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Quantum algorithm for solving linear differential equations: Theory and experiment

Tao Xin,1,2,* Shijie Wei,1,3,* Jianlian Cui,4 Junxiang Xiao,1 Iñigo Arrazola,5 Lucas Lamata,5,6 Xiangyu Kong,1 Dawei Lu,2,†

Enrique Solano,5,7,8 and Guilu Long1,9,3,‡

1State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
2Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology,

Shenzhen 518055, China
3Beijing Academy of Quantum Information Sciences, Beijing 100193, China

4Department of Mathematics, Tsinghua University, Beijing 100084, China
5Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain

6Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
7IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain

8International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Department of Physics, Shanghai
University, 200444 Shanghai, China

9Tsinghua National Laboratory of Information Science and Technology and The Innovative Center of Quantum Matter, Beijing 100084, China

(Received 20 January 2020; accepted 12 February 2020; published 6 March 2020)

Solving linear differential equations (LDEs) is a hard problem for classical computers, while quantum
algorithms have been proposed to be capable of speeding up the calculation. However, they are yet to be realized
in experiment as it cannot be easily converted into an implementable quantum circuit. Here, we present and
experimentally realize an implementable gate-based quantum algorithm for efficiently solving the LDE problem:
given an N × N matrix M, an N-dimensional vector b, and an initial vector x(0), we obtain a target vector x(t ) as
a function of time t according to the constraint dx(t )/dt = Mx(t ) + b. We show that our algorithm exhibits an
exponential speedup over its classical counterpart in certain circumstances, and a gate-based quantum circuit is
produced which is friendly to the experimentalists and implementable in current quantum techniques. In addition,
we experimentally solve a 4 × 4 linear differential equation using our quantum algorithm in a four-qubit nuclear
magnetic resonance quantum information processor. Our algorithm provides a key technique for solving many
important problems which rely on the solutions to linear differential equations.

DOI: 10.1103/PhysRevA.101.032307

I. INTRODUCTION

Linear differential equations (LDEs) are an important
framework with which to describe the dynamics of a plethora
of physical models, involving classical as well as quantum
systems. They play key roles in many applications, e.g.,
predicting climate change and calculating fusion energy. In
fact, many of the main applications of supercomputers are
in the form of large systems of differential equations [1].
Generally, solving an LDE is a hard problem for a classical
high-performance computer, in particular when the size of
the configuration space is large, as for example in quantum
systems or fluid dynamics.

A possible way to overcome the above difficulty is to uti-
lize quantum computing. Quantum information processing is
one of the most fruitful fields of research in physics nowadays.
Besides the famous Shor factoring algorithm [2,3] and Grover
search algorithm [4], a quantum computer is also capable
of solving linear systems of equations [5,6] exponentially
faster than any classical computers. In recent years, first steps
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towards solving linear equations have been demonstrated
in optics [7,8], nuclear magnetic resonance (NMR) [9,10],
and superconducting circuits [11]. However, extending the
algorithm to differential equations is not straightforward.
Although some quantum algorithms have been proposed
[12–14], they are not easily implemented using state-of-the-
art techniques due to the lack of quantum circuits. Therefore,
it is timely to design an implementable quantum algorithm and
carry out the experimental demonstrations for solving LDEs
in controllable quantum platforms.

In this work, we present a quantum algorithm for solving
LDEs with the gate-based circuit only comprising of standard
quantum gates, which is straightforward to be realized in
current technologies. The precision of our algorithm can be
boosted exponentially by adding the number of ancilla qubits.
We further demonstrate it in a four-qubit NMR system, which
is a quantum platform with a myriad of successes in the field
of quantum technologies [15]. Many of the first demonstra-
tions of quantum algorithms were achieved in this platform
[16–23], which inherited a high degree of quantum control in
NMR spectroscopy during the 20th century. This includes the
recent demonstration of quantum machine learning [24] and
linear solvers of equations [9]. In this work, we carry out a
proof-of-principle experiment to implement an LDE solver in
a four-qubit NMR quantum processor.
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Problem. The description of the problem for solving LDEs
is as follows. An unknown vector x(t ) starts from an initial
point x(0) and follows an evolution described by an LDE
dx(t )/dt = Mx(t ) + b, where M is an arbitrary N × N ma-
trix, while b and x(t ) are N-dimensional vectors.

The analytical solution of the equation can be written
as x(t ) = eMt x(0) + (eMt − I )M−1b, involving matrix ex-
ponentials and inversions. For a classical computer, to ap-
proximate the solution in general requires time that scales at
least as O(N3) [25], which is dominated by the computation
of eMt . This runtime is not surprising since solving linear
systems of equations, which is equivalent to computing the
matrix inversion only, already requires O(N ) time classically
[5]. Here, we provide a quantum algorithm to estimate the
solution of such an equation in O(log N ) time, which yields
an exponential speedup compared to the classical counterpart
in certain circumstances.

II. OUR ALGORITHM FOR SOLVING LDES

A. The algorithm framework

Now we present the basic idea of finding x(t ) based on our
quantum algorithm. By Taylor expansion, the solution x(t ) is
approximately

x(t ) ≈
k∑

m=0

(Mt )m

m!
x(0) +

k∑
n=1

Mn−1t n

n!
b, (1)

where k is the approximation order. The vectors x(0) and b can
be described by quantum states |x(0)〉 = ∑

j x j (0)/‖x(0)‖| j〉
and |b〉 = ∑

j b j/‖b‖| j〉, respectively, where x j (0) and b j are
the jth elements of these vectors, | j〉 is the N-dimensional
computational basis, and ‖ · ‖ is the modulus operation. The
matrix M can be described by the operator A defined as
A = ∑

i, j Mi j/‖M‖|i〉〈 j|. Hence, the kth-order approximate
solution converts to

|x(t )〉 ≈
k∑

m=0

‖x(0)‖(‖M‖At )m

m!
|x(0)〉

+
k∑

n=1

‖b‖(‖M‖A)n−1t n

n!
|b〉, (2)

up to normalization. Our algorithm provides a general frame-
work for computing Eq. (2) employing a quantum system with
the assistance of ancilla qubits. The algorithm works for both
unitary and nonunitary A’s, and in the following we consider
each of the two situations, respectively.

1. Case I

If the operator A is unitary, the powers of A will be also uni-
tary. Let Um = Am, Un = An, Cm = ‖x(0)‖(‖M‖t )m/m!, and
Dn = ‖b‖(‖M‖t )n−1t/n!. By substituting them into Eq. (2),
x(t ) can be represented by

|x(t )〉 ≈ 1

N2

(
k∑

m=0

CmUm|x(0)〉 +
k∑

n=1

DnUn−1|b〉
)

, (3)

FIG. 1. Quantum circuit for solving LDEs when A is unitary.
It includes a first ancilla register with one qubit, a second ancilla
register with T = log2(k + 1) qubits, and a work system. All ancilla
registers are initially prepared in |0〉|0〉T . The controlled operations
Ux and Ub are used to create |x(0)〉 and |b〉, respectively. The evo-
lution operator during encoding and decoding is

∑k
τ=0 |τ 〉〈τ | ⊗ Uτ .

