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Sub-shot-noise-limited fiber-optic quantum receiver
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We experimentally demonstrate a quantum receiver based on the Kennedy scheme for discrimination between
two phase-modulated weak coherent states. The receiver is assembled entirely from standard fiber-optic elements
and operates at a conventional telecom wavelength of 1.55 um. The local oscillator and the signal are transmitted
through different optical fibers, and the displaced signal is measured with a high-efficiency superconducting
nanowire single-photon detector. We show the discrimination error rate is two times below that of a shot-noise-

limited receiver with the same system detection efficiency.
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I. INTRODUCTION

Since the beginning of telecommunications there has been
an ever increasing demand to transmit more data. Optical
signals are ideal carriers of information over long distances
due to their high capacity and speed. An optical receiver has
to convert the optical signal into logical data. An important
performance index of different receivers is the error rate, i.e.,
the probability to transmit a single bit incorrectly. Quantum
properties of light set the fundamental limits on the minimum
error rate. With the use of Gaussian operations, the minimum
error is bounded by the shot noise or the so-called standard
quantum limit (SQL) [1]. The use of non-Gaussian operations
(e.g., single-photon detectors) can reduce the error rate to
a lower value, bounded from below by the Helstrom bound
[2,3]. In theory, several types of quantum receivers may be
used to overcome the SQL [4-15] or even approach the
Helstrom bound for certain types of signals [16—19]. However,
in practice, it is very difficult to experimentally demonstrate
sub-SQL performance due to several reasons.

First, most theoretical proposals of sub-SQL receivers in-
volve the optical displacement of the communication signal
[i.e., interference of the signal with a reference light beam,
called the local oscillator (LO)], followed by its measurement
with the help of a single-photon detector (SPD). To realize
stable and high-contrast interference, LO must be perfectly
mode-matched to the signal. Moreover, in the first theoretical
proposal of the quantum receiver that reaches the Helstrom
bound (Dolinar receiver) [16], the phase and amplitude of
LO must be dynamically adjusted depending on the output
of the SPD via instantaneous feedback. A recently developed
optimal multichannel quantum receiver [17] does not require
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instantaneous feedback, but involves several optical displace-
ment operations. Another approach to reach the Helstrom
bound involves the nonlinear transformation of the signal,
which is extremely challenging to realize in practice [18].
Second, the overall system detection efficiency of the
receiver, including the quantum efficiency of SPD, must be
high—above 50% for the binary signal [2]. Apart from high
quantum efficiency, the SPD must have a low dark count rate
and short dead time, which is rather difficult to combine.
Superconducting nanowire single-photon detectors (SNSPDs)
[20] show great potential in this context, since they have a
quantum efficiency close to 100%, the dead time is below
10 ns, and dark counts can be as low as 0.01 counts/s [21-24].
SNSPD is coupled with a single-mode fiber, which makes it
relatively easy to integrate into a fiber-optic receiver scheme.
In this article we experimentally realize the simplest
and historically the first sub-SQL receiver design, called a
Kennedy receiver [4]. In order to meet the above-mentioned
requirements for sub-SQL performance, we combine stan-
dard single-mode fiber-optic components to realize a high-
extinction optical displacement operation and an SNSPD to
detect the displaced signal. The receiver operates at a con-
ventional telecommunication wavelength of 1.55 pum. We
experimentally demonstrate that the maximal improvement of
the error rate is about two times with respect to the SQL.
Note that previous experimental attempts towards sub-SQL
quantum receivers, as well as quantum receivers aimed at
other optimization strategies [25-27], were partially or fully
implemented using optical components in free space. The use
of standard fiber-optic components brings this area of research
closer to real-world applications, since the vast majority of
devices in classical optical communication use optical fiber
technology. Compared to free-space optics, fiber-optic devices
are more compact, reproducible, and convenient for practical
use. It is easier to scale them up, which is important for the
development of improved quantum receivers [17,19].
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FIG. 1. Schematics of a displacement-based Kennedy receiver.
A mode-matched signal and local oscillator are combined on a 99:1
beam splitter such that after the beam splitter one of the possible
states (e.g., |—«a)) vanishes out due to destructive interference with
the local oscillator (LO). The result of interference between the
signal and LO is registered by a single-photon detector.

