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We quantify the resources required for entangling two uncoupled spin qubits through an intermediate
mesoscopic spin system (MSS) by indirect joint measurement. Indirect joint measurement benefits from coherent
magnification of the target qubits’ state in the collective magnetization of the MSS, such that a low-resolution
collective measurement on the MSS suffices to prepare postselected entanglement on the target qubits. A MSS
consisting of two noninteracting halves, each coupled to one of the target qubits, is identified as a geometry
that allows implementing the magnification process with experimentally available control tools. It is proved that
the requirements on the amplified state of the target qubits and the MSS perfectly map to the specifications
of micro-macro entanglement between each target qubit and its nearby half of the MSS. In the light of this
equivalence, the effects of experimental imperfections are explored; in particular, bipartite entanglement between
the target qubits is shown to be robust to imperfect preparation of the MSS. Our study provides an approach
for using an intermediate spin system for connecting separated qubits. It also opens another path in exploring
entanglement between microscopic and mesoscopic spin systems.
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I. INTRODUCTION

Coherent control via a mesoscopic system is an emerg-
ing tool in quantum information processing [1–8]. Using a
mesoscopic system to indirectly measure a joint property of
two noninteracting qubits through a coarse-grained collective
measurement has recently been introduced as a new approach
for entangling uncoupled qubits [9]. Here, we analyze creating
micro-macro entanglement between two target spin qubits and
a mesoscopic spin system as a robust strategy for implement-
ing the indirect joint measurement technique on spin qubits.
Micro-macro entangled states have two main characteristics:
(1) bipartite entanglement between a microscopic system,
e.g., a qubit, and a many-body system, e.g., a mesoscopic
system and (2) macroscopic distinctness between the states of
the many-body system that are correlated with different states
of the microscopic system [10–12].

Interest in micro-macro entangled states dates back to
Schrödinger’s well-known “cat in a box” thought experiment
[13], which was designed to formulate fundamental questions
such as the following: To what extent quantum mechanics
laws apply? What causes the quantum to classic transition?
[12,14]. It took several decades for quantum technology to
reach the capability to allow realizing purely quantum corre-
lations at macroscopic scales (of course, not as macroscopic as
a cat). Micro-macro entangled states have been produced with
Rydberg atoms as the microscopic system coupled to photons
confined in a cavity [15,16], transmon qubits coupled to pho-
tons in a waveguide cavity resonator [17], the path degree of
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freedom of a single photon correlated to two optical coherent
states with different phases [11,18], and the internal state of
trapped ions entangled to their motional degrees of freedom
[19,20]. These experiments pave the way for the application
of micro-macro entangled states in quantum processing.

Here we study the requirements for generating micro-
macro entangled states between individual spin qubits and
mesoscopic spin systems and for using such states to entangle
two uncoupled spin qubits via the indirect joint measurement
scheme. Specifically, we show that with the experimentally
available control on the mesoscopic spin system including
collective rotations and internal magnetic dipole-dipole inter-
actions, local coupling between a target spin qubit and the
mesoscopic spin system suffices for generating an extended
micro-macro entangled state. Further, we show micro-macro
entangled states facilitate creating postselected entanglement
between uncoupled spin qubits through the indirect joint
measurement that needs only a coarse-grained collective mea-
surement on the mesoscopic spin system (MSS).

Bipartite entanglement between separated qubits is equiv-
alent to a quantum state transfer (QST) up to local operations
and classical communications [21,22]. An entangled pair of
qubits can be used to transfer a quantum state using quantum
teleportation protocols [23]. On the other hand, two separated
qubits can be entangled by first entangling one of them with
a nearby ancilla qubit with local operations then transferring
the state of the ancilla to the second qubit through QST.
There are extensive studies on QST through a (hypothetical)
one-dimensional (1D) spin chain [22,24–32]. These studies
usually consider spin-preserving interaction Hamiltonians and
a fully polarized initial state, which allows restricting the
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FIG. 1. A schematic of a MSS in local contact with two nonin-
teracting individual qubits.

dynamics to the first excitation manifold [22,24–27]. Nearest-
neighbor coupling is also widely assumed, which enables
finding analytical solutions through the Jordan-Wigner trans-
formation [33]. Although these simplified models are very
insightful, when it comes to physical systems, such as dipo-
larly coupled spin systems, they do not provide a complete
description of the dynamics.

Here, we focus on analyzing a fair model of the interme-
diate MSS. We consider the experimentally available grade-
raising Hamiltonian, not the spin-preserving flip-flop (XY ) or
Heisenberg Hamiltonian, and utilize full dipolar coupling that
is not restricted to only nearest-neighbor interactions. Thus,
the many-body dynamics of the spin system is neither limited
to the first excitation manifold nor can be solved analytically.
We simulate the dynamics for up to 20 spins and extrapolate
the results for larger sizes of the MSS. We also do not limit
the geometry to a 1D spin chain. In fact, we observe signif-
icantly faster responses in higher dimensions. Comparing to
QST proposals, high-fidelity bipartite entanglement between
separated qubits is anticipated without assuming single-spin
addressability, engineering the interaction between the spins
in the chain [24,29], or adaptive two-qubit gates at the end
of the spin chain [27], given that a coarse-grained collective
nondestructive magnetization measurement on the MSS is
available. The difference in the requirements is because our
approach is based on magnification of the state of the target
qubits and a global measurement of the MSS, compared to
directional information transfer from one qubit to the other,
needed in the QST procedures.

II. STATEMENT OF THE PROBLEM

Consider two uncoupled spin qubits and an intermediate
MSS, as schematically depicted in Fig. 1. The target spin
qubits are spin-half particles that can be initialized, controlled,
and measured individually. The MSS is an ensemble of identi-
cal electron spins or spin half nuclei that can be controlled and
measured collectively. The spins in the MSS interact with each
other according to the two-body magnetic dipole coupling,

Hdip =
∑

i, j;i< j

di j
(
2σ i

zσ
j

z − σ i
xσ

j
x − σ i

yσ
j

y

)
, (1)

where σx, σy, and σz are the Pauli operators and the in-
teraction strength is proportional to the inverse cube of the
distance between the spins, di j ∝ 1/|�ri j |3. Each target qubit
is locally coupled to the MSS. To be specific, we consider
that each qubit, qi, is interacting with one nearby spin within
the MSS, si, and universal control over the pair is available.

An example of such a setup consists of two nitrogen-vacancy
(NV) centers in a diamond as the target qubits and electronic
P1 defects in the diamond or nuclear (or electron) spins of
phosphorous defects in a silicon lattice attached to the surface
of the diamond as the MSS.

The goal is to evaluate the resources required for en-
tangling the target qubits by indirect joint measurement
through the MSS. The analyzed resources of the MSS are
the purity of the initial state, the size, control and internal
dynamics, measurement, and robustness to noise. The ap-
proach is to limit the coherent control tools to experimentally
available ones (including collective rotations, internal dipolar
interaction among the spins in the MSS, and local coupling
between each target qubit and the MSS) and to find the
requirement on the other resources.

This paper is organized as follows. In Sec. III, the general
scheme for entangling two noninteracting spin qubits through
indirect joint measurement is reviewed, the role of micro-
macro entangled states is highlighted, and the measurement
requirements are identified. In Sec. IV, we present a scheme
that can generate a mesoscopic superposition state with micro-
macro entanglement between a spin qubit and a mesoscopic
spin system using experimentally available control including
collective rotations and internal dipole-dipole interaction in
the MSS and local coupling between the qubit and the MSS.
We simulate the procedure for up to 20 spins in the MSS
and extrapolate the results for larger systems. The scaling
of the magnification time with the size of the MSS and its
dependency on the geometry and dimension are also dis-
cussed. In Sec. V, the entanglement of the target qubits is
quantified based on the magnification procedure of Sec. IV
and a general collective measurement through a two-level
apparatus. Simulations in Secs. IV and V consider an idealized
noiseless procedure with a pure initial state over the MSS.
In Secs. VI and VII, the sensitivity of the scheme to limited
initial polarization of the MSS and particle loss is analyzed.
In particular, it is shown that limited initial polarization can
be compensated for by enlarging the MSS. We summarize the
required resources for entangling two uncoupled spin qubits
through a MSS and conclude the paper in Sec. VIII.

III. INDIRECT JOINT MEASUREMENT

Two noninteracting qubits can be entangled either by
creating an indirect interaction between them or by pro-
jectively measuring a joint property of them. Measuring
the parity of two qubits each prepared in a superposition
state, |±〉 = 1√

2
(|0〉 ± |1〉), projects their state into a maxi-

mally entangled state with odd, |o±〉 = 1√
2
(|01〉 ± |10〉), or

even, |e±〉 = 1√
2
(|00〉 ± |11〉), parity. Similarly, with these

initial states, total magnetization measurement of the qubits
projects their state into the maximally entangled state |m0〉 =

1√
2
(|01〉 ± |10〉) or separable states |m−1〉 = |11〉 and |m+1〉 =

|00〉 with the probabilities of 1
2 , 1

4 , and 1
4 , respectively. Here,

the qubit states |0〉 and |1〉 represent the spin states |↑〉 and |↓〉.
Entangling two spin qubits by projective measurement needs a
very high-resolution joint measurement able to detect a single
spin flip. Indirect joint measurement through a MSS relaxes
this criterion by first coherently amplifying the state of the
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FIG. 2. The general circuit of indirect joint measurement on two
separated qubits through an intermediate MSS [9].

target qubits in the collective magnetization of the MSS along
a known direction (called z) (gate Uq,MSS in Fig. 2), then mea-
suring the MSS by a coarse-grained collective magnetization
measurement that is capable of detecting only many spin flips
(operation M in Fig. 2).

