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Steered quantum coherence as a signature of quantum phase transitions in spin chains
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We propose to use the steered quantum coherence (SQC) as a signature of quantum phase transitions (QPTs).
By considering various spin chain models, including the transverse-field Ising model, XY model, and XX model
with three-spin interaction, we showed that the SQC and its first-order derivative succeed in signaling different
critical points of QPTs. In particular, the SQC method is effective for any spin pair chosen from the chain, and
the strength of SQC, in contrast to entanglement and quantum discord, is insensitive to the distance (provided it
is not very short) of the tested spins, which makes it convenient for practical use as there is no need for careful
choice of two spins in the chain.
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I. INTRODUCTION

Quantum coherence plays a fundamental role in the fields
of quantum optics [1] and thermodynamics [2]. The resource
theoretic framework for quantifying coherence formulated in
2014 stimulates further study of it from a quantitative perspec-
tive [3–5]. In particular, it has been used to explain the quan-
tum advantage of many emerging quantum computation tasks,
including quantum state merging [6], deterministic quantum
computation with one qubit [7], the Deutsch-Jozsa algorithm
[8], and the Grover search algorithm [9]. The resource theory
of coherence also provides a basis for interpreting the wave
nature of a quantum system [10,11] and the essence of quan-
tum correlations such as quantum entanglement [12–17] and
various discordlike quantum correlations [7,17–22].

Besides the fundamental position in physics, quantum co-
herence is also useful in studying critical behaviors of various
spin chain systems. For instance, the relative entropy of co-
herence for one spin or two adjacent spins can detect quantum
phase transitions (QPTs) in the spin-1/2 transverse-field Ising,
XX, and Kitaev honeycomb models [23], while critical behav-
iors of the XY model have been studied by virtue of the l1 norm
of coherence [24]. Moreover, the relative entropy and l1 norm
of coherence for two neighboring spins detect successfully the
Ising-type first-order QPT in the spin-1 XXZ model [25]. The
skew-information-based coherence measure [26], though it is
not well defined [27], can also detect QPTs in certain spin
chain models, including the spin-1/2 XY model either without
[28] or with three-spin interaction [29,30] and the spin-1/2
XYZ model with Dzyaloshinsky-Moriya interaction [31].

In fact, other characterizations of quantumness in quantum
information science have also been used to study QPTs. One
of them is entanglement [32]. Its role in exploring QPTs
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can be found in Refs. [33–36] and the review work [37].
Another quantumness measure is entropic quantum discord
[38,39], which can detect QPTs in the XXZ model [40,41],
the transverse-field Ising model [41,42], the transverse-field
XY model [43], and the XY model with three-spin [44] or
Dzyaloshinsky-Moriya interaction [45]. Moreover, one can
also use geometric quantum discord to explore QPTs in
certain spin chain models [5]. Nevertheless, although entan-
glement and quantum discord were widely used to explore
QPTs with great success, entanglement is short ranged [37],
so a careful choice of two very short distance spins or the
bipartition of the system is required. Though quantum discord
can exist for two relatively long-distance spins, its computa-
tion is NP complete [46] (there is no closed formula even for
a general two-qubit state [47]). These characterizations are
limited in the scope of their applications in exploring QPTs.

In this paper, we propose to use the steered quantum
coherence (SQC) [14] as a signature of QPTs. We consider
a general XY model with a transverse magnetic field and
three-spin interaction, and we show that the SQC precisely
signals all critical points of the QPTs. In particular, compared
with entanglement and quantum discord, the SQC exists for
any two spins in the chain, and its strength is insensitive to the
distance of the two spins provided it is not very short. This
remarkable property of the SQC releases the restriction on the
distance of the spin pair selected for probing QPTs and may
have important implications for experimental observation of
QPTs as, in general, it is hard to measure a weak quantity
in experiments. Moreover, different from quantum coherence
of a state which is basis dependent and one may extract
useless information if the basis is inappropriate, the SQC is
analytically solvable for any two-spin state and its value is
definite. On the experimental side, the SQC can be estimated
by local projective measurements and one-qubit tomography,
which is also feasible with current techniques [48–50]. All the
aspects above show that the SQC may be a powerful tool to
study QPTs in spin chain models.
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The structure of this paper is as follows. In Sec. II, we recall
the definition of the SQC and the solution of the physical
model. Then in Sec. III, we discuss critical behaviors of the
SQC for the considered model and show that it signals the
QPTs precisely. Finally, we summarize our main finding in
Sec. IV.

