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Measuring the similarity of graphs with a Gaussian boson sampler
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Gaussian boson samplers (GBSs) have initially been proposed as a near-term demonstration of classically
intractable quantum computation. We show here that they have a potential practical application: Samples from
these devices can be used to construct a feature vector that embeds a graph in Euclidean space, where similarity
measures between graphs—so-called graph kernels—can be naturally defined. This is crucial for machine
learning with graph-structured data, and we show that the GBS-induced kernel performs remarkably well in
classification benchmark tasks. We provide a theoretical motivation for this success, linking the extracted features
to the number of r matchings in subgraphs. Our results contribute to a new way of thinking about kernels
as a quantum hardware-efficient feature mapping, and lead to a promising application for near-term quantum
computing.
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I. INTRODUCTION

Measuring the similarity of two graphs for practical appli-
cations is notoriously difficult. First, there are many different
notions of similarity, and practical tasks crucially depend on
what property of the graph is exploited in the comparison.
Second, even the task of determining whether two graphs are
exactly the same can be computationally extremely costly.
This is due to the fact that a representation of a graph is
not unique: Different ways of enumerating its nodes and
edges can give rise to the same structure. The complexity
of deciding whether two graphs are isomorphic is unknown;
neither a polynomial-time algorithm nor NP-completeness
proof has been discovered yet [1]. Existing algorithms for
graph isomorphism [2] and graph similarity [3] are efficient in
practice, but are still costly for large graphs and may require
exponential time for some problem instances.

In this paper, we suggest the use of quantum hardware
to map a graph G to a feature vector which represents G in
Euclidean space. Standard distance measures, such as taking
the inner product of two feature vectors, then result in a
distance measure between graphs mediated by the feature
embedding. The quantum device we investigate is a Gaussian
boson sampling (GBS) setup [4–6]. GBS is a generalization of
boson sampling [7–10], which has originally been proposed
as a classically intractable problem to demonstrate the power
of near-term quantum hardware [11]. An optical GBS device
prepares a quantum state of M optical modes and counts the
photons in each mode. Some of the authors have previously
shown how a graph can be encoded into the quantum state of
light [12], so the photon measurement statistics give rise to a
complete set of graph isomorphism invariants [13].
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Here we extend this result and study the graph similarity
measure derived from a GBS device for a practical applica-
tion, namely, for classification for machine learning. Graph-
structured data plays an increasingly important role in this
field, for example, to predict properties of a social media
network given a data set of networks for which the prop-
erties are known. In machine learning, a similarity measure
between data is called a kernel, and lots of methods for pattern
recognition—such as support vector machines (SVMs) and
Gaussian processes—are built around this concept. Mapping
graphs to feature vectors or graph embeddings [14–16] is a
well-known strategy, and graph kernels from explicit feature
vectors [17] have been studied in detail.

The connection between kernel methods for machine learn-
ing and quantum computing has recently been made in
Refs. [18,19]. Any positive-definite kernel can be formally
understood as the inner product of two feature vectors that
represent the data points in a Hilbert space [20]. Hence, the
Hilbert space of a quantum system can be interpreted as
a feature space, in which a subroutine can compute inner
products “coherently.” By using measurement samples from
the quantum hardware to construct low-dimensional feature
vectors that can be stored and further processed on a clas-
sical computer, we follow a different, even more minimal-
istic route to define a quantum feature map, and ultimately
a quantum kernel. The advantage in using quantum hard-
ware this way is that the device performs a combinatorial
computation that is very resource intense—possibly even
intractable—for classical computers. In fact, we show that
the GBS feature map is related to a class of classical graph
kernels which count subgraphs [21], but instead of only
considering subgraphs of constant size, the sampling statistics
can reveal information on all possible subgraphs as well as
subgraphs constructed from copying nodes and their edges.
The resulting features contain information about the number
of r matchings of the original graph. Numerical experiments
show that graph kernels from a GBS-induced feature map can
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FIG. 1. Idea of the quantum hardware-induced feature map. The adjacency matrix of a graph gets encoded into the Gaussian state of the
light modes by tuning the squeezing and interferometer parameters. The features are defined as the probability of detecting certain classes
of photon counting events. To extract the probabilities from the device, a number of samples of photon counting events is generated and the
relative frequencies of the different classes determined.

outperform classical graph kernels in classification tasks for
small standard benchmark data sets, results that can be further
improved by using displaced light modes.

This paper is organized as follows: In Sec. II, we present
the GBS graph similarity framework, including a recap of
previous results. Section III investigates the GBS-extracted
features more closely, and Sec. IV presents numerical experi-
ments to motivate the relevance of the findings in practice.

II. TURNING GBS SAMPLES INTO FEATURES

An optical Gaussian boson sampler is a device where a
special quantum state (a so-called Gaussian state) is prepared
by the optical squeezing of M displaced light modes, followed
by an interferometer of beamsplitters. A pure Gaussian state
is fully described by a covariance matrix σ ∈ R2M×2M as
well as a displacement vector d ∈ R2M [22]. Photon number
resolving detectors count the photons in each mode.