The state after each step is denoted as |ψi〉, i = 1, 2, 3. At the end
of the circuit, we measure the state vector of the work system in the
subspace where all ancilla qubits are |0〉.

where N2 = C2 + D2 with C = √∑
Cm and D = √∑

Dn is
the normalization factor. Thus, the jth element of x(t ) would
be x j (t ) = N2〈 j|x(t )〉.

We employ a composite quantum system incorporating a
work system and two ancilla registers to perform our algo-
rithm as shown in Fig. 1. The framework is divided into four
steps as follows.

a. Encoding. log2N work qubits are needed to encode
the N-dimensional vectors. |x(0)〉 and |b〉 are prepared and
stored by the work qubits labeled by the subspace of the
first ancilla register as |0〉|x(0)〉 and |1〉|b〉, respectively. In
addition, a second ancilla register with log2(k + 1) qubits
is added and transformed into a specific superposition state
|0〉∑k

m=0

√
Cm|m〉 + |1〉∑k

n=1

√
Dn|n〉.

Assume the input state of the work qubits is |φ〉 and all
ancilla qubits are |0〉 as shown in Fig. 1. The first operator V
is chosen as

V = 1

N

(
C D
D −C

)
. (4)

The encoded states |x(0)〉 and |b〉 are realized by performing
controlled operations Ux and Ub on the input state |φ〉 de-
pending on the state of the first ancilla qubit, respectively. A
joint-controlled operation |0〉〈0| ⊗ VS1 ⊗ Ux + |1〉〈1| ⊗ VS2 ⊗
Ub is applied subsequently, where Ux and Ub are used to
evolve the work qubits into |x(0)〉 and |b〉, and VS1 and VS2

are (k + 1) × (k + 1) operations acting on the second ancilla
register. The elements of the first rows in VS1 and VS2 are
chosen as

VS1(:, 1) = 1/C[
√

C0,
√

C1, . . . ,
√

Ck−1,
√

Ck],

VS2(:, 1) = 1/D[
√

D1,
√

D2, . . . ,
√

Dk, 0], (5)

while all other elements are arbitrary as long as VS1 and VS2

are unitary. After computation, the initial state |ψin〉 = |0〉 ⊗
|0〉⊗T ⊗ |φ〉 is evolved into

|ψ1〉 = 1

N

(
|0〉

k∑
m=0

√
Cm|m〉|x(0)〉 + |1〉

k∑
n=1

√
Dn|n − 1〉|b〉

)
.
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b. Entanglement creation. A series of controlled opera-
tions is applied, to realize the operation

∑k
τ=0 |τ 〉〈τ | ⊗ Uτ

on the work qubits which is controlled by the second ancilla
register. The work qubits and the ancilla registers are now
entangled, and the whole state is

|ψ2〉 = 1

N

(|0〉
k∑

m=0

√
Cm|m〉Um|x(0)〉

+ |1〉
k∑

n=1

√
Dn|n − 1〉Un−1|b〉

)
. (6)

c. Decoding. All the operations in the encoding stage are
reversely applied. |0〉〈0| ⊗ WS1 + |1〉〈1| ⊗ WS2 on the ancilla
registers are applied, where WS1 = V †

S1 and WS2 = V †
S2, fol-

lowed by the last operator W = V † on the first ancilla. Only
the subspace where all ancilla qubits are |0〉 is concerned, and
the state of the whole system in this subspace is

|ψ3〉 = 1

N2
|0〉|0〉⊗T

(
k∑

m=0

CmUm|x(0)〉 +
k∑

n=1

DnUn−1|b〉
)

.

d. Measurement. We measure the final state of the work
qubits in the subspace where all ancilla qubits are |0〉. It is
obvious by comparing with Eq. (3) that |x(t )〉 will be directly
extracted; i.e., the solution to the LDE is obtained up to a
factor N2.

2. Case II

This case in which A is nonunitary is similar to the first
case, but more complicated. As A can be decomposed into
a linear combination of unitary operators A = ∑L

i=1 αiAi, as
given in the duality quantum computing formalism [26–29],
we need a third ancilla register to label the linear combination
Ai’s. Compared with the first case, we need more ancilla qubits
and controlled operations. We give details in Appendix A.

B. The complexity of our algorithm

There is no phase estimation or quantum Fourier transfor-
mation in our algorithms. The speedup of the algorithm comes
from the nonunitary [see Eq. (2)] to unitary transformation
by adding ancillary qubits. The combination of an ancillary
system with a work system provides additional freedom to
process information. We create superposition states on the an-
cillary system, and then perform controlled operations on the
work system. The physical picture is that different unitary op-
erations are implemented simultaneously on the work system
but in the different subspaces. Subsequently, all the operations
in the first stage are reversely applied. The physical picture is
that we combine all the information in the different subspaces
and obtain a final result in a subspace where the ancillary
system is |0〉. In fact, superposition and entanglement, as the
most important quantum resources, are both employed during
the algorithm as shown in Fig. 1. Hence, we deem it natural
to yield quantum speedup in this algorithm for solving special
problems.

Generally speaking, the cost of a quantum algorithm in-
volves two aspects. One aspect is qubit resources correspond-
ing to space complexity. The other aspect is gate complexity

FIG. 2. Quantum circuit in the encoding part for preparing the
initial state |ψ1〉 when matrix A is unitary.

corresponding to time complexity. Next, we present a detailed
discussion about complexity for our algorithm when A is
unitary.

Qubit resources. In our algorithm, we need ancillary qubits
to realize the nonunitary evolution in Eq. (2) in a unitary way.
The number of ancilla qubits is 1 + log(k + 1), where k is the
approximate order in Eq. (2) and determines the gap ε be-
tween the ideal and approximate solutions with k = ln(C0/ε)
and C0 constant (proof in Appendix B). In most cases, a
fairly small k is sufficient, as it exponentially improves the
solution’s precision ε.

Gate complexity. In the encoding part (before |ψ1〉 in the
circuit shown in Fig. 1), it is equivalent to a circuit where
the four controlled operations Ux, Ub, VS1, and VS2 are im-
plemented subsequently (see Fig. 2). Let us analyze the gate
complexity in the encoding part block by block.

For the system, the vectors x(0) and b are first loaded into
the initial state |0〉|x(0)〉 and |1〉|b〉 (controlled Ux and Ub).
There are some proposed methods for loading the classical
data, such as the quantum random access memory (qRAM)
approach [30–32]. qRAM is an important approach to prepare
the initial state in many algorithms, especially in quantum ma-
chine learning. The complexity for updating the data is about
O(logN ) after quantum memory is established. Hence, the
complexity to prepare the C|0〉|x(0)〉 + D|1〉|b〉 (orange part)
is O(log(2N )) ∼ O(logN ) in Fig. 2. The controlled operators
VS1 and VS2 are real (2k + 2) × (2k + 2) matrices. They can
be decomposed into O((log(2k + 2))3 × (2k + 2)2) ∼ O(k2)
elementary gates via QR decomposition [33]. Thus, the gate
complexity for preparing the initial state |ψ1〉 is O(log N +
k2) by ignoring smaller terms and constants.

In the middle part of Fig. 1, the controlled operations
Um can be decomposed into O((k + 1) log(k + 1) log N ) ∼
O(k log k log N ) basic gates [34].

In the decoding part, all the operations in the encoding
stage are reversely applied. Thus, it has the same gate com-
plexity compared to the encoding part.