II. PRELIMINARIES

We first present the definition of the SQC. For a state ρAB

with the two qubits held, respectively, by Alice and Bob, the
SQC was defined by Alice’s local measurements and classical
communication between Alice and Bob. To be explicit, Alice
carries out one of the pre-agreed measurements {σμ}μ=x,y,z

(σμ is the Pauli operator) on qubit A and communicates to
Bob her choice, σμ. Then Bob’s system collapses to the
ensemble states {pμ,a, ρB|�a

μ
}, with pμ,a = tr(�a

μρAB) being
the probability of Alice’s outcome a ∈ {0, 1}, and ρB|�a

μ
=

trA(�a
μρAB)/pμ,a being Bob’s conditional state. Moreover,

�a
μ = [12 + (−1)aσμ]/2 is the measurement operator and 12

is the identity operator.
For Alice’s chosen observable, σμ, Bob can measure the

coherence of the ensemble {pμ,a, ρB|�a
μ
} with respect to the

eigenbasis of either one of the remaining two Pauli opera-
tors. After Alice’s all possible measurements {�a

μ}μ=x,y,z with
equal probability, the SQC at Bob’s hand can be defined as the
following averaged quantum coherence [14]:

Cna(ρAB) = 1

2

∑
μ,ν,a
μ �=ν

pμ,aC
σν

(ρB|�a
μ
), (1)

where Cσν

(ρB|�a
μ
) is the coherence of ρB|�a

μ
defined in the

reference basis spanned by the eigenbases of σ ν [3].
In this paper, we use the l1 norm of coherence and the

relative entropy of coherence, which are favored for their ease
of calculation. By denoting {|ψi〉} the eigenbases of σ ν , their
analytical solutions are given, respectively, by [3]

Cσν

l1 (ρ) =
∑
i �= j

|〈ψi|ρ|ψ j〉|,

Cσν

re (ρ) = −
∑

i

〈ψi|ρ|ψi〉 log2〈ψi|ρ|ψi〉 − S(ρ),
(2)

with S(ρ) = −tr(ρ log2 ρ) denoting the von Neumann en-
tropy. Based on these formulas, one can then obtain the
corresponding SQC Cna

l1
(ρAB) and Cna

re (ρAB).
Next, we introduce the XY model with a transverse mag-

netic field and three-spin interaction. The Hamiltonian for
such a model can be written as

Ĥ = −
N∑

n=1

(
1 + γ

2
σ x

n σ x
n+1 + 1 − γ

2
σ y

n σ
y
n+1 + λσ z

n

)

−
N∑

n=1

α
(
σ x

n−1σ
z
nσ x

n+1 + σ
y
n−1σ

z
nσ

y
n+1

)
,

(3)

where σμ
n (μ = x, y, z) are the Pauli operators at site n, λ is

the transverse magnetic field, γ denotes the anisotropy of the
system arising from the nearest-neighbor interaction, and α

denotes the strength of the three-spin interaction arising from
the next-to-nearest-neighbor interaction [51]. Moreover, N is

the number of spins in the chain, and we assume the periodic
boundary conditions.

The Hamiltonian Ĥ can be diagonalized by first using the
Jordan-Wigner transformation [52]:

σ x
n =

∏
m<n

(1 − 2c†
mcm)(cn + c†

n ),

σ y
n = −i

∏
m<n

(1 − 2c†
mcm)(cn − c†

n ), σ z
n = 1 − 2c†

ncn,
(4)

which maps the spins to spinless fermions with creation
(annihilation) operators c†

n (cn). Then by virtue of the
Fourier transformation c̃k = ∑

l cl e−ilxk /
√

N (xk = 2πk/N)
and the Bogoliubov transformation dk = cos(θk/2)c̃k −
i sin(θk/2)c̃†

−k , one can obtain [53]

Ĥ =
M∑

k=−M

2εk

(
d†

k dk − 1

2

)
, (5)

where M = (N − 1)/2, θk = arcsin[−γ sin(xk )/εk], and the
energy spectrum is given by

εk =
√

ε2
k + γ 2 sin2 (xk ), (6)

with εk = λ − cos(xk ) − 2α cos(2xk ).
To calculate the SQC, one needs to obtain the density

operator ρi,i+r for the spin pair (i, i + r), with r denoting the
distance of two spins in units of the lattice constant. In the
Bloch representation, ρi,i+r can always be decomposed as