In this section, we describe the mathematical details of
the quantum hardware-induced feature map (see also Fig. 1),
summarizing what has been described in Brádler et al. [13]
and adding the effect of displacement as well as a further
step of turning samples to feature vectors. The scheme works
for simple graphs, i.e., undirected graphs without self-loops
or multiple edges. While edge weights can be treated on the
same footing as unweighted edges, we leave the inclusion
of categorical edge labels or node labels for future studies.
Mindful of readers from fields other than quantum optics, we
will only highlight some important aspects of GBS and refer
to Refs. [4,6,12] for more detail.

A. Encoding graphs into the GBS device

As outlined in Ref. [12], a quantum state prepared by a
GBS device can encode a graph G = (V, E ) with an adjacency
matrix A of entries Ai j that are one if the edge (i, j) exists in G
and zero else. The entries of A can also represent continuous
“edge weights” that denote the strength of a connection. In the
latter case, we will speak of a weighted adjacency matrix.

To associate A with the symmetric, positive definite 2M-
dimensional covariance matrix of a Gaussian state of M

modes, we have to construct a doubled adjacency matrix,

Ã = c

(
A 0
0 A

)
= c(A ⊕ A), (1)

where the rescaling constant c is chosen so 0 < c < 1/smax,
and smax is the maximum singular value of A [12,13,23]. As
long as it fulfills the above inequality, c can be treated as a
hyperparameter of the feature map, which may also be influ-
enced by hardware constraints since it relates ultimately to the
amount of squeezing required. For simplicity, we will always
rescale all adjacency matrices with a factor 1/(s{G}

max + 10−8),
where s{G}

max is the largest singular value among all graphs in
the data set under consideration. As a result, we will assume
that c = 1 and Ã = A ⊕ A can be encoded into a GBS device.
We call this the doubled encoding strategy.

The matrix Ã can now be associated with a quantum state’s
covariance matrix σ by setting the squeezing as well as the
beamsplitter angles of the interferometer so

σ = Q − 1/2, with Q = (1 − XÃ)−1, X =
(

0 1
1 0

)
.

(2)

B. Sampling photon counting events

After embedding A via Ã into the quantum state of the
GBS, each measurement of the photon number resolving
detectors returns a photon event n = [n1, . . . , nM], with ni ∈
N indicating the number of photons measured in the ith
mode. Assuming for now that the displacement d is zero, the
probability of measuring a given photon counting event is

p(n) = 1√
det(Q) n!

Haf2(An), (3)

where n! = n1!n2! · · · nM!.
Let us go through this nontrivial equation bit by bit. The

Hafnian Haf() is a matrix operation similar to the determinant
or permanent. For a general symmetric matrix C ∈ RN × RN

with matrix elements Cu,v , it reads

Haf(C) =
∑

π∈P{2}
N

∏
(u,v)∈π

Cu,v. (4)
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FIG. 2. All nonisomorphic graphs up to size |V | = 6 and the number of perfect matchings they contain (grey shading scale).

Here, P{2}
N is the set of all N!/((N/2)!2N/2) ways to

partition the index set {1, 2, . . . , N} into N/2 unordered
pairs of size 2, such that each index only appears in
one pair. The Hafnian is zero for odd N . As an ex-
ample, for the index set {1, 2, 3, 4}, we have P{2}

4 =
{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}.

If C is interpreted as an adjacency matrix containing
the edges of a graph, the set P{2}

N contains edge sets of
all possible perfect matchings on G. A perfect matching
is a subset of edges such that every node is covered by
exactly one of the edges. The Hafnian therefore sums the
products of the edge weights in all perfect matchings. If
all edge weights are constant, it simply counts the number
of perfect matchings in G (see also Fig. 2). Note that in
Eq. (3), we used the fact that for real and symmetric A,
Haf(Ã) = Haf(A ⊕ A) = Haf2(A). In other words, the dou-
bled encoding strategy leads to a square factor which will play
a profound role in the quantum feature map we are aiming to
construct.

Equation (3) does not depend on the Hafnian of the adja-
cency matrix A, but on a matrix An. An contains n j duplicates
of the jth row and column in A. If n j = 0, the jth row/column
in A does not appear in An. Effectively, this constructs a new
graph Gn from A according to the following rules (see also
Table I):

(1) If all n j, j = 1, . . . , M are one (i.e., each detector
counted exactly one photon), An = A.

(2) If some n j are zero and others one (i.e., these detectors
report no photons), An describes an induced subgraph Gn of
G, in which nodes that correspond to detectors with zero count
were deleted together with any edge that connected them to
other nodes.

(3) If some n j are larger than one (i.e., these detectors
count more than one photon), AN describes what we call an
extended induced subgraph in which the corresponding nodes
and all their connections are duplicated n j times.

In short, the probability of a photon event to be mea-
sured by the GBS device is proportional to the square of
the (weighted) number of perfect matchings in a—possibly
extended—induced subgraph of the graph encoded into the
interferometer.