II. KENNEDY RECEIVER

In the simplest form, the problem of minimum-error state
discrimination is as follows. Consider the signal prepared
in one of two equiprobable phase-modulated coherent states
|y, | —a)—the so-called binary phase-shift keyed (BPSK)
signal. The main task of a receiver is to make some measure-
ment of the signal and find out the actual signal state.

According to Kennedy’s proposal [4], the measurement
should be done by interfering the signal with a mode-matched
reference beam (local oscillator, LO) on a beam splitter,
such that after the beam splitter one of the possible states
vanishes out due to destructive interference with the LO:
la), |—a) — |2e), |0). To reduce the attenuation of the signal,
interference is performed on an almost completely transparent
beam splitter (99:1 splitting ratio) [28]. Such an operation is
called exact nulling displacement. Afterwards, the displaced
signal is measured with the help of a single-photon detector
(see Fig. 1). If the detector gives a photocount (“click” event),
then we can be sure that the signal was in the state which
is not nulled (receive logical “1”), while in the case of no
photocounts (“no-click” event), the most probable state is the
nulled signal (receive logical “0”).

The photon number distribution and the error diagram for
the Kennedy receiver is shown in Fig. 2. Errors e of the ideal
Kennedy receiver should be equal to zero, since a perfectly
nulled signal gives no photocounts. Errors e;y come from
the fact that “no-click” events may appear not only from the
nulled signal |0), but also from the zero-photon component
of the signal |2«), i.e., nonzero signal is decoded incorrectly
upon a “no-click” event. The probability distribution of n-
photon components of the coherent state |x) is given by the
Poisson distribution P,(x) = e~ x~2"/n!, which is shown in
Fig. 2. Thus the error rate of the Kennedy receiver is given by

ex(m) = 0.5Py(2a) = 0.5¢~4", (1)

where m = «? is the mean number of photons in the initial sig-
nal. For comparison, the error rate of the heterodyne receiver
is given by [17]

esqu(m) = 1[1 — erf(v/2m)], )

X

where erf(x) = %ﬁ fo e dt, and the Helstrom bound is
given by

ena(m) = 3[1 — (V1 —e=4m)]. 3)
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FIG. 2. Probability distribution of photocounts for logical “0”
(green histogram), and logical “1” (blue histogram). Discrimination
errors ejp and eg; correspond to the first component of the blue
histogram (zero number of photocounts) and all-but-first components
of the green histogram (nonzero number of photons), respectively.
The inset shows the error diagram.

These values, normalized to SQL, are shown by the solid and
dotted lines in Fig. 5.

To realize optical displacement, it is necessary to perform
mode matching of the signal and LO. This means that all
parameters describing the mode of the signal and the mode
of the local oscillator must coincide. In the experiment it is
difficult to achieve mode matching of the spatial, temporal,
spectral, and polarization distributions for the light beams
coming from different light sources. Thus technically both the
LO and signal source are prepared by splitting one light source
into two unequal parts: The larger part serves as the LO, and
the smaller part is phase modulated and serves as the signal
[6,9,14]. After mixing them on a properly balanced beam
splitter, the mode-matching condition can be accomplished. In
fact, this approach to the implementation of optical displace-
ment resembles an unbalanced interferometer (for example,
a Mach-Zehnder interferometer), in one of whose arms we
prepare the signal, and in the second arm—the LO (see Fig. 3).
To demonstrate experimentally a quantum receiver within
this approach, it is necessary to ensure stabilization of the
interferometer over all freedom degrees (polarization, phase,
space, timing, etc.).

