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Quantum Boltzmann machine algorithm with dimension-expanded equivalent Hamiltonian
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Quantum machine learning explores the devising and implementing of quantum software to enable the speedup
for a classical machine learning counterpart, which has attracted extensive attention. The quantum Boltzmann
machine is a promising quantum machine learning model and can be executed on near-term quantum devices
to demonstrate quantum supremacy. We investigate an efficient algorithm for training a quantum Boltzmann
machine based on a continuous-time quantum cluster Monte Carlo method realized with a dimension-expanded
equivalent Hamiltonian. The proposed algorithm is capable of efficiently training various types of quantum
Boltzmann machines, including a two-dimensional random transverse Ising Hamiltonian and other stochastic
κ-local (κ � 2) Hamiltonians. We further apply a quantum mean-field method to speed up the training process
through discarding the quantum fluctuations of visible-hidden interactions. The experiment results show that
our algorithm-trained quantum Boltzmann machine is more efficient on a small and large data set in terms of
network convergence and time complexity.
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I. INTRODUCTION

Machine learning has achieved tremendous success in
various fields, including computer vision [1,2], collabora-
tive filtering [3], quantum many-body physics [4,5], quan-
tum metrology [6], and quantum tomography [7]. With the
advancement of the integration between machine learning
and quantum mechanics, numerous algorithms have been
proposed to efficiently solve the existing problems originat-
ing from quantum physics or computer science, which has
spawned a new research subject called quantum machine
learning (QML) [8,9].

QML algorithms alleviate the dilemma of the inefficiency
of classical machine learning algorithms in the era of big
data. Numerous QML algorithms have been proposed, such
as a quantum support vector machine [10], a quantum-data-
fitting algorithm [11], and a quantum generative adversarial
network [12,13]. These QML algorithms achieve exponential
speedup compared with their classical counterparts and are
executed on a universal quantum computer (UQC). However,
it is a challenge to build UQC in the short term because of
the fast decoherence of the qubits system and unstable non-
linear quantum gates. Thus, quantities of quantum schemes
are proposed aiming to present the quantum supremacy in
noisy intermediate-scale quantum (NISQ) devices [14] such
as Boson sampling machines [15] and quantum Boltzmann
machines (QBMs) [16].

The QBM is a quantum generalization of the classical
Boltzmann machine (CBM) by replacing the energy function
of a CBM with a quantum Hamiltonian. Training QBMs can

*ghzeng@sjtu.edu.cn

be divided into two steps: (a) improving the positive phase,
referring to an increase of the probability of training data, and
(b) improving the negative phase, referring to a decrease of the
probability of samples generated by QBMs [17]. The problem
of the positive phase can be mitigated by a bound-based
method [16]. In Refs. [18,19], a state-based training method is
proposed based on quantum relative entropy. The state-based
training requires quantum empirical data distribution. Thus,
the classical data needs to be transformed into superposition
states by calling quantum random access memory such as to
be impractical in NISQ devices. Currently, a new quantum
training method via generalized Gibbs ensembles overcomes
the difficulties of projection training. The quantum average
over the projector by means of generalized Gibbs ensembles
can be efficiently sampled [20]. The negative phase compu-
tation is generally NP-hard for conventional exact algorithms
[21]. In Ref. [22], a sampling algorithm for negative phase
computation based on the eigenstate thermalization hypoth-
esis (ETH) is proposed to train different types of QBMs.
However, there is no known analytical derivation of the ETH
for general interacting systems [23]. Moreover, the training
algorithm that requires more hyperparameter optimizations
and lacks flexibility renders it uneasily implemented.

In this regard, we attempt to obtain a general efficient
training algorithm for various QBMs. First, we consider
quantum-Merlin-Arthur–complete (QMA-complete) Hamil-
tonians such as ZZXX and ZX local models [24] and derive
the respective equation for their positive phase learning based
on a bound-based approximation. Second, motivated by a
highly impressive algorithm for an efficient training quantum
variational autoencoder [25] in which QBM is regarded as a
component, we make use of a path integral (PI) formulation
to present an efficient continuous-time quantum cluster Monte
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FIG. 1. Illustration of classical and quantum Boltzmann ma-
chine: (a) fully connected Boltzmann machine, (b) restricted Boltz-
mann machine, (c) quantum restricted Boltzmann machine, and
(d) quantum mean-field approximation when regarding visible or
hidden layer as a cluster.