TABLE I. Events M|n|,�s , orbits On, photon events n, total
photon number |n|, extended induced subgraph Gn (indicated by
red/black nodes and edges), and Hafnian Haf(An ) of a fully con-
nected simple graph of three nodes up to |n|max = 3. The difference
between orbits and events only becomes apparent for higher photon
evens (i.e., [2,2,0,0] and [2,1,1,0] are in different orbits but the same
event). Note that the red nodes are not mutually connected.
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Computing the Hafnian of a general matrix is in complex-
ity class P, and formally reduces to the task of computing
permanents [24]. If no entry in the matrix is negative, efficient
approximation heuristics are known, although their success is
only guaranteed under specific circumstances [25,26].

C. The effect of displacement

The GBS setup underlying Eq. (3) consists of squeezing
and interferometers. But a Gaussian quantum state can also be
manipulated by a third operation: displacement. Displacement
changes the mean of the M-mode Gaussian state while leaving
the covariance matrix (and therefore the encoding strategy) as
before. A nonzero mean changes Eq. (3) in an interesting, but
nontrivial manner.

Without going into the details [6], if considering nonzero
displacement, instead of summing over P{2}

N in Eq. (4), we
have to sum over P{1,2}

N or the set of partitions of the index
set {1, . . . , N} into subsets of size up to 2. For the index set
{1, 2, 3, 4}, we had

P{2}
4 = {(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)},

which now becomes

P{1,2}
4 = {{(1, 2), (3), (4)}, {(1, 3), (2), (4)}, {(1, 4), (2), (3)},

{(2, 3), (1), (4)}, {(2, 4), (1), (3)}, {(3, 4), (1), (2)},
{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)},
{(1), (2), (3), (4)}.

Instead of the Hafnian in Eq. (3), we therefore get a mixture of
Hafnians of An’s submatrices (stemming from the pairs) and
other factors (stemming from the size-1 sets).

Assume that displacement is applied to both the x̂ and p̂
quadratures of each mode, described by a 2M-dimensional
displacement vector d = (d1, . . . , dM , d∗

1 , . . . , d∗
M )T . The ef-

fect on Eq. (3) is as follows. Let Q be the 2M × 2M matrix
from Eqs. (2) and b = d†Q−1. We get the expression (for a
derivation, see Appendix A)

p(n) = α

⎡
⎣ M∑

n=0

∑
{i1..in}⊆IM

bi1 . . . bin Haf(An−{i1..in})

⎤
⎦

2

(5)

with

α = e− 1
2 d†Q−1d

√
det(Q) n!

,

where I2M is the index set {1, . . . 2M}. In this notation, we
assume {i1, . . . , i0} = {} and bi1 . . . bi0 = 1. The “reduced”
Hafnians of the form An−{i, j}, An−{i, j,k,l} . . . are constructed by
“deleting” rows and columns {i, j}, {i, j, k, l}, ... in Ãn. The
expression in the brackets of Eq. (5) is also known as a loop
Hafnian of a matrix Ãn that carries b1, ..., b2M on its diagonal
[27].

One can see that displacement explores substructures of
extended subgraphs, adding another layer of “resolution” to
the photon number distribution. An important effect of dis-
placement is that p(n) for odd total photon numbers |n| is not
necessarily zero anymore, since the sum in Eq. (5) contains
Hafnians of even-sized subgraphs.

D. Turning samples into features

The basic idea of how to turn samples of photon counting
events into feature vectors is to associate the probability of
a certain measurement result with a feature. To estimate the
probability of measurement outcomes, one divides the number
of times a result has been measured by the total number
of measurements. However, if we used the probabilities of
photon events p(n) directly as features, we would face a
very fast—more precisely, a doubly factorial—explosion of
the number of features with the total number of photons,
while almost all events become vanishingly unlikely for re-
alistic amounts of squeezing. In practice, we will truncate
the total number of photons at a fixed value k and discard
all measurement results with |n| > k in the construction of
the feature vector, but even then the sampling task quickly
becomes unfeasible.

We therefore define the probability of certain types of
photon events as features, thereby “coarse-graining” the prob-
ability distribution. As a compromise between experimental
feasibility and expressive power, we consider two different
coarse-graining strategies here. The first one follows Brádler
et al.’s [13] suggestion to coarse grain the distribution of pho-
ton counting events by summarizing them to sets called orbits
(see Table I). An orbit On = {perm(n)} contains permutations
of the detection event n. For example, [2,1,1,0] is in the same
orbit as [0,1,2,1], but not [2,2,0,0]. The photon counting event
n in the index is therefore an arbitrary “representative” of
the photon counting events in an orbit. The probability of
detecting a photon counting event of orbit On is given by the
sum of the individual probabilities:

p(On) :=
∑
n∈On

p(n). (6)

The number of orbits On containing events of up to k photons
in total is equal to the number of ways that the integers of
1, ..., k can be partitioned into a sum of at most M terms.
In practice, we usually have k � M, in which case there
are 2,4,7,12,19,30,45,67 orbits for k = 1, . . . , 8, respectively
[28]. In a real GBS setup, the energy is finite and high photon
counts therefore become very unlikely [29].

The second postprocessing strategy builds on top of the
first and summarizes orbits to events M|n|,�s , where

�s =
{

n :
∑

i

ni = |n|, (∀i)(ni � s), (∀n∃ni ∈ n)(ni = s)

}
.