The coherent magnification process, represented by gate
Uq,MSS in Fig. 2, changes the state of the MSS conditioned
on the state of the target qubits, Uq,MSS = |00〉〈00|q ⊗ U00 +
|01〉〈01|q ⊗ U01 + |10〉〈10|q ⊗ U10 + |11〉〈11|q ⊗ U11. With a
pure initial state over the MSS, |ψin〉, and state |+〉 over the
qubits, the state of the qubits and the MSS after applying this
gate is

|ψ〉q,MSS = 1
2 (|00〉q|ψ00〉 + |01〉q|ψ01〉
+|10〉q|ψ10〉 + |11〉q|ψ11〉), (2)

where |ψi j〉 = Ui j |ψin〉, for i, j = 0, 1. To indirectly measure
the joint magnetization of the target qubits, the collective
coarse-grained magnetization measurement over the MSS
needs to distinguish the pair of states {|ψ01〉, |ψ10〉} from the
pair {|ψ00〉, |ψ11〉} but should not discern between the states
|ψ01〉 and |ψ10〉. With these criteria, the state of the qubits and
the MSS after the measurement and postselection ideally is

|ψm0〉q,MSS = 1√
2

(|01〉q|ψ01〉 + |10〉q|ψ10〉). (3)

In general, the states |ψ01〉 and |ψ10〉 are not equal, and thus
|ψm0〉q,MSS is an entangled state between the target qubits and
the MSS. To prepare the target qubits in the maximally entan-
gled triplet zero state, |m0〉 = 1√

2
(|01〉 + |10〉), they need to be

disentangled from the MSS by undoing the magnification step
(gate U †

q,MSS in Fig. 2) [9]. In the quantum eraser language,
the MSS is like a tagging particle and the target qubits’
entanglement needs to be restored, similar to the reversible
eraser scheme [34].

A. Micro-macro entanglement

With the experimentally available control tools, an inter-
esting and potentially implementable geometry consists of
a MSS with a barrier in the middle, such that there is no
internal interaction, and thus no flow of information, be-
tween the two sides of the barrier. The state of each target
qubit is magnified in the collective state of its nearby side.
However, the collective measurement is implemented on the
whole MSS.

Here, we show that, within this geometry, the conditions
on the magnified state of the qubits and the MSS entirely map

|+〉 |φ〉qL,MSSL

qL, |0〉 H

UL U†
L

M

MSSL,
∣∣ψL

in

〉
...

UR U†
R

...MSSR,
∣∣ψR

in

〉

qR, |0〉 H

⎧⎪⎪⎨
⎪⎪⎩
⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

|+〉 |φ〉qR,MSSR

FIG. 3. Indirect joint measurement with a MSS consisting of two
noninteracting halves.

to the specifications of micro-macro entangled states between
each target qubit and its nearby half of the MSS. In Sec. IV, we
will show that creating micro-macro entanglement between
each target qubit and half the MSS needs only experimentally
available control tools including local interaction between
the qubit and the MSS, collective rotations on the MSS and
internal magnetic dipole interaction between the spins in the
MSS.

The general circuit for this geometry, depicted in Fig. 3,
is a subset of the generic indirect joint measurement circuit
in Fig. 2, in which the magnification gate is decomposed into
two parts Uq,MSS = UL ⊗ UR, each being a conditional gate on
half of the MSS controlled by its nearby target qubit,

Ui = |0〉〈0|qi ⊗ U MSSi
0 + |1〉〈1|qi ⊗ U MSSi

1 , i = L, R. (4)

With an ideal pure separable initial state of the MSS, |ψin〉 =
|ψL

in〉 ⊗ |ψR
in〉, the general state of each target qubit and its

nearby half of the MSS after applying this gate and before
the measurement is

|φ〉qi,MSSi = 1√
2

(|0〉qi

∣∣ψ i
0

〉 + |1〉qi

∣∣ψ i
1

〉)
, i = L, R. (5)

This state is a micro-macro-entangled state if |ψ i
0〉 and |ψ i

1〉
are orthogonal and macroscopically distinct, i.e., distinguish-
able by a coarse-grained collective measurement [10–12].
Macroscopic distinctness between the states |ψ i

0〉 and |ψ i
1〉

mathematically means that the difference in the expectation
value of a particular collective observable, e.g., the collective
magnetization along z, Jz = ∑

j σ
j

z , for these two states is
large compared to both the quanta of the collective observable
(e.g., h̄ for collective magnetization) and the sum of their
standard deviation [10–12],∣∣〈Ji

z

〉
0 − 〈

Ji
z

〉
1

∣∣
max

((
δJi

z

)
0 + (

δJi
z

)
1, h̄

) 
 1. (6)

Taking the maximum between (δJi
z )0 + (δJi

z )1 and h̄ en-
sures a meaningful answer when both (δJi

z )0 and (δJi
z )1 are

zero. In addition, to effectively use all the spins in the
MSS, the difference in the expectation value of the collective
magnetization observable preferably should be proportional to
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FIG. 4. Magnetization spectrum of (a) an example of two macro-
scopically distinct states of half of the MSS and (b) the corresponding
states of the whole MSS.

the size of the MSS,
〈
Ji

z

〉
0 − 〈

Ji
z

〉
1 ∝ N. (7)

The collective magnetization observable, Jz, for N spins fol-
lows the spectral decomposition,

Jz =
N
2∑

mz=− N
2

mz�
N (mz ), (8)

where the operator �N (mz ) projects onto the subspace with
total magnetization of mz and h̄ is set to one. The magnetiza-
tion spectrum of an arbitrary state, |φ〉, is

Pφ (mz ) = Tr(�N (mz )|φ〉〈φ|). (9)

Macroscopic distinctness between the states |ψ i
0〉 and |ψ i

1〉
requires them to have well-separated magnetization spectra,
as depicted in Fig. 4(a).

The states of the whole MSS associated with different
states of the target qubits are |ψ00〉 = |ψL

0 〉|ψR
0 〉, |ψ01〉 =

|ψL
0 〉|ψR

1 〉, |ψ10〉 = |ψL
1 〉|ψR

0 〉, and |ψ11〉 = |ψL
1 〉|ψR

1 〉. To im-
plement indirect magnetization measurement on the qubits,
the states {|ψ01〉, |ψ10〉} not only need to be orthogonal to
the states {|ψ00〉, |ψ11〉} but also must be distinguishable from
them by a coarse-grained collective magnetization measure-
ment. In addition, the states |ψ01〉 and |ψ10〉 must not be
distinguishable from each other [9]. These three conditions
are satisfied if and only if each qubit and its nearby half of the
MSS are prepared in (similar) micro-macro-entangled states.

The pair of the states {|ψ01〉, |ψ10〉} and {|ψ00〉, |ψ11〉} are
orthogonal if and only if the states |ψ i

0〉 and |ψ i
1〉 are orthog-

onal to each other for i = L, R. The second criterion requires
macroscopic distinctness between the states |ψ i

0〉 and |ψ i
1〉.

The magnetization spectra of the states |ψ00〉, |ψ01〉, |ψ10〉,
and |ψ11〉 of the whole MSS are the convolution of the spectra
of the corresponding states of the halves.

Consequently, their means and variances are sum of the
means and variances of the spectra of the corresponding states
of the halves,

〈Jz〉k j = 〈
JL

z

〉
k + 〈

JR
z

〉
j, (10)

(δJz )k j =
√[(

δJL
z

)
k

]2 + [(
δJR

z

)
j

]2

for k, j = 0, 1. The equivalence between macroscopic dis-
tinctness between the states |ψ i

0〉 and |ψ i
1〉 and the distin-

guishablity between the pairs {|ψ01〉, |ψ10〉} and {|ψ00〉, |ψ11〉}
follows from these relations. The distinguishablity between
{|ψ01〉, |ψ10〉} and {|ψ00〉, |ψ11〉}, by a course-grained collec-
tive magnetization measurement along a particular axis, e.g.,
z axis, requires that

|〈Jz〉01 − 〈Jz〉00| 
 (δJz )01 + (δJz )00,

|〈Jz〉01 − 〈Jz〉11| 
 (δJz )01 + (δJz )11,

|〈Jz〉10 − 〈Jz〉00| 
 (δJz )10 + (δJz )00,

|〈Jz〉10 − 〈Jz〉11| 
 (δJz )10 + (δJz )11. (11)

Replacing the means and the standard deviations according
to Eq. (10) and assuming that the two target qubits and their
nearby sides of the MSS are prepared in similar states, i.e.,
〈JR

z 〉k ≈ 〈JL
z 〉k and (δJL

z )k ≈ (δJR
z )k , the above conditions are

met if ∣∣〈Ji
z

〉
1 − 〈

Ji
z

〉
0

∣∣ 
 (1 +
√

2)
[(

δJi
z

)
1 + (

δJi
z

)
0

]
(12)

for i = L, R. which is the same as the macroscopic distinct-
ness condition in Eq. (6) up to a small coefficient (1 + √

2) ≈
2.41. Satisfaction of relation (12) clearly requires the macro-
scopic distinctness condition given in Eq. (6) to be fulfilled.
Thus, each target qubit and its nearby half of the MSS need to
be in a micro-macro-entangled state prior to the measurement
step. On the other hand, preparing each qubit and its nearby
half of the MSS in similar micro-macro-entangled states guar-
antees that the states {|ψ01〉, |ψ10〉} have similar magnetization
spectra separated from the spectra of the states {|ψ00〉, |ψ11〉}.
Thus, the two pairs can be distinguished by a coarse-grained
collective measurement while the states |ψ01〉 and |ψ10〉 will
not be discerned due to their similar spectra.

B. Coarse-grained collective measurement

The measurement and postselection must project the state
of the qubits into zero magnetization subspace along with the
states of the MSS. In other words, the collective magnetization
measurement on the MSS and postselection not only need to
discern the MSS’s states correlated with zero magnetization
of the qubits from states associated with ±1 magnetizations,
but also must update the MSS’s state according to the mea-
surement outcome, with minimum disturbance on the selected
states. The state of the qubits and the MSS after the measure-
ment ideally is

|ψ〉q,MSS = 1√
2

(|01〉q

∣∣ψL
0

〉∣∣ψR
1

〉 + |10〉q

∣∣ψL
1

〉∣∣ψR
0

〉)
. (13)

032320-4



MESOSCOPIC SPIN SYSTEMS AS QUANTUM ENTANGLERS PHYSICAL REVIEW A 101, 032320 (2020)

Bipartite entangled state between the qubits separable from
the MSS can be created from this state simply by reversing
the magnification gate, similar to reversible quantum eraser
protocol [9,34],

|ψ〉q,MSS = 1√
2

(|01〉q + |10〉q) ⊗ |ψin〉. (14)

The desired coarse-grained collective magnetization measure-
ment is mathematically represented by a positive-operator
valued measure (POVM) with measurement operators, {Eα},
satisfying two conditions: positivity, Eα � 0, and trace pre-
serving,

∑
α Eα = 1. Since the measurement is collective, the

POVM operators can be expanded in terms of the collective
magnetization projection operators, �N (mz ),

Eα =
∑
mz

aα,mz�
N (mz ). (15)

The expansion coefficients, aα,mz , satisfy two conditions 0 �
aα,mz � 1 and

∑
α aα,mz = 1 following the positivity and trace

preservation of the Eα operators. The probability of each
measurement outcome, α, upon measuring the MSS in a
general state ρMSS is

Pα = Tr(EαρMSS) (16)

and the state of the MSS after the measurement is

ρMSS,α = MαρMSSM†
α

Pα

, (17)

where the operator Mα satisfies the relation MαM†
α = Eα .