In summary, the gate complexity of our algorithm is
O(k log k log N + log N + k2). The performance of our algo-
rithm depends on two factors, k and N . If k is polylogarithmic
in N , our algorithm achieves an exponential speedup. In
most cases, a fairly small Taylor order k is enough, as it
exponentially improves the solution’s precision. Therefore,
we conclude that our algorithm yields a quantum speedup in
most circumstances. The complexity analysis for nonunitary
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FIG. 3. (a) Molecular structure and Hamiltonian parameters of
13C-labeled trans-crotonic acid. C1, C2, C3, and C4 are used as four
qubits in the experiment, while M, H1, and H2 are decoupled through-
out the experiment. In the table, the chemical shifts with respect to
the Larmor frequency and J-coupling constants (in hertz) are listed by
the diagonal and off-diagonal numbers, respectively. The relaxation
time scales T2 (in seconds) are shown at the bottom. (b) NMR
quantum circuit to realize the solution of a four-dimensional LDE
with four qubits. A (labeled by C1) and B (labeled by C2) are work
qubits to encode the vectors |x(0)〉 and |b〉. Qubit 1 (labeled by C4)
and qubit 2 (labeled by C3) are used as ancilla qubits. This circuit
starts from |0000〉 which is prepared by the spatial average method.
The input state |φ〉 is then created by implementing the rotations
RA

y (β ) and RB
y (β ) on the work qubits. Ux = I ⊗ I and Ub = σx ⊗ σx

are applied to realize the preparation of the vectors |x(0)〉 and |b〉,
respectively. Finally, we measure the state of the work qubits when
the ancilla qubits are |00〉. Durations of the optimized pulses for each
step are also given.

A is presented in Appendix C. We also present an alternative
approach of our algorithm to solve LDEs with the less ancil-
lary qubits in Appendix D.

III. EXPERIMENTAL IMPLEMENTATION

A. Experimental setup

Experimentally, we demonstrate the quantum algorithm for
solving a four-dimensional LDE with a four-qubit nuclear
magnetic resonance system. We make use of the nuclear spins
in a sample of 13C-labeled trans-crotonic acid dissolved in
acetone-D6. The internal Hamiltonian of this system can be
described as

Hint =
4∑

j=1

πν jσ
j

z +
4∑

j<k,=1

π

2
Jjkσ

j
z σ k

z , (7)

where ν j is the chemical shift of the jth spin and J jk is the
J-coupling strength between spins j and k. We assigned C1

and C2 as system qubits and C4 and C3 as ancilla qubits,
respectively. The structure and parameters of the molecule
are shown in Fig. 3(a). All experiments were carried out
on a Bruker ADVANCE 600 MHz spectrometer at room
temperature.

B. Protocol and results

In experiment, we demonstrate a four-dimensional LDE
dx(t )/dt = Mx(t ) + b with

M = I ⊗ I + 2I ⊗ σx,

x(0) =
[

cos2 β

2
, cos

β

2
sin

β

2
, cos

β

2
sin

β

2
, sin2 β

2

]
,

b =
[

sin2 β

2
, cos

β

2
sin

β

2
, cos

β

2
sin

β

2
, cos2 β

2

]
.

The value of β ranges from 0.1π to 0.5π with the increment
0.1π . The nonunitary M can be decomposed into a linear
combination of M0 = I ⊗ I and M1 = I ⊗ σx. The initial
vector |x(0)〉 and |b〉 are realized by applying two-qubit op-
erations Ux and Ub on |φ〉, respectively, where |φ〉 is created
by |φ〉 = RA

y (β )RB
y (β )|00〉 with R j

y (β ) = e−iβσ
j

y /2.
The accuracy of the solution depends on the order k. We set

the order k = 4, leading to four qubits to implement the quan-
tum circuit [see Fig. 3(c)] for solving the LDE. The forms of
V , W , Uc, VS1, VS2, WS1, and WS2 can be found in Appendix E.
To experimentally realize our algorithm, we make use of the
nuclear spins in a sample of 13C-labeled trans-crotonic acid
dissolved in acetone-D6 shown in Fig. 3(a) [35–37].

First, we use the spatial averaging technique to prepare the
pseudopure state (PPS) [38,39] from the thermal equilibrium.
At thermal equilibrium, an NMR sample stays in the Boltz-
mann distribution,

ρthermal = I
16

+ ε
(
σ 1

z + σ 2
z + σ 3

z + σ 4
z

)
, (8)

where I is a 16 × 16 identity matrix and the polarization
ε ≈ 10−5. It is a highly mixed state which is not suitable
for quantum computing. Starting from this state, we use the
spatial averaging technique to realize the preparation of the
following PPS:

ρ0000 = 1 − ε

16
I + ε|0000〉〈0000|. (9)

The initialization processing usually includes local unitary
rotations and z-gradient fields for suppressing the undesired
coherence. Considering that the identity part does not evolve
under any unitary operations or influence any measurements
in NMR, the deviation density matrix |0000〉〈0000| can serve
as the initial state of the quantum circuit. Figure 4 presents
experimental spectra of the PPS for different carbon nuclei
and the reconstructed density matrix of the PPS by performing
quantum state tomography. The fidelity between the ideal pure
state |0000〉 and the experimental PPS is about 0.99, which
underpins subsequent experiments.

Subsequently, we perform the operations involved in our
algorithm. All the operations are individually realized using
shaped pulses optimized by the gradient method [40–42].
Each shaped pulse is simulated to be about 0.998 fidelity while
being robust to the static field distributions and inhomogene-
ity.

Finally, we need to measure the state of the work qubits
when the ancilla are |00〉. In experiment, we performed four-
qubit state tomography to extract the desired results from the
final density matrix [43,44]. It also enables us to evaluate the
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FIG. 4. Experimental spectra of the nuclei C1–C4 and the reconstructed density matrix of the PPS. (a) NMR signals of the nuclei C1–C4

are measured by applying the corresponding π/2 readout pulses after the PPS preparation. (b) Top and bottom plots respectively show the real
and imaginary part of the reconstructed PPS matrix. The z axis represents the value of the element in the matrix.

quality of our implementation by comparing the distance be-
tween the target state ρth and the experimentally reconstructed
density matrix ρexpt.

We fix t = 0.4 and range β from 0.1π to 0.5π with the in-
crement 0.1π in experiments. In other words, we demonstrate
the solutions to five LDEs with different initial vectors |x(0)〉
and offset vectors |b〉 at a fixed time t = 0.4. For each value
of β, the experiment is repeated four times to estimate the
uncertainty. After the implementation of the quantum circuit,
we perform the four-qubit state tomography by applying 17
readout pulses (Appendix F). On average, the experimental
fidelity for all states is F̄ = 0.946(4), estimated by

F (ρth, ρexpt ) = Tr(ρthρexpt )/
√

Tr
(
ρ2

th

)
Tr

(
ρ2

expt

)
. (10)

Taking β = 0.1π as an example, the comparison between the
experimental and simulated NMR spectra of the work qubits
is given in Figs. 5(a) and 5(b), and they are in excellent
agreement. The real parts of the density matrices for ρexpt and
ρth are also displayed in Fig. 5(c) to evaluate the performance

a

b

c

(a
rb

. u
ni

ts
)

(a
rb

. u
ni

ts
)

FIG. 5. NMR spectra of (a) C1 (work qubit A) and (b) C2 (work
qubit B) followed by a readout pulse R12

y (π/2)RAB
x (π/2) for β =

0.1π . The gray and blue lines show the experimental and simulated
spectra, respectively. (c) Real part of the density matrices ρexpt and
ρth for β = 0.1π .

of our experiment. Furthermore, considering that M, |x(0)〉,
and |b〉 are all real in our setting, the solution x(t ) should be
also real. We use a maximum-likelihood (ML) approach to
construct a real state ρml which is closest to the experimentally
measured density matrix ρexpt [35,45]. After obtaining ρml , we
calculate the reduced state vector of work qubits A and B in
the subspace where the ancilla are |00〉, and then reproduce
the solutions to the LDEs by amplifying the result by N2 =
4.059. Table I summarizes all experimental results of the five
LDEs and the comparison between theory and experiment.