In words, an event contains all orbits of |n| photons, which
have at least one detector counting s photons, but no detector
counts more than s photons (see also Table I). The probability
of detecting an event from a event is given by

p(M|n|,�s ) :=
∑
n∈�s

p(On). (7)

From here on, when using event features, we refer to the GBS
as GBS+.

It is interesting to estimate how many samples are needed
to estimate a feature vector. In Ref. [21], we find that we
can approximate a probability distribution of D possible out-
comes, with probability at most δ that the sum of absolute
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values of the errors in the empirical probabilities of the
outcomes is ε or more, using

S =
⌈

2
(

ln(2)D + ln
(

1
δ

))
ε2

⌉

samples. For orbits up to k = 8 photons, there are D = 67
features. Setting ε = 0.05 and δ = 0.05 and assuming a per-
fect GBS device, we need 39 550 samples. Since current-day
photon number resolving detectors can accumulate about 105

samples of photon counting events per second [30], it takes in
principle only a fraction of a second for the orbit probabilities
to be estimated by the physical hardware. The number of
samples does not grow with the graph size, but of course the
GBS device itself grows linearly in the number of nodes.

Hardware implementations of Gaussian boson samplers
are rapidly advancing, but mode numbers larger than ten
with a tuneable interferometer and squeezing are still a huge
experimental challenge. In this paper, we therefore resort to
simulations on classical computers. While for non-negative
adjacency matrices, efficient approximation algorithms to
calculate Hafnians are known [25,26,31,32], sampling from
distributions that depend on Hafnians is still a topic of active
research [33], and to ensure that the results are not influenced
by approximation errors we will use exact calculations here.
This limits the scope of the experiments to graphs of the order
of 25 nodes.

E. Constructing a similarity measure

Summarizing the above, the feature map implemented by
a GBS device maps a graph to a feature vector, G → f ∈ RD,
where the entries fi, i = 1, . . . , D of f are the probabilities of
detecting certain types of photon events that we called orbits
and events,

fi = p
(
Oi

n

)
, or fi = p

(
Mi

|n|,�s

)
, (8)

and the probability of the ith (meta)orbit is fully defined by
Eqs. (6) and (7) (while ordering in the feature vector does not
matter).

Assuming that the maximum number k of photons we
consider is smaller or equal to the number of detectors, or
k � M for all graphs, the size D of the feature vector is solely
determined by k, which is a hyperparameter of the feature
map. Another hyperparameter is the displacement that can
be applied to the light modes. We will assume here that the
displacement applied to all modes is a constant value d .

Once constructed, the feature vectors can be used for
various applications. In the context of machine learning, they
can be directly fed into neural network classifiers. Here we
are interested in constructing a similarity measure or kernel
that computes the similarity between two graphs G and G′. A
standard choice is to use the feature vectors in a “linear” and
radial basis function (rbf) kernel (with a hyperparameter δ)

κlin(G, G′) = 〈f, f ′〉,

κrbf (G, G′) = exp

(
−||f − f ′||2

2δ2

)
,

FIG. 3. Example of a perfect matching (left) and a two-matching
(right). The two-matching is at the same time a perfect matching of
the subgraph highlighted in grey.

both of which are well known to be positive semidefinite
so the results of kernel theory apply to the GBS kernel
constructed here.

III. THE GBS GRAPH FEATURES

In this section, we will analyze the features of the first
postprocessing strategy in more detail; we discuss their inti-
mate relation to the coefficients of a graph property called a
matching polynomial, the relation of photon event probabili-
ties to higher-order moments of multivariate normal distribu-
tions, the connection between the GBS and graphlet sampling
kernel, and we finally discuss the devastating effect of photon
loss on the features.

A. Single-photon features and r matchings

It turns out that the probabilities of single-photon orbits
(i.e., each detector counts either zero or one photon) are
related to a graph property called the matching polynomial
of G [34–36]:

μ(G) =
�M/2�∑
r=0

(−1)rm(G, r)xM−2r . (9)

The coefficients m(G, r) of the matching polynomial count
the number of r matchings or “independent edge sets” in G
– sets of r edges that have no vertex in common (see Fig. 3).
In the language of Hafnians, the r matching can be written
as m(G, r) = ∑

n∈O[1,...,1,0,... ]
Haf(An) (where [1, . . . , 1, 0, . . . ]

contains 2r single photon detections). Hence, if it were not for
the square of the Hafnian in Eq. (3), the probability p(On) of a
single-photon orbit would be proportional to a |n|/2-matching
m(G, |n|/2) of G. The square gives rise to

g(G, r) =
∑

n∈O[1,...,1,0,... ]

Haf2(An).

Replacing m with g in Eq. (9) leads to a type of polynomial
γ (G) which we call a GBS polynomial.

This definition opens a range of interesting questions,
for example, whether the GBS polynomial has advantages
over a standard polynomial or how multiphoton events and
displacement fits into this interpretation. We will investigate
these questions in separate works.

An interesting observation for the context of machine
learning occurs for the feature corresponding to orbit
O[1,1,0,... ] (see, for example, Table I). Since there are only
two options—the two nodes are connected and have therefore
exactly one perfect matching, or they are not and have none—
the square does not have any effect and the probability of the
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orbit is proportional to the number of one-matchings of this
graph, which is in turn equal to its number of edges. Hence,
we have that p(O[1,1,0,... ] ) ∝ |E |, and the hardware natively
returns an “edge counting” feature.