Carlo (CT-QCMC) algorithm to learn the negative phase with-
out systematic error. In order to train QBMs in a large-scale
data set, we further apply the quantum mean-field (QMF) [26]
approximation to reduce the complexity of the computation
such as to accelerate the training process. Finally, to demon-
strate the learning ability of various QBMs, the experiments
on a small toy data set are conducted where the negative
phase is updated through CT-QCMC and QMF approximation
algorithms. In addition, we validate the reconstruction per-
formance of QBMs on a large-scale data set via CT-QCMC
and its QMF approximation. Through a large number of
experiments, we demonstrate that both algorithms are able to
efficiently train QBMs. In particular, QMF-algorithm-trained
QBMs show a competitive performance compared to CT-
QCMC-algorithm-trained QBMs.

The remainder of this paper is organized as follows. Sec-
tion II introduces the basics of CBM and QBMs from a novel
perspective. The efficient training algorithm is presented in
detail in Sec. III. Section IV provides the simulation results of
the proposed algorithm. Conclusions are drawn in Sec. V.

II. PRELIMINARIES

A. Classical Boltzmann machine

CBM is commonly viewed as a generative unsupervised
machine learning model which involves a probability distribu-
tion from an original data set and using it to make inferences
about never before seen data.

1. Fully connected Boltzmann machine

A fully connected Boltzmann machine consists of a visible
layer and a hidden layer as Fig. 1(a) shows. Neurons on the
visible layer and hidden layer are called visible and hidden
neurons, respectively. Each neuron is connected with rest of
neurons within the network. Suppose a CBM over an N-
dimensional binary random vector z ∈ {−1, 1}N is defined.
Since CBM is an energy-based model, the joint probability

distribution using an Ising energy function given by

P (z) = exp (−E (z))
Z

, (1)

where E (z) is the energy function and Z is the partition func-
tion calculated by Z = ∑

z exp (−E (z)). The energy function
of the fully connected Boltzmann distribution is given by

E f (z) = −
∑

i

∑
j

Ji jziz j −
∑

i

bizi, (2)

where Ji j is the coupling strength between zi and z j , bi is the
bias parameter for each zi, representing the auxiliary field for
each spin. The dimensionless parameters bi and Ji j are tuned
during the network training process [3,17]. Note that neurons
can be divided into visible and hidden neurons, denoted by
z = (zv, zh). In thermal equilibrium, the probability of observ-
ing a visible state v is given by the Boltzmann distribution
summed over the hidden neurons given by

P f (zv ) = Z−1
f

∑
zh

exp (−E f (z)) = Z−1
f v exp (−F f (zv )), (3)

where we have defined the free energy and the corresponding
partition function of the visible neurons given by

F f (zv) = − ln
∑

zh

exp (−E f (z)), (4)

Z f v =
∑

zv

exp (−F f (zv)). (5)

The goal of training CBM is to learn the optimal coupling
strength Jvh and bias parameter bi such as to minimize the
Kullback-Libeler (KL) divergence between the model dis-
tribution P f (zv) and the empirical data distribution Q(zv ).
To train CBM, a simpler method is to maximize the aver-
age log-likelihood function (negative cross-entropy), which is
equivalent to minimize the KL divergence defined by

L f =
∑

zv

Q(zv ) lnP f (zv). (6)

The minimization can be achieved using the gradient ascent
method. In each iteration, the parameter set θ = {Ji j, bi} is
adjusted by a small step in the direction of the gradient,
namely, δθ = α∂θL f , where α is called the learning rate.
The derivative of the average log-likelihood function by using
Eq. (6) is given by