Following the expansion of Eα in Eq. (15), the operators Mα

are expanded in terms of collective projectors as

Mα =
∑
mz

eiφα,mz
√

aα,mz�
N (mz ). (18)

The phase factor, eiφα,mz , depends on the details of the mea-
surement implementation. The operator Mα simplifies to

√
Eα

if φα,mz does not depend on mz, φα,mz := φα .
The measurement requirements can be specified by the

necessity that the measurement and postselection updates
the qubits and the MSS’s state from the state in Eq. (2) into the
state in Eq. (3). There should exist as least one measurement
operator, Mβ , that overlaps with the states |ψL

0 〉|ψR
1 〉 and

|ψL
1 〉|ψR

0 〉 but does not overlap with the states |ψL
0 〉|ψR

0 〉 and
|ψL

1 〉|ψR
1 〉. Moreover, this measurement operator ideally must

preserve the amplitude and the phase of the spectral expansion
of the states |ψL

0 〉|ψR
1 〉 and |ψL

1 〉|ψR
0 〉, i.e., in the expansion of

the measurement operators in Eq. (18) the amplitudes, aβ,mz ,
and the phases, eiφβ,mz , should be equal for all the collective
magnetizations that the spectra of the states |ψL

0 〉|ψR
1 〉 and

|ψL
1 〉|ψR

0 〉 contain. The former condition guarantees that ±1
magnetizations of the target qubits, i.e., the states |00〉q and
|11〉q, are not selected by the measurement and the latter
ensures that the coherence between |01〉q and |10〉q states of
the qubits can be restored by disentangling the MSS through
reversing the magnification gate.

If these two measurement requirements are not perfectly
satisfied, the final entangled state of the target qubits, ρq, de-
viates from the maximally entangled state |m0〉 = 1√

2
(|01〉q +

|10〉q). However, ρq is an entangled state and can be distilled

toward the state |m0〉, if the fidelity defined as the overlap of
these two states is greater than 0.5 [35,36],

Fm0 (ρq) := Tr(ρq|m0〉〈m0|). (19)

Fidelity ranges between 0 and 1 and if Fm0 (ρq) > (2 +
3
√

2)/8 ≈ 0.78, ρq is entangled enough to violate Clauser-
Horne-Shimony-Holt (CHSH) inequality [35,37].1

Entangling the target spin qubits by first entangling each
with the nearby half of MSS and then measuring the whole
MSS might remind one of entanglement swapping [38]. One
main difference is the measurement process. In the entangle-
ment swapping procedure, measurement of two qubits, each
from an entangled pair, in the Bell basis entangles the two
other qubits. The analogy in our case is measuring an ob-
servable that 1√

2
(|ψL

0 〉|ψR
1 〉 ± |ψL

1 〉|ψR
0 〉) and 1√

2
(|ψL

0 〉|ψR
0 〉 ±

|ψL
1 〉|ψR

1 〉) are four of its eigenstates with different eigen-
values. Such an observable, in general, is not a collective
observable, in contrast to the observable in the indirect joint
measurement procedure.

IV. CREATION OF MICRO-MACRO ENTANGLEMENT

In this section, we discuss producing a mesoscopic super-
position state with micro-macro entanglement between one
target spin qubit and a MSS, half the size of the whole MSS, as
the first step toward implementing indirect joint measurement
on two noninteracting target qubits. The focus is on using
experimentally available control elements, namely interaction
between the target qubit, q, and one nearby spin within the
MSS, s, collective rotations on the MSS and magnetic dipole-
dipole interaction among the spin in the MSS. The qubit is
prepared in the superposition state, |+〉 = 1√

2
(|0〉 + |1〉), and

the MSS is ideally prepared in the polarized state, | ↑〉⊗Nh ,
where Nh ≈ N/2 is the number of spins in the MSS.

We start with an intuitive approach based on repetitive
application of a conditional local gate on the MSS controlled
by the qubit and a duration of internal interaction between
the spins of the MSS. The internal evolution of the MSS
redistributes the magnetization between the spins in the MSS
but preserves the total magnetization. The collective mag-
netization is only changed conditioned on the state of the
target qubit. After enough repetitions, on the order of Nh, the
states of the MSS correlated with different states of the target
qubit become macroscopically distinct and a micro-macro-
entangled state is produced.

Next, we present a different scheme in which the target
qubit interacts with the MSS only once. The key feature of this
approach is that the MSS is prepared in a globally correlated
state prior to its interaction with the target qubit such that
a local change in the MSS conditioned on the state of the
target qubit has a global conditional effect. The maximally
entangled GHZ state, 1√

2
(| ↑〉⊗Nh + | ↓〉⊗Nh ), is an ideal state

1Note that we use the fidelity, defined in Eq. (19), as a measure for
entanglement since we know a priori what the expected maximally
entangled state is. However fidelity is not a measure for entanglement
in general, e.g., the maximally entangled states 1√

2
(|00〉 ± |11〉) have

zero overlap with |m0〉 state.
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UXY ×r
q, |+〉 •

s

HXY , dtMSS, |↑〉⊗Nh

...

FIG. 5. Magnification process based on repetitive interaction be-
tween the external qubit and its nearby spin from the MSS intervened
by internal evolution of the MSS under the magnetization preserving
HXY Hamiltonian

for this purpose [9]. However, preparing the GHZ state is
challenging for a mesoscopic size system;2 we show that
micro-macro entanglement between the target qubit and the
MSS can be produced by preparing less demanding correlated
states, created through the experimentally available two-body
dipolar coupling and collective rotations.

After presenting these two approaches, the magnification
time and its relation to the size of the MSS and its dimension-
ality are discussed.

A. Repeated interactions

The circuit in Fig. 5 shows an intuitive approach for
making a macroscopic global change in the collective mag-
netization of the MSS conditioned on the state of the qubit
using only local interactions between the two. The CNOT gate,
controlled by the qubit, q, on its nearby spin within the MSS,
s, CNOT= |0〉〈0|q ⊗ 1s + |1〉〈1|q ⊗ σ s

x , changes the magneti-
zation of the MSS locally conditioned on the state of the qubit
and evolving under zero-quantum flip-flop Hamiltonian,

HXY =
∑

i, j;i< j

ai j (σ
i
+σ

j
− + σ i

−σ
j

+) ai j ∝ 1

|�ri j |3 , (20)

passes this change to the rest of the spins in the MSS while
preserving the total magnetization. These two processes are
repeated r times to create a macroscopic effect. The operators
σ+ and σ− in Eq. (20) are the raising and lowering operators,
defined as σ± := σx±iσy

2 . The Hamiltonian HXY is widely used
in QST proposals usually with only nearest-neighbor inter-
actions, ai j = 0 for |i − j| �= 1. Here we consider all-to-all
interactions with the coefficients ai j proportional to inverse
cube of the distance between the two spins, consistent with
the magnetic dipolar interaction among the spins in the MSS.
The important feature of HXY is that it only redistributes the
magnetization among the spins while preserving the collective
magnetization of the MSS. The collective magnetization of
the MSS varies only conditioned on the state of the qubit by
the CNOT gate. Hence, in each repetition, the total magnetiza-
tion of the MSS either is preserved or varies by δmz ∈ [−1, 1],
depending on the qubit’s state.

With an initial superposition state of the qubit, |+〉 =
1√
2
(|0〉 + |1〉), and polarized state of the MSS, | ↑〉⊗Nh , the

2It needs to either access individual spins in the MSS or synthesize
N-body interaction among all the spins.
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FIG. 6. The distinct magnetization spectra of the MSS’s states,
| ↑〉⊗Nh and |ψXY

1 〉, correlated to |0〉 and |1〉 states of the target qubit
simulated based on the circuit in Fig. 5 with dt = π/a12 and r = 2Nh

for Nh = 12 spins in a 1D chain geometry.

general output state for the circuit 5 is

|φXY (dt, r)〉q,MSS = 1√
2

[|0〉q| ↑〉⊗Nh + |1〉q

∣∣ψXY
1 (dt, r)

〉]
.

(21)

For appropriate choice of the evolution time, dt , and suf-
ficiently large repetitions, r ∝ Nh, the state |ψXY

1 (dt, r)〉 is
macroscopically distinct from the state | ↑〉⊗Nh upon collective
magnetization measurement along z. Figure 6 shows the sim-
ulation results of the magnetization spectra of these two states
for a MSS in a 1D spin chain geometry with the interaction
strength ai j = a12

|i− j|3 between any pair of spins, where a12 =
aii+1 is the strongest interaction in the chain between any two
adjacent spins. In this simulation, the size of the chain, the
number of repetitions, and the evolution time are chosen to
be Nh = 12, r = 2Nh, and dt = π/a12.3 The spectrum of the
polarized state | ↑〉⊗Nh is a peak at mz = Nh/2; whereas, the
spectrum of the state |ψXY

1 〉 is distributed around mz = 0 and
has nonzero values for mz = Nh/2, Nh/2 − 2, ...,−Nh/2.

To characterize the spectrum of the state |ψXY
1 〉, we sim-

ulate the mean and the standard deviation (SD) of its dis-
tribution as a function of the number of repetitions, r, with
dt = π/a12 for up to Nh = 20 spins. As Fig. 7 shows, after a
transient time the mean of the spectrum of |ψXY

1 〉 approaches
zero and its SD approaches

√
Nh/2, which are the same

as the mean and the SD of a fully mixed state with
Nh spins, (12/2)⊗Nh , or an equal superposition state,

((|0〉 + |1〉)/
√

2)
⊗Nh .4 This result can be extrapolated to larger

3All the numerical simulations are conducted using the open source
EXPOKIT software package [39].