B. Higher-order moments

The probability of measuring a given photon count-
ing event n = [n1, . . . , nM] can also be interpreted from
a slightly different, more physically motivated viewpoint.
The M nodes of a graph can be associated with M ran-
dom variables drawn from a multivariate normal distribution
N (ξ,�), where the covariance matrix � corresponds to the
doubled adjacency matrix Ã, and ξ is the mean vector related
to displacement via ξ = Q−1d†. The higher-order moments
E [X (1)

1 . . . X (n1 )
1 . . . X (1)

M . . . X (nM )
M ] of this distribution are pro-

portional to Haf(An), which in turn is related to the probability
of a photon event via Eq. (3). This result follows from Isserlis’
theorem [37], which decomposes the higher order moments
into sums of products of covariances E [XaXb]. In short, the
GBS device turns a graph into a multivariate normal distribu-
tion and samples from its moments.

Using this picture, the first-order moments of the “graph-
induced distribution” correspond to photon events of the form
[1, 0, . . . ] and their probability is indeed proportional to the
mode means as apparent from Eq. (5). The second-order mo-
ments correspond to photon events of the form [1, 1, 0, . . . ]
and their probability is proportional to the entries of the
adjacency matrix—the edge weights. Consistent with this
observation, we stated before that orbits with two nonzero
detectors “measure” the edge count of a graph.

While the doubled encoding strategy as well as the pres-
ence of multiphoton events somewhat obscure interpretations
of features in terms of r matchings and higher-order mo-
ments, we found in numerical experiments not reported in this
paper that they can be a blessing in disguise, making very
similar graphs distinguishable by smaller maximum photon
numbers k.

C. Comparison to graphlet sampling kernel

Counting subgraphs in a larger graph is a concept used
in various classical graph kernels. Graphlet sampling kernels
[21] bear the most striking similarity to GBS feature maps,
since the features count how often graphlets of size |V | =
3, 4, 5, . . . appear in a graph G. In the language developed
here, we can express the feature fg which counts graphlet g
via

fg ∝
∑

n∈O[1,..,1,0,... ]

1g∼=Gn , (10)

using an indicator function 1g∼=Gn that is one if graphlet g is
isomorphic to the subgraph Gn and zero otherwise, as well
as the orbit represented by [1, .., 1, 0, . . . ] counting |V | single
photons. In comparison, rewriting Eqs. (8) in a similar way,
the GBS features are

fi = fn∗
i
∝

∑
n∈On∗

⎛
⎝ ∑

g∈P |n|
1g∼=Gn

⎞
⎠

2

, (S4)

FIG. 4. Coarse-grained probability p(On ) where G is a ran-
dom unweighted graph on ten vertices. We compare the loss-
less scenario (red) with a lossy case (blue) of 3 dB photon loss
(ν = 0.5 in (12)). The squeezing is the same in both cases and
its maximal value is 6.2 dB. The orbits On on the x axis are
first ordered according to the total photon number |n|, and then
in ascending order of the single-detector photon numbers, i.e.
[0, 0, 0...], [1, 0, 0...], [1, 1, 0...], [2, 0, 0...], .... A major tick on the
x axis counts 100 orbits. The gaps of the total odd photon numbers
for the red curve indicate zero probability which is consistent with
the single-mode squeezed states occupying the even subspace of the
Hilbert space of Fock states.

where P |n| is the set of all perfect matchings of size |n|. As
a result, instead of counting graphlets, the GBS feature map
sums squares of perfect matching counts in graphlets. Also,
the GBS feature map does not restrict the size of the graphlet
probed.

D. Errors due to photon loss

One of the main sources of errors in a realistic GBS device
is a photon loss in the linear interferometer, and we demon-
strate here that loss is a serious problem for applications of a
GBS for graph similarity as proposed in this paper. Methods of
dealing with this kind of error will be discussed in upcoming
work. Here we show the effect of the loss on the coarse-
grained probabilities with a numerical example.

The effect of loss is described by the action of the lossy
bosonic channel on a pure covariance matrix σ , resulting in

σ (ν) = (1 − ν)σ + ν

2
1M, (11)

where ν = 1 − η and η is the overall transmissivity. One way
of viewing this is that the matrix Ã from Eq. (1) does not have
the block-diagonal structure c(A ⊕ A) anymore, but is of the
form

C̃ = X2M

(
12M − W −1diag

[
�1 − 1

�1ν − 1
, . . . ,

�2M − 1

�2Mν − 1

]
W

)
,

where W X2MÃW −1 = � is the eigendecomposition of X2MÃ.
Figure 4 shows the effect of this loss model on the proba-
bility distribution p(On) over orbits for a random unweighed
graph G on ten vertices. It is apparent that loss introduces
errors in the distribution, populating orbits which have a zero
probability in the zero-displacement case, and distorting the
remaining probabilities significantly. In the remainder of the
paper, we will consider only a lossless GBS device, but remark
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TABLE II. Mean test accuracy of the support vector machine with different data sets and different graph kernels, with the standard deviation
between ten repetitions of the double cross-validation. GS, RW, and SM are three standard classical graph kernels described in the text. GBS
refers to the postprocessing strategy of associating orbit probabilities with features, while GBS+ summarizes some orbits to events (see text).
∗Runtime >20 days.