∂θL f =
∑

zv

Q(zv )∂θF f (zv) −
∑

z′
v

P (z′
v )∂θF f (z′

v), (7)

where z′
v denotes full configurations of visible neurons in the

Boltzmann distribution. The first term called positive phase
increases the probability of training data (by reducing the
corresponding free energy), while the second term called
negative phase decreases the probability of samples generated
by the model. In reality, the free energy requires summing
over full configurations of hidden neurons. The positive phase
can be calculated efficiently by obtaining the expectation of
the free energy over data distribution Q(zv ). However, the
negative phase requires calculating the expectation of the free
energy over a model distribution P (z′

v) in which full visible
configurations are required. This problem can be alleviated by
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using sampling methods such as Monte Carlo Markov chains
(MCMCs) to estimate the expectations of the free energy of
the model [27]. However, the high cost of burning in the
Markov chains renders this procedure computationally in-
feasible. Therefore, practically speaking, the fully connected
Boltzmann machine is difficult to train.

2. Restricted Boltzmann machine

A restricted Boltzmann machine (RBM) is developed by
restricting the connections of neurons only between the visible
and hidden layers, as Fig. 1(b) shows. Thus, the energy
function of the RBM can be written as

Er (z) = −
∑

v

∑
h

Jvhzvzh −
∑

v

avzv −
∑

h

bhzh. (8)

The corresponding Boltzmann distribution Pr (z) can be cal-
culated by Eq. (1). The free energy of the visible neurons is
given by

Fr (zv) = −
∑

v

avzv −
∑

h

ln

[
cosh

(∑
v

Jvhzv + bh

)]
.

(9)

Thus, the gradient with respect to Jvh, av, bh can be calculated
by Eq. (7) with replaced free energy Fr (zv) given by

∂JvhL =
∑

zv

Q(zv)zv tanh

(∑
v

Jvhzv + bh

)
− EPr (z)[zvzh],

(10a)

∂av
L =

∑
zv

Q(zv)zv − EPr (z)[zv], (10b)

∂bhL =
∑

zv

Q(zv) tanh

(∑
v

Jvhzv + bh

)
− EPr (z)[zh].

(10c)

Furthermore, although the negative phase involves evaluating
the partition function, it can be estimated by Gibbs sam-
pling from the conditional distribution [28]. In addition, the
contrastive divergence (CD) or persistent CD (PCD) method
developed for RBM is more efficient in practical training [29].

B. Quantum Boltzmann machine

The QBM is a highly promising quantum machine learning
model exploited based on quantum simulation. Given the
quantum Hamiltonian of QBM denoted with HQBM and the
inverse temperature β (here assume Boltzmann factor kB =
1), the quantum thermal Boltzmann distribution for visible
qubits [16] is given by

PQ(zv) = Tr[�v exp(−βHQBM)]

Tr[exp(−βHQBM)]
, (11)

where �v is a projector of the visible qubits |zv〉 in QBM
onto classical visible neurons zv. Equation (11) is presented by
partial tracing out the hidden qubits in the quantum Boltzmann
distribution, in which the density matrix of QBM is defined
by ρ = Z−1

Q exp(−βHQBM), with ZQ = Tr[exp(−βHQBM)] to

ensure Tr[ρ] = 1. The free energy for visible qubits |zv〉 is
given by

FQ = −β−1 ln Tr[�v exp(−βHQBM)]. (12)

To train QBM, one can maximize the average log-likelihood
function of quantum thermal distribution similar to Eq. (6):

LQ =
∑

zv

Q(zv ) ln

(
exp(−βFQ)

ZQv

)
. (13)

We adopt the bound-based projection training method [16,25].
More specifically, the lower bound of LQ denoted by L̂Q is
maximized by taking its gradient

∂L̂Q

β∂θ
=

∑
zv

Q(zv)
Tr[e−βHv∂θHv]

Tr[e−βHv ]
− Tr[∂θHQBMe−βHQBM ]

Tr[e−βHQBM ]
,

(14)

where Hv is the visible-clamped Hamiltonian. More details of
derivations of bound-based training is presented in Appendix
A. Two terms of Eq. (14) can be sampled efficiently. Hence,
the parameter can be updated through the gradient ascent
method, namely, θ (t+1) = θ (t ) + α∂θ L̂Q. Due to the clamped
Hamiltonian Hv, the positive phase is efficiently computable
on a classical Turing machine [30], except for the transverse
field parameter 
i, whose gradient vanishes under the clamp
operation. However, the negative phase is not believed to
be efficiently classically computable in general. The exact
calculation of it, such as exact diagonalization, would need
exponential complexity. In this work, we mainly focus on
efficient and approximate sampling on the negative phase via
the path integral Monte Carlo (PIMC) algorithm.