4One difference is that the spectrum of the state |ψXY
1 (t )〉 has

nonzero values for every other magnetization whereas the spectrum

of a fully mixed state or ((|0〉 + |1〉)/
√

2)
⊗Nh state includes all

magnetization. But what is important is the extent of the two spectra,
which is quantified by their mean and SD and is similar for the two
cases.
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FIG. 7. (a) The mean and (b) the standard deviation (SD) of the
magnetization spectrum of |ψXY

1 〉 as a function of the number of
repetitions for Nh = 13, 15, 16, 18 qubits. After a transient time, both
the mean and the SD of the spectrum approach those of the identity
state with the same size.

systems; the mean and the SD of the spectrum of |ψXY
1 〉 are

expected to be ≈0 and ≈ √
Nh/2, respectively. On the other

hand, the spectrum of | ↑〉⊗Nh is focused at Nh/2. As a result,
the macroscopic distinctness between the states |ψXY

1 〉 and
| ↑〉⊗Nh scales as

√
Nh,

〈Jz〉XY
0 − 〈Jz〉XY

1

(δJz )XY
0 + (δJz )XY

1

≈ Nh/2 − 0

0 + √
Nh/2

∝ √
Nh. (22)

It should be mentioned that the two states are not necessarily
orthogonal; nevertheless, for the proper choices of dt and
r their overlap is small. Thus, for a sufficently large MSS,√

Nh 
 1, and with appropriate dt and r the state in Eq. (21)
is a micro-macro-entangled state.

The introduced procedure provides a reasonable pro-
cess for creating a micro-macro-entangled state using only
local interactions. However, it is hard to implement ex-
perimentally in a spin system with dipolar coupling. It
needs the XY Hamiltonian which cannot be synthesized
out of the natural dipole-dipole interaction using collective

UGRq, |+〉q •
s

H2GR, t −H2GR, tMSS, |↑〉⊗Nh ...

FIG. 8. This circuit creates micro-macro entanglement between
the target qubit and the MSS with a one-time interaction between the
two using experimentally available control.

rotations.5,6 Moreover, the number of the CNOT gates between
the target qubit and the MSS is proportional to the number of
spins in the MSS which is challenging for large systems.

Next, we will introduce a different procedure that requires
only a one-time interaction between the qubit and the MSS.
It also uses a Hamiltonian that can be engineered from the
dipolar coupling using only collective control.

B. One-time interaction

Here we show that the circuit in Fig. 8 coherently magnifies
the state of the target qubit in the collective magnetization of
the MSS and creates a micro-macro-entangled state using only
one CNOT gate. The internal dynamics of the MSS is governed
by the reversible grade-raising Hamiltonian,

H2GR =
∑

i, j;i< j

ai j (σ
i
+σ

j
+ + σ i

−σ
j

−) ai j ∝ 1

|�ri j |3 , (23)

which is a well-known Hamiltonian within the nuclear mag-
netic resonance community. Both ±H2GR can be synthesized
out of the naturally occurring magnetic dipole-dipole inter-
action at high field by applying appropriate sequences of
collective rotations. For examples of such pulse sequences,
see Ref. [40].

The circuit in Fig. 8 works as follows. First, evolution
under the grade-raising Hamiltonian correlates the spins in
the MSS. For sufficiently long evolution times, a globally
correlated state is created; specifically the spin of the MSS that
is in contact with the external target qubit becomes correlated
with the rest of the spins in the MSS. Next, the CNOT gate
controlled by target qubit, q, on its nearby spin in the MSS,
s, perturbs the state of the MSS.7 This local conditional gate
has a global conditional effect due to correlations established
in the MSS prior to its local interaction with the target qubit.

5Synthesis of XY Hamiltonian out of dipolar coupling needs π

pulses on every other qubit [28]. Depending on the geometry, it might
be achieved using field gradients.

6Secular dipolar-dipole interaction, Hdip in Eq. (1), preserves the
collective magnetization similar to HXY , but according to our simula-
tions replacing HXY by Hdip in the circuit in Fig. 5 does not yield the
desired response.

7Controlled-Z gate has similar effect.

032320-7



MARYAM SADAT MIRKAMALI AND DAVID G. CORY PHYSICAL REVIEW A 101, 032320 (2020)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
y

0  N/2

1
/

2

FIG. 9. The distinct magnetization spectra of the MSS’s states,
| ↑〉⊗Nh and |ψGR

1 〉 correlated to |0〉 and |1〉 states of the target qubit
simulated based on the circuit in Fig. 8 with t = 2πNh/a12 for Nh =
12 spins in a 1D chain geometry.

Finally, applying the reverse of the first gate makes this global
conditional effect observable in the collective magnetization
spectrum of the MSS along the quantization axis. The unper-
turbed state of the MSS returns back to the initial polarized
state | ↑〉⊗N while the perturbed one evolves to a state with a
very different collective magnetization.

The state of the target qubit and the MSS after the evolution
follows the general form of a micro-macro-entangled state in
Eq. (5) with |ψ i

0〉 = | ↑〉⊗Nh and |ψ i
1〉 = |ψGR

1 〉,

|φGR(t )〉q,MSS = 1√
2

[|0〉q| ↑〉⊗Nh + |1〉q|ψGR
1 (t )〉]. (24)

The states |ψGR
1 (t )〉 and | ↑〉⊗Nh are not only orthogonal but

also macroscopically distinct given that the evolution time, t ,
is long enough.

Figure 9 shows the separation in the collective magnetiza-
tion spectra of the states | ↑〉⊗Nh and |ψGR

1 (t )〉 simulated for
a MSS in a 1D chain geometry (ai j = a12

|i− j|3 ) with Nh = 12
spins and evolution time t = 2πNh/a12. Figure 10 displays the
mean and the SD of the magnetization spectrum of the state
|ψGR

1 〉 as a function of the normalized evolution time, t/Nh,
for up to Nh = 20 spins. After a transient time, the mean of
the spectrum approaches zero and the SD approaches

√
Nh/2,

similar to the steady-state behavior of the state |ψXY
1 〉. Thus,

the macroscopic distinctness of the states |ψGR
1 〉 and | ↑〉⊗Nh ,

upon collective Jz measurement, scales as
√

Nh,

〈Jz〉GR
0 − 〈Jz〉GR

1

(δJz )GR
0 + (δJz )GR

1

≈ Nh/2 − 0

0 + √
Nh/2

∝ √
Nh. (25)

After applying the introduced magnification process on
both target qubits and their nearby halves of the MSS, the
states of the whole MSS correlated with different states of the
target qubits are |ψGR

00 〉 = | ↑〉⊗N , |ψGR
01 〉 = | ↑〉⊗NL |ψR,GR

1 〉,
|ψGR

10 〉 = |ψL,GR
1 〉| ↑〉⊗NR , and |ψGR

11 〉 = |ψL,GR
1 〉|ψR,GR

1 〉. Ac-
cording to the relations in Eq. (10), the mean and the
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FIG. 10. (a) The mean and (b) the SD of the magnetization
spectrum of |ψGR

1 〉 as a function of the normalized evolution time
for MSSs with Nh = 12, 16, 18, 20 spins. After a transient time, both
the mean and the SD of the spectrum approach those of the identity
state with the same size.

SD of the collective magnetization spectra of these states
scale as

〈Jz〉GR
00 ≈ N

2
, (δJz )GR

00 ≈ 0,

〈Jz〉GR
01 ≈ 〈Jz〉GR

10 ≈ N

4
, (δJz )GR

01 ≈ (δJz )GR
10 ≈

√
N/2

2
,

〈Jz〉GR
11 ≈ 0, (δJz )GR

11 ≈
√

N

2
, (26)

where N is the size of the whole MSS and NL ≈ NR ≈ Nh ≈
N/2. Macroscopic distinctness of the states |ψGR

01 〉 and |ψGR
10 〉

from both of the states |ψGR
00 〉 and |ψGR

11 〉 imposes a lower
bound on the size of the MSS,

N

4



(√
N/2

2
+

√
N

2

)
⇒ N 
 12. (27)

Comparing to the circuit based on XY Hamiltonian, the
coherent control elements of this circuit meshes better with
the experimentally available tools. It needs only one CNOT
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FIG. 11. Comparing (a) the mean and (b) the SD of |ψGR
1 〉 with

the circuit in Fig. 8 for a 1D chain and 2D lattices. The 2D lattice
structures have much shorter transient times than a 1D chain with the
same number of spins but the steady-state responses are similar.

gate. Additionally, the grade-raising Hamiltonian can be syn-
thesized from dipolar interaction with only collective pulses
in contrast to the XY Hamiltonian that requires both collective
pulses and rotations on every other spin [28]. Thus, in the rest
of this paper, we will consider the circuit in Fig. 8, based on
the grade-raising Hamiltonian as the magnification process.

C. Dimensionality

The simulations in Sec. IV B were all set in a 1D geometry.
Here, generating micro-macro entanglement between a target
qubit and a MSS that has a 2D structure is studied.

Figure 11 compares (a) the mean and (b) the SD of the
spectrum of |ψGR

1 〉 simulated for Nh = 20 spins when in
a 1D chain versus 2 by 10 and 4 by 5 2D lattices. The
asymptotic behaviors of 2D lattices are similar to that of
a 1D chain; however, the transition times of the 2D struc-
tures are much shorter meaning that the information flows
much more quickly. One simple explanation for this differ-
ence is that information flows over just one path in a 1D
structure compared to multiple paths in 2D (or 3D) struc-
tures. One-directional information flow is crucial in quantum
state transfer proposals; in contrast, our method relies on
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3
2GR

NN
Dipolar
Identity state

FIG. 12. Comparing the transient times for MSSs with NN (ai j =
a12δi, j−1) coupling and long-range coupling (ai j = a12

|i− j|3 ). Infor-
mation flows faster in a system with long-range dipolar coupling
compared to truncating to only NN interactions.

amplification of the qubit’s state in the whole system rather
than propagation of information in a specific direction. There-
fore, it benefits from faster response in 2D (and 3D) structures.

To conclude, all the previous steady-state results apply
to higher dimensions with an essential advantage of shorter
transient times and faster responses.