Data set GBS (d0.0) GBS (d0.25) GBS+ (d0.0) GBS+ (d0.25) GS RW SM

AIDS 99.60 ± 0.05 99.62 ± 0.03 99.58 ± 00.06 99.61 ± 0.05 98.44 ± 0.09 56.95 ± 7.99 79.20 ± 0.68
BZR_MD 62.73 ± 0.71 62.13 ± 1.44 62.01 ± 1.43 63.16 ± 2.11 60.60 ± 1.77 49.88 ± 3.74 61.90 ± 1.21
COX2_MD 44.98 ± 1.80 50.11 ± 0.97 57.84 ± 4.04 57.89 ± 2.62 55.04 ± 3.33 57.72 ± 3.26 66.94 ± 1.22
ENZYMES 22.29 ± 1.60 28.01 ± 1.83 25.72 ± 2.60 40.42 ± 2.02 35.87 ± 2.19 21.13 ± 1.91 36.70 ± 2.83
ER_MD 70.36 ± 0.78 70.41 ± 0.47 71.01 ± 1.26 71.05 ± 0.83 65.65 ± 1.06 68.75 ± 0.53 68.21 ± 0.99
FINGERPRINT 65.42 ± 0.49 65.85 ± 0.36 66.19 ± 00.84 66.26 ± 4.29 64.10 ± 1.52 47.69 ± 0.21 47.14 ± 0.62
IMDB-BIN 64.09 ± 0.34 68.71 ± 0.59 68.14 ± 0.71 67.60 ± 0.75 68.37 ± 0.62 66.38 ± 0.21 out of time∗

MUTAG 86.41 ± 0.33 85.58 ± 0.59 85.64 ± 0.78 84.46 ± 0.44 81.08 ± 0.93 83.02 ± 1.08 83.14 ± 0.24
NCI1 63.61 ± 0.00 62.79 ± 0.00 63.59 ± 0.17 63.11 ± 0.93 49.96 ± 3.27 52.36 ± 2.63 51.36 ± 1.88
PROTEINS 66.88 ± 0.22 66.14 ± 0.48 65.73 ± 0.69 66.16 ± 0.76 65.91 ± 1.29 56.27 ± 1.23 63.03 ± 0.84
PTC_FM 53.84 ± 0.96 52.45 ± 1.78 59.14 ± 1.72 56.25 ± 2.04 59.48 ± 1.95 51.97 ± 2.68 54.92 ± 2.94

herewith that loss mitigation strategies are crucial for practical
applications of GBS feature maps.

IV. NUMERICAL EXPERIMENTS

Finally, we provide some numerical results to investigate
the GBS graph kernel in practice. Benchmarks suggest that
it is well competitive to standard “classical” graph kernels,
at least in the hypothetical case of a perfect device. We
furthermore show that displacement may improve classifica-
tion accuracy by shifting weight into the higher-order orbits,
and that orbits with photon numbers smaller or equal to 2
contribute most to the result.

A. Benchmarking

To benchmark the GBS feature map, we use a setup that
has become a standard in testing graph kernels: A C-SVM
with a precomputed kernel. The test accuracies in Table II
are obtained by running ten repeats of a double tenfold
cross-validation. The inner fold extracts the best model by
adjusting the C-parameter of the SVM—which controls
the penalty on misclassifications—via grid search between
values [10−4, 103], and the best model is then used to get the
accuracy of the test set in the outer cross-validation loop. The
GBS feature vectors were used in conjunction with an rbf
kernel κrbf .

For the GBS graph kernel, we chose a gentle displace-
ment of d = 0.25 on every mode and k = 6, leading to 30-
dimensional feature vectors. We used exact simulations based
on the Hafnian library [38]. These are computationally very
expensive, which is why we only consider small data sets.
Three classical graph kernels are benchmarked for compari-
son: The graphlet sampling kernel [21] (GS) with maximum
graphlet size of k = 5 and 5174 samples drawn, the random
walk kernel [39] (RW) with fast computation and a geometric
kernel type, and the subgraph matching kernel (SM) [40]. The
three classical kernels were simulated using Python’s grakel
library [41,42].

The data sets are taken from the repository of the Technical
University of Dortmund [43] (see Fig. 5). They are briefly
described in Appendix B. Preprocessing of the benchmarking
data sets includes these three steps:

(1) Graph selection: Graphs which have less than six or
more than 25 nodes are excluded to keep the feature vectors
constant and to limit the time of simulations. The share of
excluded graphs is displayed in Fig. 3 and ranges from 5% to
55%.

(2) Labels and attributes: Potential node labels, node at-
tributes, and edge attributes are ignored, and the edge weights
were binarized as described in Appendix B.