III. EFFICIENT TRAINING VIA QUANTUM MONTE
CARLO METHOD

A. General approach

We make use of the PI formulation to describe the quantum
thermal distribution. The fundamental sampling algorithm is
based on the PI formalism, which transforms the quantum
Ising Hamiltonian into a classical one by adding an extra
dimension [31,32]. Sampling from the paths with the corre-
sponding probability can provide the approximation expecta-
tion of observable. For convenience, we adopt the quantum
restricted Boltzmann machine (QRBM) in Appendix B as
an example, whose illustration is displayed in Fig. 1(c). The
Hamiltonian of QRBM is presented as follows:

Hr
QBM = −

∑
i


iσ
x
i −

∑
v,h

Jvhσ
z
vσ

z
h −

∑
v

avσ
z
v −

∑
h

bhσ
z
h .

(15)
In the context of PI formulation, the partition function of
quantum thermal distribution is given by

ZQ = Tr[e−βHr
QBM ] = lim

P→∞
Tr[e(−βHr

QBM/P)P
]

= lim
P→∞

∑
z1

· · ·
∑

zP

〈z1|e− β

P (Hdiag+Hoff-diag )|z2〉〈z2|

× e− β

P (Hdiag+Hoff-diag ) · · · |zP〉〈zP|e− β

P (Hdiag+Hoff-diag )|z1〉, (16)
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where P is the number of Trotter slices, Z = {zk, k =
1, . . . , P} is the full configuration of all N × P qubits, and
zk = {Zk

l , l = 1, . . . , N} denotes the configuration of N qubits
in the kth Trotter slices. The restricted quantum Hamiltonian
is decomposed into the diagonal term Hdiag and the nondi-
agonal term Hoff-diag. In order to approximate the partition
function, we apply Suzuki-Trotter breakup [33],

e−βHr
QBM/P = e−βHdiag/Pe−βHoff-diag/P + O((β/P)2), (17)

and obtain the approximate partition function ZP whose error
is proportional to the square of the Trotter breakup time
�τ = β/P. Hence, the approximate partition function when
the second order of �τ is neglected is given by

ZQ ≈ ZP =
∏
i,k

Ci

∑
Z

e−βHr
eff/P, (18)

where Ci =
√

1
2 sinh(2β
i/P), and Z = {z1, z2, . . . , zP} de-

notes the full configurations of qubits in the QRBM. Hr
eff

represents the effective quantum Hamiltonian given by

Hr
eff = −

P∑
k=1

⎛⎝∑
i

B̃iZk
i Zk+1

i +
∑
v,h

JvhZk
vZk

h

+
∑

v

avZk
v +

∑
h

bhZk
h

)
, (19)

with B̃i = − P
2β

ln tanh(β
i/P), Z j
i ∈ {−1,+1}. The effective

Hamiltonian is classically presented, since the qubit is col-
lapsed to the classical value. In the context of bound-based
training, 
i cannot be trained, and we treat it as a hyperpa-
rameter 
 [16], i.e., each σ x will be attached with the same
transverse field. We introduce a classical probability measure
for the visible and hidden qubits,

μ(Z) = 1

Z ′
P

e−βHr
eff/P, (20)

where Z ′
P = CNP/ZP. Thus, the expectation of observable O

over the quantum thermal distribution ρ can be obtained as
given by

Eρ[O] =
∑

Z

μ(Z)
〈zk|Oe−βHr

QBM/P|zk+1〉
〈zk|e−βHr

QBM/P|zk+1〉

=
∑

Z

μ(Z)
1

P

P∑
k=1

O(zk ). (21)

B. Efficient sampling based on continuous-time quantum
cluster Monte Carlo

A conventional spin-flipping algorithm such as local and
single-spin updating requires large MC sweeps to converge,
having strong autocorrelation between the successive configu-
rations. However, it is intolerable for the gradient training pro-
cess with a low convergent rate for each parameter updating.
In addition, the discrete-time quantum MC has suffered form
the systematic error caused by the Suzuki-Trotter approxi-
mation. Thus, we apply the state-of-the-art continuous-time
quantum cluster Monte Carlo (CT-QCMC) method to update