IV. CONCLUSION

In summary, we present a quantum algorithm and the
relevant quantum circuit for solving N-variable LDEs, which
achieves an exponential speedup O(log N ) over its classical
counterpart in certain circumstances. As a proof-of-principle
demonstration, we experimentally realize the solution to a
set of LDEs with the dimension 4 × 4 in a four-qubit NMR
quantum processor. The experimental solutions to these LDEs
are obtained with about 5.36% infidelity. The error mainly
comes from the imperfections of the initial state preparation,
the imprecisions and inhomogeneity of the optimized pulses,
the decoherence effect, and the readout error in tomography.
We numerically simulate each of the above factors to estimate
the error distribution (Appendix G). On average, numerical
results show that the error in state preparation, shaped pulses,
decoherence, and readout are 1.07%, 0.84%, 1.19%, and
1.23%, respectively. The sum is 4.33% by assuming all errors
are additive, which is slightly smaller than the measured
1 − F̄ . As the discrepancy is quite small, our error estimation
is consistent with the experimental results. It indicates the
accuracy of the experimental implementation.

Unlike Shor’s or Harrow-Hassidim-Lloyd (HHL) algo-
rithms where the core is phase estimation, the speedup of
our algorithm comes from the nonunitary [see Eq. (2)] to
unitary transformation by adding ancillary qubits. It is called
the linear combination of unitaries (LCU). LCU is also
a universal subroutine in designing and developing quan-
tum algorithms [46]. Traditional quantum computing based
on a closed quantum system undergoes unitary evolution.
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TABLE I. Experimental results of our algorithm for solving an LDE dx(t )/dt = Mx(t ) + b at a fixed time t = 0.4 s. β (see Fig. 3)
ranges from 0.1π to 0.5π with a 0.1π increment. Theoretical and experimental solutions x(t ) are both shown. To evaluate the performance,
we compute the inner product (normalized) between the theoretical and experimental x(t ). Similarity between vectors c and d is defined as
the cosine similarity |c · d|/|c|2|d|2. Error bars come from the uncertainty in repeated experiments, which is mainly attributed to the drift of
temperature and inhomogeneity of the magnetic field.

0.1π 0.2π 0.3π 0.4π 0.5π

β Theory Experiment Theory Experiment Theory Experiment Theory Experiment Theory Experiment

Results x(t ) 2.184 2.280±0.006 2.295 2.333±0.005 2.305 2.277±0.003 2.214 2.154±0.002 2.030 2.066±0.006
1.676 1.747±0.009 1.951 2.059±0.006 2.110 2.193±0.002 2.137 2.214±0.006 2.030 2.049±0.004
0.635 0.708±0.007 1.066 1.040±0.008 1.466 1.453±0.004 1.799 1.829±0.005 2.030 2.105±0.003
0.819 0.881±0.008 1.134 1.064±0.007 1.462 1.372±0.007 1.770 1.701±0.002 2.030 1.892±0.004

Similarity 99.99%±0.003% 99.93%±0.009% 99.94%±0.003% 99.95%±0.003% 99.92%±0.005%

However, the evolution for this LDE problem described by
Eq. (2) is nonunitary. To make it implementable in a unitary
quantum circuit, we added an ancillary system to let the
evolution of the whole system be unitary and provided the
gate-based quantum circuit which is friendly to experimen-
talists. This is the intuition when developing our algorithm.
Furthermore, as long as the target is some linear combination
of unitary operators, our model provides a general way to
enable its realization in a unitary quantum circuit at the cost
of ancillary qubits. We anticipate it to be heuristic when
exploring quantum algorithms with nonunitary evolutions in
the future, such as route optimization of unmanned vehicles
in artificial intelligence.
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APPENDIX A: MATHEMATICAL DETAILS OF
OUR ALGORITHM

We present a mathematical representation of our algorithm
by considering the following two cases.

1. A is unitary

In order to solve an LDE where the matrix A is unitary,
we need a composite quantum system with a (1 + T )-qubit
ancilla register and a log2(N )-qubit work system. Suppose the
input state of the work system is |φ〉 and all ancilla qubits
are prepared in state |0〉|0〉⊗T . First, the first ancilla qubit
evolves to a superposition state after a unitary operation V
is performed,

V = 1

N

(
C D
D −C

)
. (A1)

The encoded states |x(0)〉 and |b〉 are realized by performing
controlled operations Ux and Ub on the input state |φ〉, respec-
tively. The initial state |0〉|0〉⊗T |φ〉 is thus

C
N

|0〉|0〉⊗T |x(0)〉 + D
N

|1〉|0〉⊗T |b〉. (A2)

Then, we define (k + 1) × (k + 1) controlled operations VS1

and VS2 with

VS1 = 1

C

⎛⎜⎜⎝
√

C0 Q Q Q Q Q√
C1 Q Q Q Q Q

· · · Q Q Q Q Q√
Ck Q Q Q Q Q

⎞⎟⎟⎠
(k+1)×(k+1)

, (A3)

VS2 = 1

D

⎛⎜⎜⎜⎝
√

D1 Q Q Q Q Q√
D2 Q Q Q Q Q

· · · Q Q Q Q Q√
Dk Q Q Q Q Q
0 Q Q Q Q Q

⎞⎟⎟⎟⎠
(k+1)×(k+1)

,(A4)

where Q’s are arbitrary elements that make VS1 and VS2

unitary. Then, Eq. (A2) is changed to

1

N

(
|0〉

k∑
m=0

√
Cm|m〉|x(0)〉 + |1〉

k∑
n=1

√
Dn|n − 1〉|b〉

)
.

The controlled operation Uc = |0〉〈0| ⊗ U0 + |1〉〈1| ⊗
U1 + · · · + |k〉〈k| ⊗ Uk is implemented afterwards, where
Uk = Ak . The state of the whole system is

1

N
|0〉

k∑
m=0

√
Cm|m〉Um|x(0)〉 + 1

N
|1〉

k∑
n=1

√
Dn|n − 1〉Un−1|b〉.
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FIG. 6. Universal quantum circuit for solving any LDEs. The framework includes four parts: first ancilla register with one qubit, second
ancilla register with k qubits, third ancilla register with k qudits where each qudit has L levels, and a work system. All ancilla registers are
initially prepared in the ground state |0〉|0〉k |0〉k

L . |0〉L denotes the ground state of an L-level system, which can be encoded by a log2(L)-qubit
quantum system. Hence, all operations acting on the third ancilla register are L ⊗ L matrices. The red squares denote jointly controlled
operations, with the corresponding circuit shown on the right. At the end of the circuit, we measure the state of the work system in the
subspace where all ancilla registers are |0〉|0〉k|0〉k

L .