ρi,i+r = 1

4

∑
μ,ν

tμνσ
μ
i ⊗ σ ν

i+r, (7)

where μ, ν ∈ {0, x, y, z}, tμν = tr(ρi,i+rσ
μ
i ⊗ σ ν

i+r ), and σ 0
i =

12. Due to the translation invariance, ρi,i+r will be independent
of the position i and depends only on the distance r of two
spins. Then one can obtain the nonzero tμν of ρi,i+r as [54,55]

tz0 = t0z = 〈σ z〉, tμμ = 〈
σ

μ
i σ

μ
i+r

〉
(μ ∈ {x, y, z}), (8)

where 〈σ z〉 is the magnetization intensity given by [56]

〈σ z〉 = 1

N

∑
k

εk tanh(βεk )

εk
, (9)

and β = 1/kBT , with kB being the Boltzmann constant. More-
over, the spin-spin correlation functions are given by [57]

〈
σ x

i σ x
i+r

〉 =

∣∣∣∣∣∣∣∣

G−1 G−2 · · · G−r

G0 G−1 · · · G−r+1
...

...
. . .

...
Gr−2 Gr−3 · · · G−1

∣∣∣∣∣∣∣∣
,

〈
σ

y
i σ

y
i+r

〉 =

∣∣∣∣∣∣∣∣

G1 G0 · · · G−r+2

G2 G1 · · · G−r+3
...

...
. . .

...
Gr Gr−1 · · · G1

∣∣∣∣∣∣∣∣
,

(10)
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and 〈σ z
i σ z

i+r〉 = 〈σ z
i 〉2 − GrG−r , where Gn (−r � n � r) is

given by

Gn = −
∑

k

[cos(nxk )εk + γ sin(nxk ) sin(xk )] tanh (βεk )

Nεk
.

(11)

For the two-spin density operator ρi,i+r with its nonzero
elements constrained by Eq. (8), the SQC can be obtained
analytically as

Cna
l1 (ρi,i+r ) = t0z + 1

2

(
txx + tyy +

√
t2
0z + t2

xx +
√

t2
0z + t2

yy

)
,

Cna
re (ρi,i+r ) = 2 − H2(τ1) − H2(τ2) − (1 + tz0)H2(τ3)

2

− (1 − tz0)H2(τ4)

2
+ H2

(
1 + t0z

2

)
,

(12)

where H2(·) denotes the binary Shannon entropy function, and
the parameters τi (i = 1, 2, 3, 4) are given by

τ1 = 1

2

(
1 +

√
t2
0z + t2

xx

)
, τ2 = 1

2

(
1 +

√
t2
0z + t2

yy

)
,

τ3 = 1

2
+ |t0z + tzz|

2(1 + tz0)
, τ4 = 1

2
+ |t0z − tzz|

2(1 − tz0)
. (13)

III. SQC AND QPTS IN SPIN CHAIN MODELS

Based on the above preliminaries, we discuss in this section
critical behaviors of the spin chain described by Eq. (3) by
using the SQC. We show that the extreme points of the SQC
for any two spins as well as the discontinuity of its first
derivative are able to indicate QPTs in the considered model.

A. Transverse-field Ising model

To begin with, we consider the transverse-field Ising model
which corresponds to γ = 1 and α = 0 in Eq. (3). For such a
model, it is known that there is a second-order QPT at λc = 1.
At this point, the global phase flip symmetry breaks and the
correlation length diverges [37].

To reveal that the SQC can indicate QPTs in the Ising
model, we show in Fig. 1 the dependence of Cna

l1
(ρi,i+r ) and

its first derivative on λ with different distances r of the spin
pair. For r � 3, Cna

l1
(ρi,i+r ) increases monotonically with the

increase of λ, and its first-order derivative with respect to λ

shows a discontinuity at λc = 1. For the tested spins with long
distances (r � 4), as depicted in Fig. 1(a), Cna

l1
(ρi,i+r ) does not

behave as a monotonic increasing function of λ. Instead, there
exists a pronounced cusp close to λc = 1. A further numerical
calculation shows that the critical point λt for the minimum of
this cusp approaches monotonically to λc with the increase
of r, e.g., λt − λc ∼ 10−6 when r = 1000 and N = 2001.
Then it is reasonable to conclude that for an infinite chain,
the minimum of this cusp can precisely signal the QPT at
λc = 1 when r is very large. Moreover, one can observe from
Fig. 1(b) that the discontinuity of dCna

l1
(ρi,i+r )/dλ indicates

the QPT at λc = 1 for the chosen tested spins with any
distance.