D. Magnification time

An important consideration moving forward is determining
the magnification process’s time. Of particular interest is how
the magnification time scales with the size of the MSS and
what its relation is to the dimension of the MSS. This question
is in general hard to answer because it depends on the many-
body dynamics of the MSS. Nevertheless, we have some clues
to the answer. We have shown that the dimension of the MSS
significantly affects the response time. The magnification
process has a much shorter transient time if the MSS has
a 2D structure, compared to a 1D chain of the same size.
Moreover, as depicted in Fig. 12, the long-range magnetic
dipole interaction entails shorter transient times compared
with truncating to only nearest-neighbor (NN) interactions.
Furthermore, comparing the SD versus normalized time for
different numbers of spins in a 1D chain in Fig. 10 shows that
as the size of the MSS increases, the peak is shifted toward
shorter normalized times, indicating that the transient time has
a sublinear relation with the size of the MSS even in a 1D
geometry.

The magnification time in our protocol is closely related
to the rate of information flow in a system with dipolar
coupling. In 1972, Lieb and Robinson showed that there is
a constant group velocity for the flow of information in a
system with local interactions, e.g., nearest-neighbor interac-
tions (or exponentially decaying interaction strength), known
as the Lieb-Robinson bound [41]. Our results show that the
dynamics of MSS violates the Lieb-Robinson bound, a finding
consistent with long-range dipolar interaction in the system.
Recently, numerous attempts have been made to find the rate
of information flow in systems with long-range interactions
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decaying with power law, ai j ∝ 1
rα

i j
[42–48]. Based on these

studies, different relations between the magnification time and
the size of the MSS are expected depending on the MSS’s
dimension. It has been shown that the correlation times for a
system with power-law interaction, ai j ∝ 1

rα
i j

, grow as T ∝ rζ ,

with 1
ζ

= 1 + 1+D
α−2D when α > 2D [48]. Thus, for a 1D chain,

the magnification time is expected to scale as t1D
mag ∝ l

1
3 ∝

N
1
3

h , where l is the length of the spin chain. For 2D and
3D lattices with dipolar coupling, no bound tighter than an
exponential information flow is found [42]. We also know that
the information flow is faster in 2D and 3D structures than
in 1D chains. Thus, in 2D and 3D structures the respective
range of the magnification timescales are expected to be

[∼log(l ) ∝ log(
√

Nh)] � t2D
mag<(∼ l

1
3 ∝ N

1
6

h ) and [∼ log(l ) ∝
log( 3

√
Nh)] � t3D

mag < (∼ l
1
3 ∝ N

1
9

h ). It is worth mentioning that
recently an algorithm has been proposed that saturates the
logarithmic bound for a 3D structure with dipolar coupling.
It needs t ∝ log(r) to transfer a state through a system with 1

rα

interaction if α = D [49].

V. MEASUREMENT AND FIDELITY

The requirements of an ideal measurement procedure were
discussed in Sec. III. Here we estimate the fidelity of the target
qubits’ postselected entangled state using the magnification
process introduced in Sec. IV B and a collective measurement
on the MSS through a two-level apparatus.

The measurement model is based on the general collective
two-outcome POVM on a mesoscopic system suggested in our
previous work [9]. Any two-outcome collective POVM can be
parametrized with a phase function θ (mz ),

E0 =
∑
mz

cos2(θ (mz ))�N (mz ),

E1 = 1 − E0 =
∑
mz

sin2(θ (mz ))�N (mz ). (28)

Such a measurement is equivalent to a projective measurement
on a two-level apparatus system after it interacts with the MSS
according to the interaction gate [50,51],

UM =
N
2∑

mz=− N
2

�N (mz ) ⊗ e−iθ (mz )σ a
y . (29)

Linear collective interaction between the MSS and the appa-
ratus qubit, HM = gJz ⊗ σy, conveniently creates UM with a
phase function proportional to the collective magnetization,
θ (mz ) ∝ mz. See Fig. 13. In this measurement process, the
state of the MSS is updated [52] according to Eq. (17), with
the measurement operators,

M0 =
∑
mz

cos[θ (mz )]�N (mz ),

M1 = i
∑
mz

sin[θ (mz )]�N (mz ). (30)

In order to select |ψGR
01 〉 and |ψGR

10 〉 over |ψGR
00 〉 and |ψGR

11 〉,
the linear phase function is chosen to be θ (mz ) = 2π

N mz.

FIG. 13. Two-outcome POVM on a MSS implemented through
an apparatus qubit.

Figure 14 depicts the corresponding expansion coefficients of
the POVM operators and the fidelity of the target qubits’ state
with the maximally entangled state |m0〉, upon measurement,
postselection on outcome 1 and disentangling from the MSS.
The fidelity increases with the size of the MSS and asymptoti-
cally approaches its maximum value, 1. This increase has two
origins. First, the macroscopic distinctness between the states
{|ψGR

01 〉, |ψGR
10 〉} and {|ψGR

00 〉, |ψGR
11 〉} grows with the size of the

MSS. Second, for larger MSSs, the measurement coefficients
become closer to uniform distribution over the expansion of
the spectrum of |ψGR

01 〉 and |ψGR
10 〉; thus, these states get less

distorted by the measurement and the following disentangling
gate will restore more coherence between the qubits’ states
|01〉q and |10〉q. It should be mentioned that we have simulated
an ideal noise-free process. In practice, the fidelity is not
expected to increase with the size of the MSS, indefinitely.
Including noise effect imposes an upper bound on size of the
MSS, as will be discussed in Sec. VII.

Figure 14 shows that the fidelity, Fm0 (ρq), exceeds 0.5
and the target qubits are entangled for all simulated sizes of
the MSS, although the assumed measurement model is not
an ideal measurement procedure. Moreover, for N � 24, the
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FIG. 14. (a) The expansion coefficients of the two POVM op-
erators based on the measurement procedure shown in Fig. 13
with θ (mz ) = 2π

N mz, chosen to distinguish between {|ψGR
01 〉, |ψGR

10 〉}
and {|ψGR

00 〉, |ψGR
11 〉} with highest probability. (b) The correspond-

ing fidelity of the entangled state of the target qubits with the
maximally entangled state |m0〉, after applying the measurement
in (a) on the MSS, postselecting on outcome 1 and disentangling
from the MSS. The fidelity is computed based on simulation of
the spectra of the states {|ψGR

01 〉, |ψGR
10 〉, |ψGR

00 〉, |ψGR
11 〉} for N =

12, 16, 20, 24, 28, 32, 36 spins and extrapolation of their spectra
according to binomial distribution for larger systems.
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fidelity is greater than 0.78, enough to violate the CHSH
inequality [35,37].

VI. MIXED INITIAL STATE

So far, a pure polarized state, |↑〉⊗N , has been considered as
the initial state of the MSS. In this section, we prove robust-
ness of the introduced indirect joint measurement procedure
to limited initial polarization of the MSS. In particular, we
will show that micro-macro entanglement between each target
qubit and its nearby half of the MSS and the subsequent bipar-
tite entanglement of the noninteracting target qubits are robust
to deviations of the MSS’s initial state from fully polarized
state; when the MSS is initially in the experimentally relevant
mixed state,

ρin(N, ε) =
[

1 + (1 − ε)σz

2

]⊗N

=
[(

1 − ε

2

)
| ↑〉〈↑ | + ε

2
| ↓〉〈↓ |

]⊗N

. (31)

The polarization parameter, ε, ranges from 0, for a fully
polarized pure state, to 1, for the maximally mixed state. We
are particularly interested in highly polarized states, i.e., ε

close to 0.
The magnification gate in Fig. 8 can be written as

UGR = |0〉〈0|q ⊗ 1 + |1〉〈1|q ⊗ V1 (32)

with V1| ↑〉⊗Nh = |ψGR
1 〉. The state of one target qubit and its

nearby half of the MSS after applying gate UGR to the initial
state |+〉〈+| ⊗ ρin(Nh, ε) is

ρGR
q,MSS = 1

2 [|0〉〈0|q ⊗ ρin + |1〉〈1|q ⊗ (V1ρinV
†

1 )

+|0〉〈1|q ⊗ (ρinV
†

1 ) + |1〉〈0|q ⊗ (V1ρin)]. (33)

Micro-macro entanglement of state ρGR
q,MSS requires bipartite

entanglement between the qubit and the MSS and macro-
scopic distinctness between the state ρGR

0 = ρin and ρGR
1 =

V1ρinV
†

1 . These two criteria are independent conditions that
need to be verified separately. We show the robustness of first
the bipartite entanglement and then macroscopic distinctness
to imperfect preparation of the MSS.

Direct verification of bipartite entanglement between a
microscopic and a mesoscopic system experimentally is a
challenging task [53,54]. Nevertheless, it can be simulated for
small sizes of the mesoscopic system. A computable measure
of bipartite entanglement for a general state, ρAB, regardless
of the size of each party and the purity of the overall state, is
negativity, which is defined as the sum of the absolute values
of the negative eigenvalues of the partially transposed density
matrix, ρ

TA
AB, [55]:

Neg(ρAB) :=
∑

i

|λi|. (34)

Negativity ranges from 0 for separable states to 0.5 for max-
imally entangled states.8 This measure is specifically helpful

8Based on the PPT (positive partial transpose) criteria [56], all
separable states have zero negativity but not all entangled states
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FIG. 15. Entanglement between one target qubit and its nearby
half of the MSS as a function of deviation of the initial state of the
MSS from fully polarized state simulated for different sizes of the
MSS. The simulation is based on the circuit in Fig. 8 with the evo-
lution time t = 2πNh/a12. For larger MSSs, bipartite entanglement
between the target qubit and the MSS is more robust to polarization
reduction.

in quantifying bipartite entanglement of a mixed state, when
one or both of the parties have more than two levels, where
other computable measures for mixed state entanglement
such as concurrence cannot be applied. A related measure is
logarithmic negativity, defined as

Lneg(ρAB) := log2

∣∣∣∣ρTA
AB

∣∣∣∣
1

= log2[2Neg(ρAB) + 1], (35)

where ||ρTA
AB||1 is the trace norm of the partially transposed

density matrix, ρTA
AB. Logarithmic negativity ranges from 0, for

separable states, to 1, for maximally entangled states [55].
Figure 15 shows logarithmic negativity of the bipartite

entangled state of the qubit and the MSS, ρGR
q,MSS, as a function

of the polarization parameter, ε, simulated for different sizes
of the MSS up to 10 spins. We are particularly interested in
highly polarized states, where ε is close to 0. For the fully
polarized initial state (ε = 0), the state ρGR

q,MSS is maximally
entangled, as already discussed. The entanglement reduces
with decrease in the polarization (increase in ε) with a slow
initial pace. The larger the MSS, the slower the initial drop in
entanglement; i.e., for larger MSS, bipartite entanglement of
state ρGR

q,MSS is more robust to the polarization reduction of the
MSS’s initial state.