(3) Rescaling: The final (weighed or unweighed) adja-
cency matrix is divided by a normalization constant c =
1/(λ{G}

max + 10−8) that is slightly larger than the largest eigen-
value λ{G}

max of any adjacency matrix in the data set, as ex-
plained in Sec. 2.1. Note that for most data sets used here,
λ{G}

max ≈ 3, and the squeezing becomes unphysically large for
actual experiments. However, c only rescales the features by
known factors which are the same for every feature vector.
In practice, one can therefore choose a more convenient c
parameter which negotiates between squeezing levels in reach
of hardware and high enough photon numbers to resolve the
features.

All data sets were chosen before the first experiments
were run, to avoid a postselection bias in favor of the GBS
kernel.

As Table II shows, the GBS kernel performs well and
outperforms the other methods visibly for MUTAG and NCI1,
while still leading for AIDS, BZR_MD, ER_MD, FINGER-
PRINT, and PROTEINS. Displacement increases the per-
formance of the GBS kernel significantly for COX2_MD,
ENZYMES, and IMDB-BIN, but not for other data sets. The
GBS kernel does well on data sets where the distribution
of node and edge numbers differs strongly between classes.
However, we confirmed that excluding the “edge counting
features” [1, 1, 0..], [2, 2, 0..], . . . does not influence classi-
fication performance. While the graph size is considered by
the GBS kernel, it seems to be only one of many properties
that enters the notion of similarity.
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number of 
graph nodes

number of
graph edges 

1728 [86%] 257 [84%] 118 [39%] 204 [34%] 357 [80%]

284 [81%]515 [46%]1836 [45%]179 [96%]806 [81%]1080 [38%*]

FIG. 5. Dimensionless histograms of node and edge numbers of graphs in the benchmark data sets to visualize the relative shapes of the
class distributions (plotted in different colors). The number of graphs as well as its percentage with respect to the original data are shown below
each plot. ∗Some classes in Fingerprint were excluded due to insufficient samples of small graphs.

B. Displacement and feature importance

The hyperparameters of the GBS and GBS+ graph kernels
are the constant displacement d administered to each node,
as well as the maximum photon number k. Since simulations
restrict the value of k at this stage, we focus on the effect of
displacement, using the orbit features (i.e., the GBS kernel).
Displacement can change the similarity measure significantly.
For example, comparing graphs of size |V | = 3, one finds that
the fully disconnected graph is closer to the fully connected
graph than a graph with two edges for d = 1, but vice versa
for d = 0.

Figure 6 uses the example of IMDB-BIN and MUTAG to
investigate the GBS or “orbit” features for d = 0, d = 0.25,
and d = 1. The feature averages show that the general distri-
bution of the feature vector is similar for both classes, but still
visually distinguishable [44]. Consistent with the theory, in-
creasing displacement shifts the features toward higher-order
orbits and populates features that are zero when d = 0. Fea-
tures associated with orbits [1, 1, 0, ...], [1, 1, 1, 1, 0...], and
[1,1,1,1,1,1], as well as [2,1,0,...] and [2,1,1,1,0,...] seem to be
particularly important in the support of principal components,
and get high weights when training a perceptron on the GBS

FIG. 6. Three measures for feature importance for IMDB-BINARY (top row) and MUTAG (bottom row) using k = 6 and for d = 0, d =
0.25, and d = 1. The 3 + 3 heat maps consist of three columns each. The leftmost column (gray color map) shows the average of each feature
for the two different classes, here labeled A and B. The center column shows the coefficients with which each feature contributes to the four
first-principal components in the PCA analysis. The third column shows the weights which a perceptron attributes to each feature when trained
to classify the target labels.
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features. Where displacement renders them nonzero, uneven
orbits such as [1, 1, 1, 0, ...], [1, 1, 1, 1, 1, 0...] follow suit.
During our investigations, we confirmed that dropping fea-
tures with high single-detector photon numbers did not have
a huge influence on classification. Consistent with the results
from Table II, MUTAG has “richer” features for d = 0 than
IMDB-BIN for classification with a perceptron, an advantage
that IMDB-BIN equalizes with growing displacement.

The feature analysis suggests that features related to sub-
graphs of all sizes (here 1 to 6) are important for the clas-
sification results and that duplication of a single node in
the subgraphs may be beneficial—a feature that graphlet
sampling kernels do not explore. The effect of displacement
varies with the data set, and d should therefore be kept as a
hyperparameter for model selection.

V. CONCLUSION

We proposed a feature extraction strategy for graph-
structured data based on the quantum technique of GBS. We
suggested that the success of the method is related to the fact
that such a system samples from distributions that are related
to useful graph properties. For classical machine learning,
this method presents a potentially powerful extension to the
gallery of graph kernels, each of which has strengths on

certain data sets. For quantum machine learning, this proposes
the first application of a “quantum kernel.”

A lot of questions are still open for further investigation,
for example, regarding the role and interpretation of displace-
ment, how GBS performs with weighted adjacency matrices,
how node and edge labels can be considered, as well as
whether the feature vectors are useful in combination with
other methods such as neural networks. We expect that the
rapid current development of numeric GBS samplers as well
as quantum hardware will help answer these questions in the
near future.
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APPENDIX A: ADDING DISPLACEMENT

Equation (5) in the main text can be derived from the
following expression reported in Ref. [6]:

p(n) = e− 1
2 d†Q−1d

√
det(Q) n!