With the same system parameters as in Fig. 1, we displayed
in Fig. 2 the dependence of Cna

re (ρi,i+r ) and its first derivative

1.0
1.2
1.4
1.6
1.8
2.0
2.2

C
n
a

l 1
(ρ

i,
i+

r
)

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4
−3
−2
−1

0
1
2
3
4

λ

dC
n
a

l 1
(ρ

i,
i+

r
)/

dλ

(b)

0.8 0.9 1 1.1 1.2
−15
−10
−5

0

FIG. 1. Cna
l1

(ρi,i+r ) (a) and its first derivative dCna
l1

(ρi,i+r )/dλ

(b) versus λ for the Ising model with N = 2001. The solid black,
dash-dotted red, dashed blue, and dotted green lines correspond to
r = 1, 5, 10, and 100, respectively. The dotted green line in panel
(b) is shown in the inset to better visual the QPT.

on λ. One can see that with the increasing strength of the
transverse magnetic field λ, Cna

re (ρi,i+r ) first decreases to a
minimum and then turns to be increased gradually. As for
ρi,i+r with large r, Cna

re (ρi,i+r ) also shows a pronounced cusp in
the neighborhood of λc, and with the increase of r, the critical
point of λt for the minimum of this cusp approaches to λc

more rapidly than that for Cna
l1

(ρi,i+r ), e.g., λt − λc ∼ 10−8

for r = 1000 and N = 2001. This suggests that the cusp of
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FIG. 2. Cna
re (ρi,i+r ) (a) and its first derivative dCna

re (ρi,i+r )/dλ

(b) versus λ for the Ising model with N = 2001. The solid black,
dash-dotted red, dashed blue, and dotted green lines correspond
to r = 1, 5, 10, and 100, respectively. The inset in the bottom
right corner is an amplified plot of the dash-dotted red line in the
neighborhood of λc, and the dotted green line in panel (b) is shown
in the top left corner to better visual the QPT.
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SQC can signal the QPT taking place at λc for two long-
distance tested spins. Moreover, the first-order derivative of
Cna

re (ρi,i+r ), as expected, also presents a discontinuity at the
phase transition point λc = 1 for two spins with different
distances.

All the above observations show evidently that the SQC
and its first-order derivative for any two spins can clearly
indicate QPTs in the Ising model. In particular, one can see
from Figs. 1 and 2 that beyond the adjacent region of λc,
the curves of the SQC for two spins with different large r
are nearly overlapped; i.e., there is almost no decrease of the
SQC for ρi,i+r with different large r. Such a property can be
immediately applied to reduce the experimental demands to
detect QPTs, as one can choose two spins at any distance to
achieve the same feat.

We have also checked the efficiency of other signatures of
QPTs. For entanglement and quantum discord, the disconti-
nuities of their first derivatives can detect QPTs in the Ising
chain [42]. But the entanglement exists only for r � 2 and
hence imposes a strict restriction on the distance of the tested
spins, while the calculation of quantum discord is a hard task
even when ρi,i+r is available [47]. Moreover, it can be seen
from Eqs. (7) and (8) that the one-spin coherence is always
zero. As for the two-spin coherence, its derivative shows a
discontinuity at λc, but its estimation needs a two-qubit state
tomography.

B. Transverse-field XY model

Next, we consider the transverse-field XY model, which
corresponds to α = 0 in Eq. (3). There are two QPTs [58,59].
The first one occurs at λc = 1. For λ < λc, the system is in
the ferromagnetic ordered phase, while for λ > λc it is in the
paramagnetic quantum disordered phase. The second one
occurs at γc = 0 and λ ∈ (0, 1). It further separates the ferro-
magnetic ordered phase into two regions, i.e., the ferromagnet
ordered along either the x (γ < 0) or the y (γ > 0) axis.

