algebra are available, Eq. (14)
can always be solved by adding constraint equations. Similar
results have also been shown by previous scheme [67] with
Gauss elimination and pseudoinverse matrix. On the other
hand, if the Hamiltonian does not contain all the couplings in
the considered Lie algebra [some elements of �λ(t ) should be
zeros], we can divide �λ into two parts and obtain the equation⎡
⎣M(1)

Ñ1×Ñ1
(t ) M(2)

Ñ1×Ñ2
(t )

M(3)
Ñ2×Ñ1

(t ) M(4)
Ñ2×Ñ2

(t )

⎤
⎦
⎡
⎣λÑ1

(t )

0Ñ2

⎤
⎦ =

[
ξ̇Ñ1

(t )

ξ̇Ñ2
(t )

]
,

(E3)

where Ñ1 is the number of nonzero elements of �λ, Ñ2 =
N − Ñ1, λÑ1

(t ) is the part of �λ(t ) with nonzero elements, and

0Ñ2
is the part of �λ with zero elements. Besides, �̇ξ (t ) is also

divided into two corresponding parts ξ̇Ñ1
(t ) and ξ̇Ñ2

(t ), while
the matrix M(t ) is divided into four corresponding blocks as
M(1)

Ñ1×Ñ1
(t ), M(2)

Ñ1×Ñ2
(t ), M(3)

Ñ2×Ñ1
(t ), and M(4)

Ñ2×Ñ2
(t ). Thus,

the equation for the reverse engineering reduces to⎡
⎣M(1)

Ñ1×Ñ1
(t )λÑ1

(t )

M(3)
Ñ2×Ñ1

(t )λÑ1
(t )

⎤
⎦ =

[
ξ̇Ñ1

(t )

ξ̇Ñ2
(t )

]
. (E4)

Assuming

rank

⎛
⎝
⎡
⎣M(1)

Ñ1×Ñ1
(t )

M(3)
Ñ2×Ñ1

(t )

⎤
⎦
⎞
⎠ = N′

1, (E5)

we have N′
1 = min{N1, Ñ1}, and the condition to make the

solution of λÑ1
(t ) exist is

rank[M̃′(t )] = rank

⎛
⎝
⎡
⎣M(1)

Ñ1×Ñ1
(t ) ξ̇Ñ1

(t )

M(3)
Ñ2×Ñ1

(t ) ξ̇Ñ2
(t )

⎤
⎦
⎞
⎠ = N′

1.

(E6)

By using a serial of elementary row transformation, M̄′ can
be changed into ⎡

⎣M̃N′
1×Ñ1

(t ) f̃1(�̇ξ )

ON′
2×Ñ1

(t ) f̃2(�̇ξ )

⎤
⎦, (E7)

with M̃N′
1×Ñ1

(t ) being a rank-N′
1 matrix, ON′

2×Ñ1
being

a (N′
2 × Ñ1)-dimensional null matrix (N′

2 = N − N′
1), f̃1(�̇ξ )

[f̃2(�̇ξ )] being an N′
1-dimensional (N′

2-dimensional) column
vector, whose elements are linear superpositions of the ele-

ments of �̇ξ . In this case, the solution of λÑ1
(t ) exists only if

f̃2(�̇ξ ) = 0. f̃2(�̇ξ ) = 0 also produces the constraint equations
for {ξ j (t )}. Thus, the solution of Eq. (14) always exists by
adding proper constraint equations for {ξ j (t )}.
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