The macroscopic distinctness between the states ρGR
0 and

ρGR
1 can be quantified according to Eq. (6). The collective

magnetization spectrum of the state ρGR
0 = ρin(Nh, ε) is a

shifted9 binomial distribution with the probability of success
p = 1 − ε/2 and number of trials Nh. Its mean and SD are
〈Jz〉GR

0 (ε) = (1 − ε)Nh/2 and (δJz )GR
0 (ε) = √

Nh
ε
2 (1 − ε

2 ).

have nonzero negativity except for 2 × 2 and 2 × 3 systems. In other
words, nonzero negativity guarantees entanglement but there are
entangled states with zero negativity.

9The distribution ranges from −Nh/2 to Nh/2 rather than 0 to Nh.
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FIG. 16. (a) The mean and (b) the SD of the spectrum of ρGR
1 as

a function of time simulated with Nh = 12 spins in a 1D chain for
different initial polarization of the MSS.

The mean and SD of the spectrum of state ρGR
1 = V1ρinV

†
1

are known for the two extreme cases: ε = 0 and ε = 1. It
was shown that with a polarized initial state, ε = 0, the mean
of the spectrum is 〈Jz〉GR

1 (ε = 0) ≈ 0 and its SD scales as
(δJz )GR

1 (ε = 0) ≈ √
Nh/2. On the other side of the range,

when ε = 1, the initial state, ρin, is a fully mixed state;
thus ρGR

1 is also a fully mixed state and the mean and
SD of its spectrum are 〈Jz〉GR

1 (ε = 1) = 0 and (δJz )GR
1 (ε =

1) = √
Nh/2. Similar mean and SD for the two extreme

cases suggests the same scaling for all other polarizations,
0 < ε < 1. Simulation results for different polarization with
Nh = 12 spins, shown in Fig. 16, confirms this prediction.
Thus, the mean and SD of the spectrum of ρGR

1 are expected
to be 〈Jz〉GR

1 (ε) ≈ 0 and (δJz )GR
1 (ε) ≈ √

Nh/2, for all initial
polarizations. Consequently, the macroscopic distinctness be-
tween the states ρGR

0 and ρGR
1 requires that

〈Jz〉GR
0 (ε) − 〈Jz〉GR

1 (ε)

(δJz )GR
0 (ε) + (δJz )GR

1 (ε)

≈ (1 − ε)Nh/2 − 0√
ε(2 − ε)

√
Nh/2 + √

Nh/2

 1. (36)

For 0 � ε � 1, the maximum of
√

ε(2 − ε) is 1 at ε = 1 and
the above relation is lower bounded by

〈Jz〉GR
0 (ε) − 〈Jz〉GR

1 (ε)

(δJz )GR
0 (ε) + (δJz )GR

1 (ε)
>

(1 − ε)Nh/2√
Nh

∝ 1 − ε

2

√
Nh.

(37)

Thus, 1−ε
2

√
Nh 
 1 assures macroscopic distinctness between

the states ρGR
0 and ρGR

1 . This condition along with robustness
of entanglement to decreases in polarization, shown in Fig. 15,
prove that the micro-macro entanglement between each target
qubit and its nearby half of the MSS is robust to polarization
loss when ε is close to 0 and Nh(1 − ε)2 
 4.

Two copies of the state in Eq. (33) represent the state of the
two noninteracting target qubits and the uncoupled halves of
the intermediate MSS,

ρq,MSS = 1
4

(|00〉〈00|q ⊗ ρGR
00 + |01〉〈01|q ⊗ ρGR

01 .

+ |10〉〈10|q ⊗ ρGR
10 + |11〉〈11|q ⊗ ρGR

11

+ |01〉〈10|q ⊗ (
ρL

inV
L†

1

) ⊗ (
V R

1 ρR
in

)
+ |10〉〈01|q ⊗ (

V L
1 ρL

in

) ⊗ (
ρR

inV
R†

1

)
+ other off-diagonal terms

)
, (38)

where ρGR
i j = ρGR

i ⊗ ρGR
j for i, j = 0, 1. The normalized state

of the target qubits after the measurement, postselection on
zero magnetization, and disentangling from the MSS is

ρq = TrMSS

(
U L†

GR ⊗ U R†
GR

(1q ⊗ M1)ρq,MSS(1q ⊗ M†
1 )

Tr[(1q ⊗ E1)ρq,MSS]
U L

GR

⊗U R
GR

)
. (39)

The measurement on the MSS and post-selection, 1 ⊗ M1,
defined in Eq. (30), selects ρGR

01 and ρGR
10 , correlated with

|01〉q and |10〉q states of the qubits, and the disentangling gate,
U L†

GR ⊗ U R†
GR, restores the coherence between the target qubits.

Success of the measurement process relies on distinguisha-
bility of the states ρGR

01 and ρGR
10 from the states ρGR

00 and ρGR
11 ,

which requires

N

4
(1 − ε) 


[√
N

2

√
1 + ε(2 − ε)

2
+

√
N

2

]
∼

√
N

⇒ N (1 − ε)2 
 16. (40)

Restoring the coherence between the states |01〉q and |10〉q
requires each qubit to be entangled with its nearby half of the
MSS prior to the measurement on the MSS.

The target qubits’ state can be expanded in the compu-
tational basis as ρq = ∑1

i, j,k,l=0 ci j,kl |i j〉〈kl|, with the nor-
malization condition c00,00 + c01,01 + c10,10 + c11,11 = 1. The
amplitude of the states |01〉q and |10〉q (c01,01 and c10,10)
and the coherence between them (c01,10 and c10,01) equally
contribute to the fidelity of the target qubits’ state with the
maximally entangled state |m0〉 = 1√

2
(|01〉 + |10〉). Assum-

ing similar states over the two qubits and their nearby halves
of the MSS (c01,01 = c10,10 and c01,10 = c10,01), the fidelity is

Fm0 (ρq) = c01,01 + c01,10 = c01,01

(
1 + c01,10

c01,01

)
, (41)
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FIG. 17. Simulation results of (a) the fidelity, (b) the population
(the diagonal terms of the density matrix), and (c) the coherence (the
off-diagonal terms of the density matrix relative to diagonal terms)
of the target qubits’ states as a function of initial polarization of the
MSS for small number of spins. Slow initial drop in the coherence
follows robustness in the bipartite entanglement between each qubit
and its nearby half of the MSS to polarization reduction. Fast
decrease in the population and the fidelity results from small sizes
of the simulated system that do not satisfy macroscopic distinctness
condition.

where 0 � c01,10 � c01,01 � 0.5. Reduction of the fidelity,
as the polarization decreases, originates from two sources:
leakage from the subspace spanned by {|01〉q, |10〉q} to the
subspace spanned by {|00〉q, |11〉q} and loss of coherence
between the states |01〉q and |10〉q, which are associated with
losing macroscopic distinctness and bipartite entanglement in
the micro-macro-entangled state in Eq. (33), respectively.

Figure 17 shows (a) the fidelity in Eq. (41), (b) the pop-
ulation in {|01〉q, |10〉q} subspace (c01,01 + c10,10), and (c)
the coherence between the states |01〉q and |10〉q relative
to the population (c01,10/c01,01), simulated as a function of
ε for MSSs with N = 8, 12, 16, 20 spins. In these simula-
tions, the measurement model of Sec. V is used with the
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FIG. 18. Simulation of diagonal terms of the qubits’ state,
c01,01 + c10,10, based on the extrapolation of the spectra of
ρ00, ρ01, ρ10, and ρ11 according to the binomial distribution and using
the measurement model of Sec. V with θ (m) = 2π

N (1−ε) .

measurement parameter θ (mz ) = 2π
N (1−ε) mz, modified as a

function of the polarization such that the measurement opera-
tor M1 selects ρGR

01 and ρGR
10 over ρGR

00 and ρGR
11 with the highest

probability.
These plots show that for the simulated sizes of the MSS,

the fidelities drop fast with decrease in the polarization, as a
result of the fast decreases in the populations in {|01〉q, |10〉q}
subspace. The coherence losses happen at a slow rate consis-
tent with the slow entanglement losses in the corresponding
micro-macro-entangled states, depicted in Fig. 15.

Fast decreases in the populations, observed in Fig. 17(b),
are not generic effects and result from the small sizes of the
simulated systems that do not satisfy the distinguishability
condition: N (1 − ε)2 
 16. For sufficiently large systems,
N 
 16, the population drops with a slow rate as ε grows,
up to a point where the macroscopic distinctness condition
is not satisfied, ε ≈ 1 − 8√

N
, as shown in Fig. 18. Thus, the

population in {|01〉q, |10〉q} subspace is close to 1 when N (1 −
ε)2 
 16. In addition, as Fig. 17(c) shows, the larger the MSS,
the slower the rate of the coherence loss. Thus, numerical
evidence suggests that for large MSSs, N (1 − ε)2 
 16, both
population in {|01〉q, |10〉q} subspace and coherence between
the states |01〉q and |10〉q, and consequently the fidelity,
Fm0 (ρq), are robust to decrease in polarization of the MSS’s
initial state.

In conclusion, bipartite entanglement between the target
qubits is robust to deviation of the initial state of the MSS from
the fully polarized state, as long as N (1 − ε)2 
 16. With a
fixed measurement resolution limited initial polarization of
the MSS needs to be compensated for by enlarging the MSS,
Nε = N/(1 − ε).

VII. SENSITIVITY TO NOISE

A common feature of micro-macro-entangled states and
more generally macroscopic superposition states is their sen-
sitivity to noise [57], to the extent that the rate of coherence
loss has been suggested as a measure of the macroscopicity of
quantum superposition states [58,59]. This section discusses
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sensitivity of the micro-macro-entangled state |φGR〉q,MSS, in
Eq. (24) and bipartite entanglement of the target qubits to
single particle loss.10

Among the two characteristics of micro-macro entangle-
ment, namely macroscopic distinctness and bipartite entan-
glement, macroscopic distinctness is, by definition, robust to
single-particle loss. The states of the MSS associated with
|0〉q and |1〉q states of the qubit differ by many spin flips;
thus, single-particle loss does not significantly affect their
distinctness.