In Fig. 3, we show the dependence of Cna
l1

(ρi,i+r ) and its
first derivative on λ for the XY model with γ = 0.5. For
two neighboring spins, the discontinuity of dCna

l1
(ρi,i+r )/dλ

precisely signals the QPT at λc, and there exist two inflexions
for it, which are not critical points of QPTs [57,60]. When r is
large, the curves of Cna

l1
(ρi,i+r ) with different r are nearly over-

lapped beyond the adjacent region of λc, and there exists an
abrupt cusp in the neighborhood of λc. The critical point of λt

corresponds to the minimum of this cusp approaches asymp-
totically to λc with the increase of r, e.g., λt − λc ∼ 10−7

when r = 1000 and N = 2001. Similar to the Ising model, the
insensitivity of the SQC to the distance (provided it is not very
short) of the tested spins in the XY chain also has important
practical consequences for experimental characterization of
QPTs. With regard to the first-order derivative of Cna

l1
(ρi,i+r ),

it shows a discontinuity at λc, irrespective of r. Hence, it
is able to precisely detect the QPT for two spins at any
distance.

Similarly, we show in Fig. 4 the capability of Cna
re (ρi,i+r )

and its derivative in detecting the QPT at λc = 1. First, for
two spins with long distances, the curves of Cna

re (ρi,i+r ) are
nearly overlapped for λ deviating from the adjacent region
of λc. On the contrary, there is a cusp close to λc, and
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FIG. 3. Cna
l1

(ρi,i+r ) (a) and its first derivative dCna
l1

(ρi,i+r )/dλ

(b) versus λ for the XY model with γ = 0.5 and N = 2001. The
solid black, dash-dotted red, dashed blue, and dotted green lines
correspond to r = 1, 5, 10, and 100, respectively. The dotted green
line in panel (b) is shown in the inset to better visual the QPT.

the critical λt related to the bottom of this cusp approaches
rapidly to λc with the increase of r, e.g., λt − λc ∼ 10−10

when r = 1000 and N = 2001. Second, the first derivative
of Cna

re (ρi,i+r ) shows a discontinuity at λc, irrespective of the
distance of the spin pair in the chain. This indicates that the
phase transition point in the XY model can also be signaled
precisely by dCna

re (ρi,i+r )/dλ.
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FIG. 4. Cna
re (ρi,i+r ) (a) and its first derivative dCna

re (ρi,i+r )/dλ

(b) versus λ for the XY model with γ = 0.5 and N = 2001. The
solid black, dash-dotted red, dashed blue, and dotted green lines
correspond to r = 1, 5, 10, and 100, respectively. The inset in panel
(a) is an amplified plot of the lines in the neighborhood of λc, and the
dotted green line in panel (b) is shown in the inset to better visual the
QPT.

032305-4



STEERED QUANTUM COHERENCE AS A SIGNATURE OF … PHYSICAL REVIEW A 101, 032305 (2020)

We have also examined QPTs of the XY model at γc = 0
and λ ∈ (0, 1). For the conciseness of this paper, we do not
present the plots here. The numerical calculation shows that
this QPT can be signaled precisely by the extremal behaviors
of the SQC. To be explicit, Cna

l1
(ρi,i+r ) is maximal for r = 1

and minimal for r � 2 at γc, while Cna
re (ρi,i+r ) always reaches

to its minimum at γc. However, there is no extremal, dis-
continuous, or singular behavior being observed for the first-
order derivative of the SQC with respect to the anisotropic
parameter γ .

As for concurrence of ρi,i+r , it is non-null for two spins
with very short distance; e.g., for γ = 0.5, its first derivative
detects the QPT at λc only when r � 3. The critical point
λc can also be detected by the first derivative of quantum
discord for two spins more distant than second neighbors
[43], and similarly for the two-spin coherence. However,
the strength of quantum discord and two-spin coherence de-
crease as we increase r, especially in the region of λ > λc,
hence it is hard to detect them experimentally when r is
large.

C. Transverse-field XX model with three-spin interaction

Now, we consider a more general case where only γ = 0 is
assumed in Eq. (3). The ground-state phase diagram consists
of four sectors [53]: the spin-saturated phase in the regions
of λ > λc1 and λ < λci (i = 2 when α < 1/8 and i = 3 other-
wise), the spin liquid I phase in the region of λ ∈ (λc2 , λc1 ),
and the spin liquid II phase in the region of λ ∈ (λc3, λc2 )
and α > 1/8. Here, λc1,c2 = 2α ± 1 and λc3 = −(1 + 32α2)/
16α.