Subsequently, we implement the operations WS1 = V †
S1 and

WS2 = V †
S2 controlled by the state of the first register on the

second register, which leads to

1

N

(
|0〉|0〉⊗T

k∑
m=0

Cm

C Um|x(0)〉 + |1〉|0〉⊗T
k∑

n=1

Dn

D Un−1|b〉
)

in the subspace where the second ancilla qubits are all |0〉⊗T .
The last unitary operation W = V † is applied on the first
register. Analogously, we focus on the subspace where all
ancilla qubits are |0〉, and the final state is

1

N2
|0〉|0〉⊗T

(
k∑

m=0

CmUm|x(0)〉 +
k∑

n=1

DnUn−1|b〉
)

. (A5)

That is, if we measure the state of the work qubits in the
subspace where the ancillas are |0〉|0〉⊗T , the result directly
represents the solution to the LDE amplified by a factor N2.
The successful probability of yielding the correct answer is

1

(N2)2

(
k∑

m=0

C2
m +

k∑
n=1

D2
n

)
≈ 1

N4
. (A6)

2. A is nonunitary

First, the nonunitary matrix A can be decomposed into a
linear combination of unitary operators A = ∑L

i=1 αiAi, where
the Ai’s are unitary matrices. Thus, the solution can be written
as

|x(t )〉 ≈
k∑

m=0

‖x(0)‖(‖M‖t )m(
∑L

i=1 αiAi )m

m!
|x(0)〉

+
k∑

n=1

‖b‖‖M‖n−1t n(
∑L

i=1 αiAi )n−1

n!
|b〉.

To obtain the solution, we need to add the third ancilla register
compared to the case when A is unitary. The first ancilla
register is still encoded in one qubit. The second ancilla

register consists of k qubits, and the third ancilla register
consists of k qudits where each qudit is an L-level quantum
system.

A universal quantum circuit to solve any LDE is illustrated
in Fig. 6. Initially, all ancilla registers are prepared in the
ground state |0〉|0〉k|0〉k

L, where |0〉L denotes the ground state
of an L-level quantum system. The work system employs the
input state |φ〉 to subsequently encode the vectors |x(0)〉 and
|b〉. First, we implement the following operation V on the first
ancilla register:

V =
⎛⎝ G1√

G2
1+G2

2

G2√
G2

1+G2
2

G2√
G2

1+G2
2

− G1√
G2

1+G2
2

⎞⎠, (A7)

where the parameters G1 and G2 are defined as

G1 =
k∑

m=0

‖x(0)‖(‖M‖t )m

m!

(
L∑

i=1

αi

)m

, (A8)

G2 =
k∑

n=1

‖b‖(‖M‖t )n−1t

n!

(
L∑

i=1

αi

)n−1

. (A9)

In this way, we can encode the vectors |x(0)〉 and |b〉 by
the controlled operations Ux and Ub on the work qubits,
respectively. We then perform the controlled operations VS1

and VS2 on the second ancilla register depending on the state of
the first ancilla register. VS1 and VS2 are 2k × 2k matrices. The
mth element of the first column has the following definition:

V (m,1)
S1 = v

(m,1)
S1√∑

m |v(m,1)
S1 |2

, V (m,1)
S2 = v

(m,1)
S2√∑

m |v(m,1)
S2 |2

,

where

v
(m,1)
S1 =

{√
‖x(0)‖(‖E‖t ) j

j! , m = 2k − 2k− j + 1

0, other case,

v
(m,1)
S2 =

{√
‖b‖(‖M‖t ) j−1t

j! , m = 2k − 2k− j + 1

0, other case.
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Besides, we apply the unitary operation VT on each L-level
qudit of the third ancilla register, where VT is an L × L matrix.
The �th element of the first column in VT is

V (�,1)
T = v

(�,1)
T√∑

� |v(�,1)
T |2

, with v
(�,1)
T = √

αi, (A10)

where V T
�,0 = √

αi. After implementing the unitary operations
V , VS1, VS2, and VT , the state of all ancilla registers will change
from the initial state |0〉|0〉k|0〉k

L to the following state:

G1√
G2

1 + G2
2

|0〉
2k−1∑
m=0

V (m+1,0)
S1 |m〉

(
L∑

�=1

V (�,1)
T |� − 1〉L

)⊗k

+ G2√
G2

1 + G2
2

|1〉
2k−1∑
m=0

V (m+1,0)
S2 |m〉

(
L∑

�=1

V (�,1)
T |� − 1〉L

)⊗k

.

To entangle the ancilla and the work qubits, we perform
the controlled operation U on the work system, which is
jointly controlled by the states of the second and third ancilla
registers. If we focus on the subspace |0〉|0〉k|0〉k

L of all ancilla
registers, the state of the work system can be written as

α|0〉
∑

m

V (m+1,1)
S1 |m〉

(
L∑

�=1

V (�,1)
T A�|� − 1〉L

)⊗ j

|x(0)〉

+β|0〉
∑

m

V (m+1,1)
S2 |m〉

(
L∑

�=1

V (�,1)
T A�|� − 1〉L

)⊗ j

|b〉.

Here, the sum index m = 2k − 2k− j , α = G1/

√
G2

1 + G2
2, and

β = G2/

√
G2

1 + G2
2.

For decoding, we need to perform the inverse operations
on all ancilla registers. The operations WS1 = V †

S1 and WS2 =
V †

S2 are implemented on the second register, which is con-
trolled by the state of the first register, and we reverse the
first and third registers by applying W = V † and WT = V †

T ,
respectively. Finally, we measure the state of work qubits
in the subspace where all ancilla registers stay on the state
|0〉|0〉k|0〉k

L; |0〉|0〉k|0〉k
L|φ〉 is changed to

1

S
|0〉|0〉k|0〉k

L

(
k∑

m=0

‖x(0)‖(‖M‖At )m

m!

)
|x(0)〉

+ 1

S
|0〉|0〉k|0〉k

L

(
k∑

n=1

‖b‖(‖M‖A)n−1t n

n!

)
|b〉,

where S = G1 + G2. One can obtain the solution to the LDE
by multiplying S. If we directly measure the state of the work
system at the end of circuit, the probability of successfully
detecting the auxiliary state |0〉|0〉k|0〉k

L is Ps = ‖As‖2/S2,
where As is equal to

k∑
j=0

‖x(0)‖(‖M‖At ) j

j!
|x(0)〉 +

k∑
j=1

‖b‖(‖M‖A) j−1t j

j!
|b〉).

Ps is approximately 1/S2. S is the amplitude of the state of the
work system on the subspace |0〉|0〉k|0〉k

L of all registers. To

improve the desired amplitude and obtain a near-100% solu-
tion, we can adopt the robust obvious amplitude amplification
by S times before measurement.