Before studying the sensitivity of bipartite entanglement of
the state |φGR〉q,MSS to particle loss, we first analyze a class of
symmetric entangled states between the target qubit and the
MSS,

|Sk〉q,MSS = 1√
2

(|0〉q ⊗ | ↑〉⊗Nh + |1〉q ⊗ |Dk〉). (42)

The parameter k ranges from 1 to Nh, and |Dk〉 is the symmet-
ric pure state with k spins | ↓〉 and Nh − k spins | ↑〉,

|Dk〉 = 1√(Nh

k

)
(Nh

k )∑
i=1

Pi(| ↓〉⊗k| ↑〉⊗Nh−k ), (43)

where Pi is the permutation operator and the summation is
over all permutations.

State |Dk〉 is an eigenstate of the collective magnetization
operator, Jz, with the eigenvalue mz = Nh−2k

2 ; hence, the
(macroscopic) distinctness between the states | ↑〉⊗Nh and
|Dk〉 is proportional to k, and for k 
 1, |Sk〉q,MSS is a
micro-macro-entangled state. We show that sensitivity of
bipartite entanglement between the qubit and the MSS in
state |Sk〉q,MSS to single-particle loss increases with k. Thus,
there is a tradeoff between macroscopic distinctness of a
micro-macro-entangled state and robustness of its bipartite
entanglement to particle loss. This observation is in line with
the results of Refs [58,59].

The state of the target qubit and the MSS after loss of any
single particle is

ρk
q,MSS−1 = pk

↑|ψk
↑〉〈ψk

↑| + pk
↓|ψk

↓〉〈ψk
↓|,

√
pk

↑|ψk
↑〉 = 1√

2
|0〉q ⊗ | ↑〉⊗Nh−1

+ 1
√

2
√(Nh

k

) |1〉q ⊗
(Nh−1

k )∑
i=1

Pi(| ↓〉⊗k| ↑〉⊗Nh−k−1),

√
pk

↓|ψk
↓〉 = 1

√
2
√(Nh

k

) |1〉q ⊗
(Nh−1

k−1 )∑
i=1

Pi(| ↓〉⊗k−1| ↑〉⊗Nh−k ),

(44)

where the states |ψk
↑〉 and |ψk

↓〉 are normalized and orthog-
onal to each other and pk

↑ + pk
↓ = 1. The entanglement of

10Particle loss is a common noise in photonic systems. For a spin
system in which particles are preserved, loss of a single spin models a
generalized amplitude-damping channel on the spin with an arbitrary
fixed point and the damping probability of 1 [60].
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FIG. 19. Entanglement of projection (dashed) and logarithmic
negativity (solid) of the symmetric bipartite entangled state |Sk〉q,MSS

upon single particle loss as a function of macroscopic distinctness
between | ↑〉Nh and |Dk〉. The more macroscopically distinct the
states | ↑〉Nh and |Dk〉 are, the more fragile the bipartite entanglement
of |Sk〉q,MSS is.

projection between the target qubit and the MSS in state
ρk

q,MSS−1 is defined as [34]

Ep
(
ρk

q,MSS−1

) = pk
↑E (|ψk

↑〉) + pk
↓E (|ψk

↓〉), (45)

where E (|ψAB〉) is the von Neumann entropy of the pure bipar-
tite state |ψAB〉, defined as E (|ψAB〉) = −Tr[ρA log2(ρA)] with
ρA = TrB(ρAB). Entanglement of projection ranges between
0 to 1 and is an upper bound for entanglement of formation
[61,62].

State |ψk
↓〉 is a separable state, and thus E (ψk

↓) = 0. The
von Neumann entropy of state |ψk

↑〉 is

E (|ψk
↑〉) = 1

1 + r↑
log2

(
1

1 + r↑

)
+ r↑

1 + r↑
log2

(
r↑

1 + r↑

)
,

(46)

where r↑(k) = (Nh−1
k

)
/
(Nh

k

) = 1 − k
Nh

is the probability of find-
ing one spin | ↑〉 in the state |Dk〉 of the MSS and ranges
from r↑ = 0, for k = Nh, to r↑ = 1 − 1

Nh
, for k = 1. The

entanglement of projection of state ρk
q,MSS−1, according to

Eq. (45), is

Ep
(
ρk

q,MSS−1

) = Er
p(r↑) := −1 + r↑

2

[
1

1 + r↑
log2

(
1

1 + r↑

)

+ r↑
1 + r↑

log2

(
r↑

1 + r↑

)]
. (47)

Note that Ep(ρk
q,MSS−1) depends on the ratio k/Nh and not on

k and Nh, independently.
Equation (44) can also be used to simulate logarithmic

negativity of state ρk
q,MSS−1, which is a concrete measure

of bipartite entanglement. Figure 19 plots both Ep(ρk
q,MSS−1)

and logarithmic negativity of state ρk
q,MSS−1 as a function of

the macroscopic distinctness normalized by the size of the
system, k/Nh. The bipartite entanglement between the target
qubit and the MSS becomes more fragile to particle loss
as the macroscopic distinctness in state |Sk〉q,MSS increases.
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FIG. 20. The mean of the spectrum of state |ψGR
1 (t )〉 as a mea-

sure of macroscopic distinctness between |ψGR
1 (t )〉 and | ↑〉Nh (a).

The entanglement of projection (b) and logarithmic negativity (c) of
the state |φGR(t )〉q,MSS upon single spin loss as a function of time.
The bipartite entanglement of state |φGR(t )〉q,MSS upon single particle
loss decreases with time following the increase in the distinctness
between the states |ψGR

1 (t )〉 and | ↑〉Nh . The asymptotic values of
both entanglement of projection and logarithmic negativity does not
depend on the size of the MSS as expected. Moreover, they are
consistent with the corresponding values for the symmetric state with
k = Nh/2 (see Fig. 19).

At the limit of maximum macroscopic distinctness, |DNh〉 =
| ↓〉⊗Nh , |Sk〉q,MSS represents an overall GHZ state, and no
entanglement will remain after loss of one particle from the
MSS.

The entangled state of interest, |φGR(t )〉q,MSS in Eq. (24),
follows a similar form to state |Sk〉q,MSS in Eq. (42) except
that |Dk〉 is replaced by |ψGR

1 (t )〉. The state |ψGR
1 (t )〉 is not

necessarily symmetric; thus, to quantify the sensitivity of
state |φGR(t )〉q,MSS to single-particle loss, we average the
entanglement of projection and logarithmic negativity upon
losing each of the spins in the MSS, assuming that all spins
have equal probabilities of being lost.

Figure 20 shows simulation results for the mean of the
spectrum of state |ψGR

1 (t )〉 and the entanglement of projec-
tion and logarithmic negativity of state |φGR(t )〉q,MSS upon
single-particle loss as a function of the evolution time for

different sizes of MSS. As evolution time increases, the mean
of the spectrum of state |ψGR

1 (t )〉 decreases and macroscopic
distinctness in the state |φGR(t )〉q,MSS and its sensitivity to par-
ticle loss increase. For long evolution times, the probability of
finding any of the spins in the MSS in state | ↑〉 is close to 1/2.
Thus, the asymptotic value of the average of entanglement of
projection is

Nh∑
j=1

Ep[Tr j (|φGR(t )〉〈φGR(t )|)] ≈ Er
p(r↑ = 1/2) = 2

3
. (48)

Similarly, the asymptotic value of logarithmic negativity cor-
responds to that of the symmetric state with k/Nh = 2.

Decrease in bipartite entanglement of the micro-macro-
entangled state |φGR〉, upon particle loss, is reflected in the
fidelity of the target qubits’ entangled state. Even with an
ideal measurement on the MSS and postselection that per-
fectly selects the {|01〉q, |10〉q} subspace of the qubits over
the {|00〉q, |11〉q} subspace, the fidelity cannot be greater
than Fmax = cmax

01,01 + cmax
01,10 = 1/2 + 1/4 = 3/4 (see the Ap-

pendix). This upper bound follows the reduced coherence
between |01〉q and |10〉q in the state of the qubits, even when
the population is preserved.

Fragility of the micro-macro-entangled state and bipartite
entanglement of the target qubits to particle loss illustrates the
importance of shorter transient time with a MSS that has a
2D or 3D structure compared to a 1D chain, demonstrated in
Sec. IV. Since any loss in the MSS results in a reduction of
bipartite entanglement between the target qubits, the overall
experiment time needs to be much shorter than T1 divided by
the number of spins in the MSS, texp � T1

Nh
.

VIII. DISCUSSION AND CONCLUSION

We analyzed the resources required for entangling two
uncoupled spin qubits through an intermediate mesoscopic
spin system by indirect joint magnetization measurement. In
contrast to direct joint measurement, which needs a high-
resolution apparatus capable of detecting a single qubit flip
to entangle two qubits, indirect joint measurement benefits
from coherent magnification of the target spin qubits’ state
in the collective magnetization of the MSS and only requires
a low-resolution collective measurement on the MSS. This
work complements the ongoing efforts in using mesoscopic
systems as coherent control elements in coupling separated
qubits [1,2,22,24–32].

A MSS consisting of two noninteracting halves, each cou-
pled to one of the target qubits, was identified as a practically
helpful geometry that allows implementation of the coherent
magnification process with experimentally available control
tools, namely local interaction between each target qubit and
the MSS, naturally occurring dipolar coupling among the
spins in each half of the MSS, and collective rotations on the
MSS. It was demonstrated that the requirements on the pre-
measurement state of the target qubits and the MSS entirely
fulfill the specifications of micro-macro entanglement be-
tween each target qubit and its nearby half of the MSS. It has
been shown that direct experimental demonstration of micro-
macro entanglement is challenging [53,54]. Verification of
bipartite entanglement between the target qubits provides a
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means of proving micro-macro entanglement between each
target qubit and half of the MSS in the premeasurement state.