In Fig. 5, we plot the SQC as functions of α and λ for
the three-spin interaction XX model with N = 2001 and r =
100. As can be seen from this figure, both Cna

l1
(ρi,i+r ) and

Cna
re (ρi,i+r ) can signal the regions of different phases. To be

explicit, when the system is in the spin-saturated phase, the
two SQC measures take their values of about 2, while in
the two spin liquid phases, one can observe a pronounced
decrease of their values. The critical lines (i.e., λ = λc1 and
λ = λc3 ) separating the spin-saturated phase from the spin
liquid phase correspond to two inflexions of the SQC. For
α > 1/8, the boundary (i.e., λ = λc2 ) between the spin liquid
I and the spin liquid II phases corresponds to another inflexion
of the SQC. Besides the three critical lines, there is a critical
line indicated by the minimum of the SQC, but as was shown
in Ref. [53], it is not a boundary of QPT.

To gain more insight into the critical behaviors of SQC for
the present model, we further plot in Fig. 6 the dependence of
Cna

l1
(ρi,i+r ) and Cna

re (ρi,i+r ) on λ with different α and r. Besides
those behaviors observed in Fig. 5, one can observe that when
r = 1 and α < 1/8, there are two cusplike minima which are
pronounced for Cna

l1
(ρi,i+r ) and are not obvious for Cna

re (ρi,i+r ),
but they are not critical points of QPTs [53]. In this sense, the
SQCs of long-distance spin pairs are more reliable than that of
the neighboring spin pair in detecting QPTs of the three-spin
interaction XX model. Looking at Fig. 6, one can note that the
curves of SQC for the spin pairs with different long distances
are nearly overlapped; that is, the SQC in this model is also
insensitive to the variation of the distance (provided it is not
very short) of two spins. Such a property will be useful in the
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FIG. 5. Cna
l1

(ρi,i+r ) (top) and Cna
re (ρi,i+r ) (bottom) versus α and λ

for the three-spin interaction XX model with N = 2001 and r = 100.
Here, regions I and IV correspond to the spin-saturated phase, while
regions II and III correspond to two kinds of spin liquid phases.

experimental detection of QPTs where other characterizations
of quantumness are very weak and hence cannot be detected
efficiently.
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FIG. 6. Cna
l1

(ρi,i+r ) [panels (a) and (b)] and Cna
re (ρi,i+r ) [panels

(c) and (d)] versus λ for the three-spin interaction XX model with
N = 2001. Here, α = 0.1 for panels (a) and (c), and α = 0.8 for
panels (b) and (d). The solid black, dash-dotted red, and dashed
blue lines (from top to bottom) correspond to r = 1, 10, and 100,
respectively.
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As for concurrence of ρi,i+r , it is able to detect partial
QPTs in the three-spin interaction model for the spin pair
with small r [44]. But when r is large, its value becomes very
small, and the regions of non-null concurrence shrink to the
vicinity of λc2 (if α < 1/8) or λc3 (if α > 1/8). The quantum
discord is a reliable indicator of QPTs when choosing two
neighboring spins [44], and the two-spin coherence can detect
the QPTs as well for small r. However, they also decrease
with an increase in r, especially when α > 1/8 and r is large;
they both oscillate rapidly with respect to λ in the region of
λ ∈ (λc3 , λc2 ), with a large number of extreme points being
observed. It is therefore hard to distinguish these points from
the critical points of QPTs.

Finally, we present an explanation for the underpinning
of the observed phenomena in the above subsections, that
is, the insensitivity of the SQC to the distance r of two
spins in the chain and the divergence in the derivative of the
SQC with respect to the magnetic field λ. For brevity, we
consider the Hamiltonian Ĥ without the three-spin interaction,
and the general Ĥ of Eq. (3) can be analyzed in a similar
manner.

First, we explain the insensitivity of the SQC to r. As
t0z is independent of r, one only needs to consider the r
dependence of tμμ which are determined by {Gn}r

n=−r . From
Eq. (11), one can obtain that for γ = 0, |G±1| is maximal
among all {|Gn|} if λ � 0.6736 and |G0| is maximal if λ �
0.6736, while for γ ∈ (0, 1], |G−1| is maximal if λ < λ0 and
|G0| is maximal if λ > λ0, with λ0 increasing from 0.6736
to 1 when γ increases from 0 to 1. Moreover, |G±n| with
large n are negligible compared with those with small n. For
example, for the Ising model, we have Gn = −2/[(2n + 1)π ]
at λ = λc, and G−1 = 1 and Gn = 0 (n �= −1) at λ = 0 in
the thermodynamic limit (N → ∞), while for the XX model,
we have G0 = 2θ0/π − 1 and Gn = 2 sin(nθ0)/(nπ ) (n �= 0),
where θ0 = arccos(min{λ, 1}). Therefore, for the Ising model,
|Gn/G−1| = 1/(2n + 1) at λ = λc, and such a ratio will be
further decreased when λ deviates from λc. Similarly, for the
XX model, |Gn/G±1| = | sin(nθ0)|/(n sin θ0) and |Gn/G0| =
| sin(nθ0)|/[n(π − 2θ0)]. As a consequence, even when r is
very large, only those terms G±n with small n dominate in
txx and tyy, and this results in the insensitivity of Cna