APPENDIX B: ERROR BOUNDS

In this section, we analyze the infidelity between the exact
solution x̃(t ) and the approximate solution x(t ), and give
an upper bound of the error ε =‖ x(t ) − x̃(t ) ‖. Since every
square complex matrix is similar to a Jordan matrix, for an n ×
n complex matrix M, there exists an n × n invertible matrix
T such that M = T JT −1, where J = J1 ⊕ J2 ⊕ · · · ⊕ Jm, and
Ji is a di × di Jordan block with eigenvalues λi,

Ji =

⎛⎜⎜⎜⎜⎜⎝
λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
0 0 λi · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · λi 1
0 0 0 · · · 0 λi

⎞⎟⎟⎟⎟⎟⎠,

for i = 1, 2, . . . m, and
∑m

i=1 di = n. Thus, eMt = TeJt T −1.

One can compute that

eJt = ⊕m
i=1eλit J ′

i ,

where

J ′
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 t 1
2 t2 · · · 1

(di−2)! t
di−2 1

(di−1)! t
di−1

0 1 t · · · 1
(di−3)! t

di−3 1
(di−2)! t

di−2

0 0 1 · · · 1
(di−4)! t

di−4 1
(di−3)! t

di−3

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 t

0 0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a di × di complex matrix. It follows that

‖eJt‖ = max{etReλi‖J ′
i ‖ | i = 1, 2, . . . m},

where ‖J ′
i ‖ denotes the spectral norm, that is, the largest

singular value of J ′
i . A Taylor expansion of ez with Lagrange

remainder reads

ez =
k∑

i=1

zk

k!
+ eθz

(k + 1)!
zk+1,

where 0 < θ < 1 is a constant. Let

C =
(

‖x(0)‖ + ‖b‖
‖M‖

)
‖T ‖‖T −1‖

× max{etReλi‖J ′
i ‖ | i = 1, 2, . . . , m}.

Then, the error is given by

ε = ‖x(t ) − x̃(t )‖ � ‖Mt‖k+1

(k + 1)!
C.

When k is sufficiently large,

(k + 1)! ≈
√

2(k + 1)π

(
k + 1

e

)k+1

,

and it follows that√
2π

C
ε �

(
e‖Mt‖
k + 1

)k+1 1√
k + 1

,
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and hence,

ln

√
2π

C
ε � (k + 1)[ln‖eMt‖ − ln(k + 1)] − 1

2
ln(k + 1)

so

ln

√
2π

C
ε � (k + 1)[ln‖eMt‖ − ln(k + 1)].

Since

ln(k + 1) − ln‖eMt‖ � k + 1 − ‖eMt‖
k + 1

,

we have

k + 1 � ‖eMt‖ + ln
C√
2π

1

ε
.

Therefore, k � ln e‖eMt‖−1C√
2π

1
ε
. Let C0 = e‖eMt‖−1C√

2π
. Then, k �

lnC0
ε

, which implies that the larger the value of k, the smaller
the error ε.

APPENDIX C: THE COMPLEXITY ANALYSIS FOR
NONUNITARY A

Generally speaking, the cost of a quantum algorithm in-
volves two aspects. One aspect is qubit resource correspond-
ing to space complexity. The other aspect is gate complexity
corresponding to time complexity. We have given the com-
plexity analysis for unitary A. In this section, we present a
detailed discussion about complexity for our algorithm when
A is nonunitary.

Qubit resources. The number of total ancillary qubits is
1 + k + k log L, where L is the number of unitary operators Ai

when A is decomposed into A = ∑L
i=1 αiAi. The qubit number

of the work system is log N . Hence, the total qubit resource in
our algorithm is log N + k log L + k + 1.

Gate complexity. The analysis is the same as that for
the case of unitary A in the main text. In the encod-
ing part, we need O(log2N ) steps to prepare the state
C|0〉|x(0)〉 + D|1〉|b〉. The controlled operators VS1 and VS2

can be regarded as two general 2k+1 × 2k+1 unitary matri-
ces. It can be decomposed into O((k + 1)34k+1) elementary
gates via QR decomposition [33]. Each operation V T can be
decomposed into O((log L)3L2) ∼ O(L2) elementary gates.
Hence, we need O(log2N + (k + 1)34k+1 + k(logL)3L2) ∼
O(logN + k34k + kL2) steps to realize the encoding part.

In the middle part, the controlled operations U can be de-
composed into O(kL(log L + 1) log N ) ∼ O(kL log L log N )
basic gates [34]. The decoding part has the same gate com-
plexity compared to the encoding. So for nonunitary A, our
algorithm requires O(kL log L log N + k34k + kL2) steps to
obtain the solution.

From the above analysis, we see that the gate complexity
mainly relies on the preparation of |ψ1〉. Actually, the state
|ψ1〉 can be prepared by using the qRAM method [30]. qRAM
claims the gate complexity for preparing an arbitrary P-
dimensional state is O(log P) after the quantum memory cell
is established. Hence, we can also analyze the gate complexity
for the qRAM method.

Unitary A. The dimensions of the work system, first an-
cillary register, and second ancillary register are N , k + 1,

and 2, respectively. The dimension of the whole system is
2N (k + 1). Thus, the gate complexity for preparing state
|ψ1〉 is O(log(2N (k + 1))). The total gate complexity will be
reduced to O(k log k log N + log kN ) ∼ O(k log k log N ).

Nonunitary A. The dimensions of the work system,
first ancillary register, second ancillary register, and third
ancillary register are N , 2, 2k , and kL, respectively. The
dimension of the whole system is N2k+1kL. The gate
complexity to prepare |ψ1〉 is O(log(N2k+1kL)). The total
gate complexity will be reduced to O(kLlogLlogN +
log(N2k+1kL)) = O(kLlogLlogN + logN + (k + 1) +
logk + L) ∼ O(kLlogLlogN ).

We summarize the qubit resource and gate complexity of
our algorithm in Table II. Clearly, the performance of our
algorithm depends on both k and L. If 4k or L is polynomial
in N , our algorithm may not outperform classical algorithms
(polynomial speedup is still possible). This is very similar
during the analysis of complexity in the HHL algorithm. For
the situations when 4k and L are both polylogarithmic in N ,
our algorithm achieves an exponential speedup. Recall that
the Taylor order k determines the precision of the solution by
k = ln(C0/ε); that is, k improves the precision exponentially.
Therefore, in most cases, a fairly small k is sufficient for
approximating a solution with remarkable precision, and we
can omit its contribution to the complexity.

In summary, in most (at least certain) cases, we only need
to consider the system size N when analyzing the complexity
of our algorithm. The complexity scales in O(log N ).

Next we discuss the success probability of solving LDEs
with our algorithms. The solution of an LDE after the k-order
Taylor expansion can be written as

x(t ) ≈
k∑

m=0

(Mt )m

m!
x(0) +

k∑
n=1

Mn−1t n

n!
b. (C1)

Now let us define a constant number G,

G = max{‖x(0)‖(‖M‖t )k, ‖b‖(‖M‖t )k},
if ‖M‖t > 1, ‖M‖ > 1,

G = max{‖x(0)‖(‖M‖t )kt, ‖b‖(‖M‖t )kt},
if ‖M‖t > 1, ‖M‖ < 1,

G = max{‖x(0)‖, ‖b‖}, if ‖M‖t � 1, ‖M‖ > 1,

G = max{‖x(0)‖/‖M‖, ‖b‖/‖M‖},
if ‖M‖t � 1, ‖M‖ < 1. (C2)

We divide both sides of the equation by this G. The new
solution, x′(t ) = x(t )/G, is the same as the original solution
x(t ) up to a constant. In terms of the quantum state, x′(t ) has
the form

|x′(t )〉 ≈ 1

N2
(

k∑
m=0

‖x(0)‖(‖M‖At )m

Gm!
|x(0)〉 (C3)

+
k∑

n=1

‖b‖(‖M‖A)n−1t n

Gn!
|b〉), (C4)
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TABLE II. Required qubit resources and gate complexity in our algorithm. N and k are the dimensions of the work system and Taylor
order, respectively. L is the number of unitary operations Ai when we decompose nonunitary A into A = ∑L

i=1 αiAi. It shows that our algorithm
exhibits an exponential speedup over its classical counterpart in certain circumstances.