In reality, it is not possible to achieve perfect mode match-
ing and perfect stabilization of the interferometer. First, due to
the nonunit interference visibility, the state |—«) is not com-
pletely nulled after the optical displacement. Second, nonzero
dark counts contribute a certain level of background noise in-
distinguishable from nonperfect mode matching. As a result,
a nonzero error ep; appears in the error diagram (see Fig. 2).

Using Eq. (2) in Ref. [17], the error rate of the Kennedy re-
ceiver accounting for the interference extinction ¢ = Iyax/Imin
(here, I,y and I,;, are maximum and minimum intensities of
the interference fringes) and dark counts dc (mean number of
dark counts per signal bin) of the detector reads as

ey (m,c,dc) = 0.5¢" 4" +0.5(1 — e %74y (4)
which is shown by red dashed-dotted line in Fig. 5.
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FIG. 3. Schematics of the experimental setup. The source of light (LS) is attenuated via a variable attenuator (ATT) and then split into
two unequal parts on a polarization beam splitter (PBS). The splitting ratio is controlled by a fiber polarization controller (FPC No. 1). The
two parts have the same polarization since one of the fibers is physically rotated by 90°. The weaker part is binary phase modulated on an
electro-optical modulator (EOM) driven by a radio-frequency generator (RFG). The stronger part serves as a local oscillator that interferes
with the signal on a beam splitter (BS). The result of interference is measured by a superconducting nanowire single-photon detector (SNSPD),
preceded by a fiber polarization controller (FPC No. 2) to match the highest quantum efficiency of the detector. Time-correlated single-photon
counting electronics (TCSPC) is used to synchronize the detector with the modulator.

To demonstrate the superiority of any Helstrom-bounded
quantum receiver over the SQL, the minimum system detec-
tion efficiency 7, including optical loss and detector quantum
efficiency, should be such that epq(nm) < esqr(m), which
implies n 2 53%.

Minimum requirements for the Kennedy receiver to beat
the SQL are even stronger: ey (nm, ¢, dc) < esqr(m). In this
case, we have to comply with minimum system detection
efficiency, minimum interference extinction, and maximum
dark count rate. Provided noiseless detection (dc = 0)
and perfect interference extinction (¢ = 00), the minimum
system detection efficiency must be 2 54%. The minimum
interference extinction in the case of a unit system detection
efficiency (n = 1) and noiseless detection (dc = 0) is ¢ > 80.
The maximum dark count rate, measured in photocounts per
signal bin, in the case of a unit system detection efficiency
(n=1) and perfect interference extinction (¢ = 0o) is
dc = 0.035.

It is quite possible to achieve each of these conditions sepa-
rately. However, the realistic combination of all imperfections
makes an experimental demonstration of the sub-SQL error
rate rather challenging. For example, the real parameters of
an experimental setup that we discuss in the next section
are very good: The dark count rate is 300 Hz at a 200 kHz
signal repetition rate (dc = 0.0015), and interference extinc-
tion is ¢ ~~ 1250. To beat the SQL, the system detection effi-
ciency should be such that e} (nm, c = 1250, dc = 0.0015) <
esqL(m), which means n 2 78%. The optical losses of beam-
splitter connectors are around 0.3 dB (~7%), thus the mini-
mum quantum efficiency of the single-photon detector should
be around 85%.

III. EXPERIMENTAL SETUP

Our experimental setup is shown in Fig. 3. We use the
scheme based on the Mach-Zehnder interferometer, since it
allows us to achieve high interference extinction and also
has great potential for improving the receiver in the future.

A highly coherent distributed-feedback (DFB) laser operating
in the continuous-wave (cw) mode at a wavelength 1550 nm
with linewidth 2 MHz is used as a light source. The power
of the source is attenuated to the single-photon level by a
tunable attenuator (Att). Light from the DFB laser is split
by a polarization beam splitter (PBS). The splitting ratio is
controlled by a mechanical polarization controller (FPC No.
1) to achieve the highest value of interference extinction. The
second polarization controller (FPC No. 2) was used to adjust
the polarization of the incident signal to the detector, as far as
the quantum efficiency of SNSPD is polarization dependent.