⎡
⎣Haf(Ãn) +

2M∑
i �= j

bib jHaf(Ãn−{i, j}) + · · · +
2M∏

j

b j

⎤
⎦,

= e− 1
2 d†Q−1d

√
det(Q) n!

M∑
n=0

∑
{i1..i2n}⊆I2M

bi1 · · · · · bi2n Haf(Ãn−{i1,...,i2n}), (A1)

where the notation is consistent with Eq. (5), and Ã is the “doubly encoded” adjacency matrix. The equivalence of Eqs. (5) and
(A1) is similar to the square rule Haf(Ã) = Haf(A)2 in the regime of zero displacement.

To show the equivalence, one uses the fact that for Ã being a direct sum A ⊕ A, the index set i1, . . . , i2n ∈ I2M that Eq. (A1)
sums over can be divided into two index sets: j1, . . . , js which contains all s indices from the “first subspace” (i.e., the first
M dimensions) of Ã, and k1, . . . , ks′ containing the s′ indices from the “second subspace,” and s + s′ = 2n. The fact that
Haf(A ⊕ B) = Haf(A)Haf(B) allows us to express the Hafnian of reduced versions of Ãn as a product of reduced versions of
matrix Ãn:

Haf(Ãn−{i1,...,i2n}) = Haf(An−{ j1,..., js})Haf(An−{k1,...,ks′ }).

Altogether, we can therefore write

p(n) ∝
M∑

n=0

∑
{i1..i2n}⊆I2M

bi1 . . . bi2n Haf(Ãn−{i1..i2n})

=
M∑

s,s′=0

∑
{ j1.. js}⊆IM

(b j1 . . . b js Haf(An−{ j1.. js}))
∑

{k1..ks′ }⊆IM

(bk1 . . . bks′ Haf(An−{k1..ks′ }))

=
⎛
⎝ M∑

n=0

∑
{i1..in}⊆IM

bi1 . . . bin Haf(An−{i1..in})

⎞
⎠

2

.
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APPENDIX B: DATA SETS

Here we give further information on the data sets used in
the numerical experiment. Except for IMDB-BINARY and
Fingerprint, all data sets are from the chemical domain. In
COX_MD, ER_MD, MUTAG, and PTC_FM, nodes represent
atoms and edges represent different kinds of bonds. The edges
were translated into binary connections via the following
key: 0—no chemical bond, 1—single bond/double bond/triple
bond/aromatic bond. In all remaining data sets, the represen-
tation is described below.

AIDS—Each graph represents a chemical compound
which the graph label marks as anti-HIV active or not.
Nodes represent atoms and edges represent different kinds
of covalent bonds. The edges were translated into binary
connections via the following key: 0—no chemical bond,
1—valence of zero, one, or two. See also https://wiki.nci.nih.
gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data and
Ref. [45].

BZR_MD—Each graph represents a benzodiazepine re-
ceptor ligand, and the graph labels report in vitro binding
affinities above a fixed threshold [46].

COX2_MD—Each graph represents a cyclooxygenase-2
inhibitor, while the graph labels indicate in vitro activities
against a human recombinant enzyme [46].

ENZYMES—Nodes represent higher-level secondary
structure elements and are connected by an edge if they are
neighbors in the enzyme’s amino acid sequence or if they
are amongst the three nearest neighbors of each structure in
space [47]. Node and edge attributes were ignored. The label
corresponds to the enzyme commission number, indicating
which chemical reactions they catalyze.

ER_MD—Each graph represents an estrogen receptor lig-
and, and the label reports sur-threshold binding affinity to over
1000 other compounds [46].

Fingerprint—The graphs were extracted [45] from
images of fingerprints released by the US NIST in-
stitute (https://www.nist.gov/itl/iad/image-group/nist-special-
database-302). Nodes are put at ending points and bifurcation
points of the fingerprint patterns, as well as at regular inter-
vals between those points. Edges correspond to the physical
distance between points. Graph labels identify the individuals
to which a fingerprint belongs. Only graphs of the three dom-
inant individuals or classes 0,4,5 were considered, since the
other classes did not contain a sufficient number of samples
after small-graph subselection.

IMBD-BINARY—A graph corresponds to a network of
c-starring in movies. Nodes are actors, while edges indicate
whether (1) or not (0) they appeared in a movie of a certain
genre together. The graph labels indicate the genre (action
movies and romances) [43].

MUTAG—Each graph represents a chemical compound,
with nodes indicating atoms and edges their mutual covalent
bonds [45,48]. The graph labels distinguish the compounds
with respect to their mutagenic properties.

NCI1—Each graph represents a chemical compound, la-
beled by its activity against non-small-cell lung cancer an-
dovarian cancer cell lines [49].

PROTEINS—The graphs correspond to proteins from the
Protein Data Bank (http://www.rcsb.org/pdb/) [45,47] and
are labeled according to their enzyme commission number,
indicating which chemical reactions they catalyze.

PTC_FM—Each graph represents a chemical compound,
while the label indicates carcinogenicity on rodents [50].
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