Case Unitary A Nonunitary A

Qubit 1 + log(k + 1) + log N logN + klogL + k + 1

Gate O(k log k log N + log N + k2) O(kL log L log N + k34k + kL2)

Gate (qRAM) O(k log k log N ) O(kL log L log N )

where N2 = ∑k
m=0 Cm + ∑k

n=1 Dn with Cm =
‖x(0)‖(‖M‖t )m/Gm! and Dn = ‖b‖(‖M‖)n−1t n/Gn!.
Hence, the success probability to obtain the solution is

P = 1

N4

1

G2
‖

k∑
m=0

‖x(0)‖(‖M‖At )m

m!
|x(0)〉 (C5)

+
k∑

n=1

‖b‖(‖M‖A)n−1t n

n!
|b〉‖2, (C6)

where G is the constant number defined by Eq. (C2).
(i) For the term 1

N4 , we know

N2 =
k∑

m=0

Cm +
k∑

n=1

Dn (C7)

=
k∑

m=0

‖x(0)‖(‖M‖t )m

Gm!
+

k∑
n=1

‖b‖(‖M‖)n−1t n

Gn!
(C8)

�
k∑

m=0

1

m!
+

k∑
n=1

1

n!
� e + e − 1 = 2e − 1. (C9)

Hence,

1

N4
� 1

(2e − 1)2
. (C10)

(ii) Now consider the term

S = ‖
k∑

m=0

‖x(0)‖(‖M‖At )m

m!
|x(0)〉

+
k∑

n=1

‖b‖(‖M‖A)n−1t n

n!
|b〉‖2

≈ ‖e‖M‖At |x(0)〉‖x0‖ + ‖b‖(e‖M‖At − I )(‖M‖A)−1|b〉‖2.

First, let us assume the M is anti-Hermitian. Then

S = ‖x(0)‖2 + 2‖b‖ · ‖x0‖〈b|(e‖M‖At − I )(‖M‖A)−1|x(0)〉
+ ‖b‖2‖(e‖M‖At − I )(‖M‖A)−1|b〉‖2.

� ‖x(0)‖2 − 2
‖b‖ · ‖x0‖

‖M‖ ‖(e‖M‖At − I )A−1|b〉‖

+ ‖b‖2

‖M‖2
‖(e‖M‖At − I )A−1|b〉‖2.

When ‖x(0)|| � ‖b‖
2‖M‖‖(e‖M‖At − I )A−1|b〉‖, we can get S �

‖x(0)‖2. It means the success probability of our algorithm has

the lower boundary,

P � ‖x(0)‖2

(2e − 1)2G2
. (C11)

If M is not anti-Hermitian, we can reconstruct an anti-
Hermitian operator M̃,

M̃ =
(

0 M
−M† 0

)
, (C12)

and then solve the LDE. Analysis of the success probability is
the same as that of the anti-Hermitian M case. Hence, there
is no success probability problem in our algorithm as long as
‖x(0)‖ � ‖b‖

2‖M‖‖(e‖M‖At − I )A−1|b〉‖.
On the other hand, it does not mean that the success

probability of our algorithm must be exponentially small if
‖x(0)‖ � ‖b‖

2‖M‖‖(e‖M‖At − I )A−1|b〉‖. For instance, when b =
0, P is reduced to ‖x(0)‖2

N4G2 , which is also independent of system
size.

APPENDIX D: AN ALTERNATIVE APPROACH OF
OUR ALGORITHM

When the matrix A is nonunitary, we provide an alternative
approach to solve LDEs. The solution can be written as

x(t ) ≈
k∑

m=0

‖x(0)‖(‖M‖At )m

m!
|x(0)〉

+
k∑

n=1

‖b‖(‖M‖A)n−1t n

n!
|b〉, (D1)

where A is a normalized matrix satisfying ‖A‖ � 1. Then, A =
B + iC where B and C are the real and imaginary parts with

B = 1

2
(A + A†), C = 1

2i
(A − A†). (D2)

It is known that any real matrix can be decomposed into the
linear combination of two unitary matrices. Hence,

B = 1/2(F1 + F2), C = 1/2(F3 + F4), (D3)

where the matrices F1, F2, F3, and F4 are all unitary. Their
definitions are

F1 = B + i
√

I − B2, F2 = B − i
√

I − B2,

F3 = C + i
√

I − C2, F4 = C − i
√

I − C2, (D4)

respectively. Then, we can obtain the relationship between the
matrices A and Fi’s:

A = 1

2
(F1 + F2) + i

2
(F3 + F4). (D5)
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If the coefficient i is absorbed into F3 and F4,

F3 = iC −
√

I − C2, F4 = iC +
√

I − C2, (D6)

we have

A = 1
2 (F1 + F2 + F3 + F4). (D7)

The former is a linear combination of only four unitary
matrices. In this situation, the solution x(t ) can be written as

x(t ) ≈
k∑

m=0

‖x(0)‖( ∑4
i=1

‖M‖
2 Fit

)m

m!
|x(0)〉

+
k∑

n=1

‖b‖( ∑4
i=1

‖M‖
2 Fi

)n−1
t n

n!
|b〉. (D8)

It shows that the number of unitary operators acting on |x(0)〉
is less than 4k+1−1

3 and the number of unitary operators acting

on |b〉 is less than 4k−1
3 . Thus, the number of required ancilla

qubits is about log2( 4k+1−1
3 ) + 1 ≈ 2k. The solution |x(t )〉 can

be further expressed as

x(t ) ≈
4k+1−1

3∑
m=1

CmUm|x(0)〉 +
4k −1

3∑
n=1

DnUn|b〉. (D9)

The parameters Cm and Dn satisfy

Cm =
{‖x(0)‖, m=1

‖x(0)‖(‖M‖t/2) j

j! log4(m − 1) � j, j ∈ 1, 2, . . . , k,

Dn =
{‖b‖t, n=1

‖b‖(‖M‖t/2) j t
j! log4(n − 1) � j, j ∈ 1, 2, . . . , k − 1.

Similarly, by defining C = √∑
Cm and D = √∑

Dn, we
obtain |x(t )〉:

C2

( ∑ 4k+1−1
3

m=1 CmUm
)

C2
|x(0)〉 + D2

(∑ 4k −1
3

n=1 DnUn
)

D2
|b〉.

This alternative approach provides a new way to realize the
solution of any type of LDE.