To achieve maximum performance of the receiver, it is
necessary to reduce some parasitic effects caused by optical
fibers (such as polarization distortion, temperature fluctua-
tions, vibrations, etc.) that influence the stability and contrast
of the interferometer. To stabilize the optical scheme, the
methods described in Refs. [29,30] were used. For polariza-
tion stability we use polarization-maintaining (PM) optical
fiber components within the Mach-Zehnder interferometer.
Phase stability is achieved by increasing the thermal inertia
of the optical circuit. Optical fibers were thermally stabilized
by a massive metal plate placed in a sealed box.

To estimate the discrimination error rate, it iS necessary
to compare the known signal at the receiver input with the
decoded signal at the receiver output. Figure 4 illustrates the
main steps we used to determine the error rate. An optical bi-
nary phase-modulated signal was generated using an electro-
optical modulator (EOM). Signal parameters were controlled
by a radio-frequency generator (RFG). The electrical signal
has a meander shape with a repetition rate 100 kHz [see
Fig. 4(a)]. We use this frequency since, on the one hand, it
allows us to collect enough statistics of photocounts during
the system stability time, and, on the other hand, it excludes
the influence of the detector dead time (10 ns) on the statistics
of photocounts. The voltage amplitude of EOM corresponds
to the phase shift w. Then the signal is mixed with the
LO (which has constant phase and power, matched to the
signal power) that converts phase modulation into amplitude
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FIG. 4. Schematics of data processing. (a) Initial binary data are
encoded into the binary phase-shifted coherent signal. (b) After opti-
cal displacement, the binary phase-shift signal is transformed into the
binary amplitude-modulated signal with the amplitude modulation
extinction around 30 dB. (c¢) Finally, an amplitude-modulated signal
is registered by a single-photon detector. Photocounts (shown by the
solid line) are decoded into logical data and matched with the original
data (shown by the dashed line). After a comparison of encoded and
decoded data, the discrimination errors are calculated.

modulation [see Fig. 4(b)]. The displaced signal is detected
by a single-photon detector which has 65% quantum effi-
ciency, a dark count rate about 300 counts/s, and a dead time
about 10 ns (SNSPD by SCONTEL) [31]. Detection events
are recorded using time-correlated single-photon counting
electronics (TCSPC) with a temporal resolution of 25 ps
[see Fig. 4(c)]. The time intervals correspond to destructive
interference encode logical “0,” and constructive interference
encode logical “1.” The optimal selection of components for
the passively stabilized optical scheme allows us to achieve an
interference extinction of more than 30 dB (Zjax /Imin = 1250)
for a time interval of several seconds. The data acquisition
time is around 1 s.

By synchronizing the RFG signal generator, phase mod-
ulator controller, and TCSPC detection electronics, we can
match the transmitted [Fig. 4(a)] and the received logical
data [Fig. 4(c)] and determine the number of erroneously
received bits. A bit is received erroneously if the half-period
time window corresponding to a logical “0” contains some
photocounts. This error ey; corresponds to the nonzero com-
ponents of the green histogram (see Fig. 2). Also, a bit is
received erroneously if the half-period time window corre-
sponding to logical “1” contains no photocounts. This error
ejo corresponds to the zero component of the blue histogram
(see Fig. 2).

IV. EXPERIMENTAL RESULTS

Using experimental data, we calculate the error rate for dif-
ferent levels of signal intensities, measured in mean numbers
of photons per signal time bin (or, simply, number of photons).
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FIG. 5. Discrimination error rate as a function of mean photon
number in a signal time bin. The error rate is normalized to the
standard quantum limit (SQL), shown by the blue dashed line. Red
dots show the experimental error rate of our receiver, including the
statistical deviations indicated by black bars. The red dashed-dotted
line shows a theoretical fit for the measured error rate. For com-
parison, we also show the theoretical values for the ideal Kennedy
receiver (green solid line) and the Helstrom bound (magenta dotted
line).