The numerical simulations showed that available internal
dipolar interaction and collective control can be used to
prepare each half of the MSS in a globally correlated state,
such that a one-time interaction between each target qubit
and a nearby spin within the MSS suffices to magnify the
qubit’s state in the collective magnetization of the MSS and
create a micro-macro entangled state. The timescale of the
magnification process was discussed. In particular, it was
demonstrated that with long-range dipolar coupling in the
MSS, the magnification time scales sublinearly with the size
of the MSS regardless of the dimension of its structure.
Moreover, it was shown that the magnification time is much
shorter with a MSS in 2D and 3D lattices compared to a 1D
spin chain.

It was shown that a low-resolution collective magnetization
measurement on the MSS capable of detecting only (1 −
ε)N/4 spin flips, where N is the number of spins in the
MSS and 1 − ε is the polarization of each spin, suffices to
distinguish between the states of the MSS correlated with dif-
ferent magnetizations of the target qubits. The measurement
must also probabilistically project the state of the MSS into
the subspace associated with zero magnetization of the target
qubits, with minimum disturbance.

Different scenarios can be considered for implementing
such a measurement. When a linearly polarized photon passes
through a magnetic material, its polarization rotates depend-
ing on the magnetic moment of the medium, according to
the Faraday rotation effect. The Faraday effect follows the
required collective dynamics and has been proposed as a
means for implementing a quantum nondemolition measure-
ment on an ensemble of spins [63]. Strong coupling to a
superconducting cavity may provide another means for im-
plementing a collective measurement on the MSS that follows
the required state-update rule. Measurement through a cav-
ity in the dispersive regime has been used to entangle two
superconducting qubits [64,65] where an incoming photon is
transmitted through or reflected from the cavity depending on
the joint state of the qubits. In these experiments, couplings
between the superconducting qubits and the cavities are so
strong that a single-qubit flip results in a detectable shift in
the resonance frequency of the cavity. Couplings between spin
qubits and superconducting cavities are too weak to enable
direct joint measurement of two spin qubits. Correlating dif-
ferent states of the spin qubits with macroscopically distinct
states of the MSS can in principle compensate for this weak
coupling since the shift in the resonance frequency of the
cavity corresponding to different states of the qubits scales
proportionally to the size of the MSS. See Fig. 21. Faraday
rotation and state-dependent shift of a cavity’s resonance
frequency are examples of two phenomena that potentially
enable measurements that are collective and update the MSS’s
state according to the measurement outcome. Evaluating the
details of the measurements based on these phenomena11 and
their resolution need to be further explored.

11As an example, coupling of a spin ensemble with a cavity in
the dispersive regime introduces indirect interaction between the

(a)

(b)

FIG. 21. (a) The spectra of the MSS’s states correlated to dif-
ferent states of the target qubits. (b) The expected transmission
probability of a photon through a cavity coupled to the MSS in its
dispersive regime. The unloaded resonance frequency of the cavity is
ωc, go is the coupling strength between a single spin in the MSS and
the cavity, κ is the cavity loss, and � is the difference between the
resonance frequency of the cavity and the spin system. The resolution
of the measurement is high enough if the three peaks corresponding

to different states of the MSS can be resolved,
g2

0N

2�
> κ + g2

0

√
N

�
.

Indirect joint measurement through a MSS was shown
to be robust to limited initial polarization of the MSS as
long as N (1 − ε)2 
 16 and the measurement resolution is
high enough to detect (1 − ε)N/4 spin flips. Thermal po-
larization of an ensemble of electron spins is close to one
at low temperatures and high magnetic fields (e.g., T ≈ 1K
and B ≈ 7T). Hyperpolarization of nuclear spins may be
achieved through dynamic nuclear magnetization processes
that transfer polarization from electron spins to nuclear
spins [66,67].

The process of entangling noninteracting qubits by indirect
joint measurement is inevitably sensitive to noise in the MSS.
It was shown that single-particle loss in the MSS reduces the
upper bound on the fidelity of the target qubits’ state with
the intended maximally entangled state from 1 to 3/4. Thus,

spins mediated through the cavity. Effect of such interactions on the
measurement needs to be explored.
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creating highly entangled target qubits requires the relaxation
time of the MSS to be long compared to the number of spins
in the MSS times experiment time, T1 
 Ntexp.

Different factors compete in determining the practical size
of the MSS. The number of spins in the MSS needs to be large
enough to satisfy the macroscopic distinctness condition,
N1 
 16/(1 − ε)2, and the distinguishability criteria accord-
ing to the resolution of the measurement, N2 > 4�m/(1 − ε),
where �m is the minimum number of spin flips the mea-
surement apparatus can detect. The overall lower bound on
the size of the MSS is Nmin = max(min(N1), min(N2)). Upper
bound on the size of the MSS is imposed by the fragility of the
micro-macro-entangled state between the target qubits and the
MSS and as a result the fragility of the bipartite entanglement
of the target qubits to noise, Nmax � T1/texp.

To summarize, among the required resources, the con-
trol tools are available and highly polarized initial states of
the MSS and long T1 relaxation times are feasible at low
temperatures. The bottleneck is implementing a collective
measurement on the many-body state of the MSS that follows
the required state-update rule, namely probabilistic selection
of the states of the MSS correlated to zero magnetization
of the qubits over the states of the MSS correlated to ±1
magnetizations of the qubits with minimum disturbance to the
selected states.
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APPENDIX: UPPER BOUND ON FIDELITY
UPON SINGLE PARTICLE LOSS

The sensitivity of the micro-macro-entangled states and
bipartite entanglement between the target qubits to spin loss in
the MSS was discussed in Sec. VII. In particular, it was spec-
ified that the upper bound on the fidelity of the target qubits’
state with the maximally entangled state |m0〉 = 1√

2
(|01〉q +

|10〉q), upon single-particle loss, reduces from one to 3/4 and
this decrease solely originates from reduction of the coherence
between |01〉q and |10〉q states. In this Appendix, we prove
this upper bound on the fidelity.

The state of the target qubits and the MSS after the
magnification process is |φGR〉L ⊗ |φGR〉R, where |φGR〉i =

1√
2

(|0〉qi
| ↑〉⊗Nh + |1〉qi

|ψGR
1 〉i with i = L, R is the state of

each qubit and its nearby half of the MSS. Let us consider that
the state of one spin from the MSS with index a is lost and is
replaced by a state ρa. This particle loss process corresponds
to a generalized amplitude damping map with the fixed point
ρa and the damping probability of one on spin a. Without loss
of generality, we assume the lost spin is in the left half of the
MSS, a � N/2. The state |ψGR

1 〉L can be expanded in the basis

{| ↑〉a, | ↓〉a} of spin a as∣∣ψGR
1

〉
L = αa|ψa

α 〉| ↑〉a + βa|ψa
β 〉| ↓〉a, (A1)

where αa|ψa
α 〉 = (〈↑ |a ⊗ 1Nh−1)|ψGR

1 〉L, βa|ψa
β 〉 = (〈↓ |a ⊗

1Nh−1)|ψGR
1 〉L, and |αa|2 + |βa|2 = 1 following the normal-

ization of state |ψGR
1 〉L. After particle loss, the state of the

target qubit qL and its nearby half of the MSS will be

ρGR
qL,MSSL

= (p↑|ψa
↑ 〉〈ψa

↑ | + p↓|ψa
↓ 〉〈ψa

↓ |) ⊗ ρa, (A2)

where the states |ψa
↑ 〉 and |ψa

↓ 〉 are

√
p↑|ψa

↑ 〉 = 1√
2

(|0〉qL | ↑〉⊗Nh−1 + |1〉qL (αa|ψa
α 〉)),

√
p↓|ψa

↓ 〉 = |1〉qL√
2

βa|ψa
β 〉. (A3)

An ideal measurement that perfectly selects the states of the
MSS correlated to zero magnetization of the qubits over the
states of the MSS correlated to ±1 magnetizations of the
qubits updates the state ρGR

qL,MSSL
⊗ |φGR〉〈φGR|R of the target

qubits and the MSS to the state,

ρqLqR,MSS

= 1
2

(|01〉〈01| ⊗ (| ↑〉〈↑ |⊗Nh−1 ⊗ ρa) ⊗ ∣∣ψGR
1

〉〈
ψGR

1

∣∣
R

+ (|10〉〈10| ⊗ ((|αa|2|ψa
α 〉〈ψa

α | + |βa|2|ψa
β 〉〈ψa

β |) ⊗ ρa)

⊗| ↑〉〈↑ |⊗Nh

+ |01〉〈10| ⊗ (α�
a| ↑〉Nh−1〈ψa

α | ⊗ ρa) ⊗ ∣∣ψGR
1

〉
R〈↑ |⊗Nh

+ |10〉〈01| ⊗ (αa|ψa
α 〉〈↑ |Nh−1 ⊗ ρa) ⊗ | ↑〉⊗Nh

〈
ψGR

1

∣∣
R

)
.

(A4)

Note that the off-diagonal terms of the qubits are scaled
with αa and α�

a. This state is a correlated state between the
target qubits and the MSS. The following disentangling gate
needs to restore the coherence between the target qubits. The
maximum retrievable coherence between the target qubits is
|αa|2 that corresponds to the state ρa = | ↑〉〈↑ |. With this
choice of the ρa, after applying the disentangling gate and
tracing over the MSS, the target qubits’ state will be

ρqLqR = 1
2 (|01〉〈01| + |01〉〈01| + |αa|2|01〉〈10|
+|αa|2|10〉〈01|). (A5)

The fidelity of this state with the maximally entangled triplet
zero state is Fa

max = (1 + |αa|2)/2, where |αa|2 can be inter-
preted as the probability of finding spin a in state | ↑〉a when
the MSS is in state |ψGR

1 〉L. We know that the mean of the
collective magnetization spectrum of state |ψGR

1 〉L is zero,
which is mathematically equivalent to

∑
a |αa|2 = ∑

a |βa|2.
Combined with the normalization condition |αa| + |βa| = 1,
the average of maximum fidelity upon loss of each particle in
the MSS is

Fmax := 1

N

∑
a

Fa
max = 1

2
+

∑
a |αa|
2N

= 1

2
+ 1

4
= 3

4
. (A6)

This relation completes the proof for the upper bound on the
fidelity of the target qubits’ state.
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Based on the dynamics that create state |ψGR
1 〉L,

the magnetization is expected to be distributed uni-
formly among the spins in the MSS, and thus |αa|2 is

anticipated to be close to 1/2 for all spins and the
maximum fidelity upon loss of any spin is expected
to be Fa

max ≈ 3/4.
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