APPENDIX E: EXPERIMENTAL PROTOCOL

In experiment, the parameters of the target LDE are chosen
as follows. M is chosen as M = I ⊗ I + 2I ⊗ σx. Starting
from the initial state |φ〉, we encode the vector |x(0)〉 by
applying a two-qubit operation Ux on |φ〉, and the offset
vector |b〉 by applying an additional rotation Ub on |φ〉. More
specifically,

|φ〉 = RA
y (β )RB

y (β )|00〉, |x(0)〉 = Ux|φ〉, |b〉 = Ub|φ〉,

where R j
y (β ) denotes a local rotation R j

y (β ) = e−iβσ
j

y /2 acting
on qubit j with angle β about the y axis. The order k in
the Taylor expansion directly determines the accuracy of the
approximate solution x(t ). As shown in Fig. 3, we present
a detailed quantum circuit with four qubits for realizing the
solution x(t ). C and D in operations V and W are defined as

C = √
C1 + C2, D = √

D1 + D2. (E1)

Operations VS1 and VS2 are chosen as

VS1 = 1

C

(√
C1 N√
C2 N

)
, VS2 = 1

D

(√
D1 N√
D2 N

)
. (E2)

Here,

C1 = 1 + t + 5t2

2
+ 13t3

6
+ 41t4

24
,

C2 = 2t + 2t2 + 7t3

3
+ 5t4

3
,

D1 = t + t2

2
+ 5t3

6
+ 13t4

24
, D2 = t2 + 2t3

3
+ 7t4

12
.

N’s are arbitrary elements that make VS1 and VS2 unitary,
which can be determined using the Gram-Schmidt method.
The other operations are WS1 = V †

S1 and WS2 = V †
S2. The

controlled operation Uc is simplified to the controlled-NOT

operation Uc = I ⊗ (|0〉〈0| ⊗ I + |1〉〈1| ⊗ σx ) ⊗ I .

APPENDIX F: QUANTUM STATE TOMOGRAPHY

In NMR, the measurement is realized by detecting the free-
induction decay (FID) signal. When the spins in the detecting
coil remove to the thermal equilibrium, the electric current in
the coil will create and can be detected by the NMR detector
and a time-domain FID signal is induced. We perform Fourier
transformation on the FID signal to extract the information of
spins including the oscillating frequencies and the amplitudes
and phases of the transverse magnetization. Hence, we can
process the experimental spectra such as the fitting to measure
the values of the observables. The NMR platform can only
measure the expectations of the single-coherent operators; for
example, the observed qubit is the transverse component σx or
σy and the remaining qubits are all σz or I with Pauli matrices
σx, σy, and σz. It means that we can also measure other oper-
ators by some designed readout pulses before the FID signal
acquisition and then realize quantum state tomography (QST).
For a four-qubit quantum state ρ, it can be decomposed in the
complete Pauli basis,

ρ =
3∑

i, j,k,l=0

μi jklσi ⊗ σ j ⊗ σk ⊗ σl ,

σ0 = I , σ1 = σx, σ2 = σy, σ3 = σz. μi jkl is the expectation of
the operator σiσ jσkσl . It is μi jkl = Tr(ρσiσ jσkσl ). QST is a
way to determine all the unknown coefficients μi jkl in the
state ρ. Except for single-coherent operators like σxσzσzσz,
we can also measure the high-coherent operators with the
assistance of the readout pulses which are π/2 rotations on
the qubits. For instance, we need a rotation exp(−iπ/4σ 2

x −
iπ/4σ 3

x − iπ/4σ 4
x ) on nonobserved qubits to transfer a de-

sired operator σxσyσyσy to the detectable single-coherent oper-
ator σxσzσzσz. Obviously, we can design some readout pulses
to measure all the coefficients μi jkl in the QST.

In experiments, these readout pulses are as well realized
by the optimized shaped pulses with a numerical fidelity
of about 99.8%. As a result, the final density matrices of
four repeated experiments for every β are reconstructed
as ρexpt and the average fidelity 94.64% is obtained. Fig-
ure 7 presents the comparison between the reconstructed and
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FIG. 7. The real and imaginary parts of the density matrices ρexpt and ρth for five β’s. The first and second rows present the real and
imaginary parts of the reconstructed density matrices ρexpt, respectively. The third and fourth rows show the the real and imaginary parts of the
ideal density matrices ρth. The average fidelity between ρexpt and ρth for all β’s is about 94.64%.

expected density matrices for every β. The experimental
results have a great agreement with the theoretical density ma-
trices and reveal the quantum circuit is precisely implemented
in experiments.

APPENDIX G: ERROR ANALYSIS IN EXPERIMENTS

The infidelity of the final density matrix ρexpt (about
5.36%) is attributed to the imperfections of the initial state
preparation, the imprecisions and inhomogeneity of the op-
timized pulses, the decoherence effect, and the readout error
in tomography. First, there is about 1.07% error related to the
infidelity of the initial state preparation after state tomography.
Second, the shaped pulses have distortions in practice as the
pulse generator has about 5% fluctuation in amplitude. Our
simulation gives on average 0.84% error to the infidelity of
ρexpt.

The decoherence effect is usually the main error source in
current quantum computation. It always makes the dynamical
evolution deviate from the ideal dynamics. To evaluate the

influence of decoherence on our experimental results, we
first suppose a simple decoherence model where each qubit
undergoes an individual relaxation channel after each slice in
the shaped pulses, and then we simulate the dynamics of the

TABLE III. Numerical estimation of errors. For every value of
β, we simulate the infidelities F̄ PPS

σ , F̄ inhomo
σ , F̄ decoh

σ , and F̄ tomo
σ caused

by the imperfections of the PPS preparation, the inhomogeneity of
the optimized pulses, the decoherence effect, and the error in state
tomography, respectively.

β 0.1π 0.2π 0.3π 0.4π 0.5π

F̄ PPS
σ 1.070% 1.070% 1.070% 1.070% 1.070%

F̄ inhomo
σ 0.859% 0.933% 0.948% 0.864% 0.604%

F̄ decoh
σ 1.272% 1.368% 1.258% 1.163% 0.869%

F̄ tomo
σ 1.008% 0.960% 1.056% 1.277% 1.841%

F̄ total
σ 4.209% 4.331% 4.332% 4.374% 4.384%
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shaped pulses including the decoherence effect for our qubits.
In detail, the time propagator including decoherence model
can be described as

C = ε · CM · ε · CM−1 · · · ε · Cm · · · ε · C2 · ε · C1, (G1)

where Cm acting on the density matrix ρ means Cm(ρ) =
e−iHmτ ρeiHmτ . Hm is the total Hamiltonian of the mth slice and
τ is the duration of each slice. ε is the combination of the
relaxation channel for each qubit. When a density matrix ρ is
fed into such a channel, ρ is changed to

ρ → ε(ρ) = ε4 ◦ ε3 ◦ ε2 ◦ ε1(ρ). (G2)

Here, εi means the amplitude damping and phase damping
channel of the ith qubit. According to the above model, the
error caused by the decoherence effect is about 1.19%.

Another potential error source is the measurement error.
This is usually combined with the spectra fitting inaccuracy
and is difficult to address. We estimate it by adding a fluctu-
ation on the measured values of the coefficients (Pauli basis).
This error is simulated to be about 1.23% on average.

Assuming all errors are additive, the total error estimation
gives on average 4.33% (see Table III), which is about 1%
smaller than the infidelity of ρexpt. As the difference is quite
small, our error estimation is consistent with the experimental
results.
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