The results are presented as red points in Fig. 5. All data points
in Fig. 5 are normalized to the SQL [Eq. (2)].

Here, the mean photon number is derived from the mean
number of photocounts without normalization to the system
detection efficiency, i.e., we do not take into account optical
losses (0.3 dB or 7% on the beam-splitter connectors, and
10% on the 90/10 beam splitter itself) and quantum efficiency
of SNSPD (65%). As we discussed at the end of Sec. II,
to demonstrate a truly sub-SQL performance, the minimum
quantum efficiency that we need is substantially above 65%.
In our case, we compare the Kennedy receiver with the
shot-noise-limited system that has the same system efficiency
(0.65 x 0.93 x 0.9 >~ 0.55). The aim of this work is a proof-
of-principle demonstration of an all-fiber Kennedy receiver.
Technically, we could fuse two fibers and eliminate the optical
loss of the beam-splitter connectors, as well as replace the
beam splitter by a more asymmetric one (99/1) and the
SNSPD by a more efficient one, available from SCONTEL,
though in this work we do not do this.

For comparison, we show the Helstrom bound [Eq. (3)] by
the magenta dotted line, the error rate of the ideal Kennedy
receiver [Eq. (1)] by the green solid line, and the error rate of
the nonperfect Kennedy receiver [Eq. (4)] by the red dashed-
dotted line. The last curve fits well the experimental points for
a dark count rate of ~300 Hz, which corresponds to a dark
count probability per signal bin ~1.5 x 1073,

According to the obtained results, the Kennedy receiver
has high sensitivity in the range between 0.5 and 1.6 photons.
The experimentally observed error rate in this range is well
below the SQL. The lowest error rate, normalized to SQL,
was obtained for a signal intensity at 1.3 photons and is equal
to 0.4 SQL.

For signal intensities at less than 0.4 photons, the perfor-
mance of the Kennedy receiver is worse than SQL due to
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the ey error (the first component of the blue histogram in
Fig. 2). This is the fundamental limitation of the Kennedy
receiver. For signal intensities at higher than 1.6 photons,
the performance of the Kennedy receiver is also worse than
SQL, but this is a technical issue. In this case, the dominant
contribution is ep; error (the nonzero components of the green
histogram in Fig. 2). It originates from the nonunit interfer-
ence visibility and dark counts, which set the background
noise. The higher intensity of the signal, the larger is this
contribution, and hence a higher discrimination error rate.
To achieve high sensitivity of the receiver in this domain,
we need to observe high interference extinction, which is a
difficult task for practical implementation. Further progress in
this direction may be associated with an improvement of the
interference extinction, overall stability of the optical circuit,
and development of novel receiver designs.

V. CONCLUSIONS AND OUTLOOK

We experimentally demonstrated an all-fiber quantum re-
ceiver based on Kennedy’s design. We used a two-arm
polarization-maintaining optical fiber Mach-Zehnder interfer-
ometer to create a binary phase-shift keyed signal in one arm
and local oscillator in the other arm. Also, we used a very
promising superconducting nanowire single-photon detector

with excellent characteristics to measure the displaced signal.
We achieved interference extinction above 30 dB, which
allows us to observe a discrimination error rate below the
SQL for a signal intensity level between 0.5 and 1.6 photons
per time bin. The minimum value of the error rate that we
experimentally obtain is 60% below the SQL on the condition
that the signal is not normalized to the system detection
efficiency.

The main motivation for this work is to demonstrate a
quantum receiver solely based on standard fiber-optic com-
ponents. The use of an optical fiber circuit makes it easier
to employ the receiver in practical systems, such as quantum
key distribution with discrete modulation of coherent states
[32]. Our work is also aimed at creating a receiver with
the potential for its further modernization and development
of more advanced schemes [17]. We hope that the practical
implementation of quantum receivers with high sensitivity can
motivate their wider use in related research fields.
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