l1
(ρi,i+r )

to large r. Moreover, it is easy to see that tzz depends
weakly on large r, thus Cna

re (ρi,i+r ) is also insensitive to
large r.

Physically, the insensitivity of the SQC indicator to the
distance between the tested spins can also be comprehended
from the fact that the SQC is null only for ρAB = ρA ⊗ 12/2 as
it takes into account the three mutually unbiased bases [14].
That is, it characterizes a more general form of correlation
and could exist in a parameter region in which there are no
entanglement and quantum discord. In fact, the insensitivity
of the SQC indicator to large r also has its roots in the
insensitivity of the elements of the reduced density matrices
ρi,i+r with large r. But for these ρi,i+r , the entanglement has
already disappeared and the quantum discord is very weak.
Moreover, some sudden change points of quantum discord
may not correspond to QPTs as they are caused by the
optimization procedure in its definition [28].

Second, we explain the divergence in the derivative of the
SQC with respect to λ. Given that T = 0, from Eqs. (9) and

(11) one can obtain

∂t0z

∂λ
= γ 2

N

∑
k

sin2(xk )

ε3
k

,

∂Gn

∂λ
= γ

N

∑
k

εk sin(nxk ) sin(xk )−γ cos(nxk ) sin2(xk )

ε3
k

, (14)

from which one can see that both ∂t0z/∂λ and ∂Gn/∂λ

are divergent at λ = λc as the two fractions in the
above equation approach infinity. For the XX model, one
can see more specifically the divergence of ∂t0z/∂λ and
∂Gn/∂λ. This is because, in the thermodynamic limit, we
have ∂t0z/∂λ = −∂G0/∂λ = 2/(π

√
1 − λ2) and ∂Gn/∂λ =

−2 cos(nθ0)/(π
√

1 − λ2) (n �= 0). Consequently, there is al-
ways a divergence in the derivatives of the SQC due to
Eq. (12).

IV. SUMMARY AND DISCUSSION

To summarize, we have proposed to use the SQC as a
signature of QPTs in the transverse-field XY model with
three-spin interaction. The motivation for considering such
a quantumness measure is that it is long ranged and exists
in the parameter regions for which there are no quantum
correlations. Compared with other signatures of QPTs such
as entanglement and quantum discord, our method is pow-
erful due to the following advantages: (i) The SQC and its
derivative succeed in detecting precisely all the QPTs in the
considered models. (ii) The effectiveness of SQC in detecting
QPTs is independent of the distance of two spins, which
makes it convenient for practical use as one can choose any
two spins other than the restricted short-distance spins. This
also differentiates it from concurrence and quantum discord,
which decrease rapidly with the increasing distance of two
spins and disappear or become infinitesimal when the distance
is long. (iii) The SQC is analytically solvable and could
be estimated experimentally by local projective measure-
ments and one-qubit tomography. Moreover, the advantage
of the SQC method over the simple coherence method may
originate from the fact that while quantum coherence reveals
only the quantum nature of the whole system under a fixed
basis, the SQC takes into account the three mutually unbiased
bases and the local operation and classical communication
between A and B. As a consequence, it captures a kind of
correlation which contains more comprehensive information
than that of coherence [14–16], hence it is capable of distin-
guishing the subtle nature of a system and is more reliable
in reflecting the quantum critical behaviors even when the
coherence measures fail to do so.

As the three-spin interaction Hamiltonian may be gen-
erated in optical lattices [51], we expect our observation
can be confirmed in future experiments with state-of-the-
art techniques. One step further would be to use the SQC
method to investigate QPTs of high-dimensional spin systems
and exotic quantum phases in many-body systems such as
topological phase transitions [61–65]. Moreover, it is also
appealing to study the dynamics of the SQC, which may
provide an interesting scenario for understanding the quantum
criticality of many-body systems [66–68].
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