Discrete imaginary time 

Qubit v

Qubit h

Continuous imaginary time 
Qubit v

Qubit h

(a)

+1 -1

(b)

(I) (II)

(III) (IV)

0

1v 2v

1h 2h 3h 4h

FIG. 2. The schematic for continuous-time quantum cluster up-
dating algorithm. (a) Illustration of continuous-time quantum cluster
algorithm by taking the time limit �τ → 0 for its discrete version.
(b) The cluster configuration updating process consists of four
steps: (1) initial configuration before the update, (2) insertion cuts
randomly via Poissonian statistics, and (3) placing bonds between
neighboring qubits through Poissonian statistics, shaded area denotes
clusters and dotted bonds will be rejected. (4) Flipping clusters to +1
or −1 with equal probability. The redundant cuts (red horizontal line)
should be removed before the next updating.

the configurations nonlocally, which has been proven to be
efficient in simulating the quantum bosonic models [34–36].

CT-QCMC consists of two core steps: (1) updating the con-
figuration with the standard cluster (Swendsen-Wang) algo-
rithm, and (2) applying the Metropolis algorithm to determine
whether the updated configuration is accepted or rejected. The
schematic of CT-cluster updating algorithm is illustrated in
Fig. 2. The derivation of CT-QCMC in QRBM is presented
in Appendix C. The discrete-time spin configurations Z are
inaccessible to be stored in the CT limit. Instead, we specify
for every visible or hidden neuron only the imaginary time
locations of the kinks and the spin values just after these kinks,
denoted by

Z̃ = {[τ1(1), z1(1)], . . . , [τ1(n1), z1(n1)],

[τN (1), zN (1)], . . . , [τN (nN ), zN (nN )]},
where τi(n j ) denotes the n j th kink of one imaginary time line
of site i, and n is the number of cuts on an imaginary time
line. Therefore, the memory requirement for this CT-QCMC
algorithm is proportional to the number of cuts, namely,
O(β
N2) compared with the discrete-time representation of
O(βN2/�τ ). The memory requirement is reduced by at least
O(P/(β
)). In order to sample from the partition function in
the continuous-time limit, the discrete PI formulation is rep-
resented as the continuous one. When �τ → 0, the partition
function becomes exact, given by

ZQ =
∫

Z̃
Dz(τ ) exp

(
−

∫ β

0
dτE (z(τ ))

)
, (22)

where the classical energy function is given by

E (z(τ )) =
∑
v,h

Jvhzv (τ )zh(τ ) +
∑

v

avzv (τ ) +
∑

h

bhzh(τ ),

(23)

where Dz(τ ) denotes a Poisson measure on the space of
spin-1/2 imaginary time lines. The neighboring interaction of
spins along with the imaginary time line is vanished in the
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continuous-time limit, since the integrand is a τ -independent
item (i.e., zi(τ )2 = 1, limP→∞ B̃ = ln 
/2) such that the in-
tegral becomes a constant. The classical probability measure
now is given by

μ(Z̃) = 1

ZQ
exp

(
−

∫ β

0
dτE (z(τ ))

)
. (24)

Thus, Eq. (21) is rewritten as

Eρ[O] =
∫

Z̃
Dz(τ )μ(Z̃)

1

β

∫ β

0
O(z(τ ))dτ. (25)

More specifically, the gradient of the quantum Hamiltonian
with respect to three different parameters is given respectively
by

Eρ

[
σ z

vσ
z
h

] =
∫

Z̃
Dz(τ )μ(Z̃)

1

β

∫ β

0
dτ zv (τ )zh(τ ), (26a)

Eρ

[
σ z

v

] =
∫

Z̃
Dz(τ )μ(Z̃)

1

β

∫ β

0
dτ zv (τ ), (26b)

Eρ

[
σ z

h

] =
∫

Z̃
Dz(τ )μ(Z̃)

1

β

∫ β

0
dτ zh(τ ). (26c)

Integrals with quantum Boltzmann distribution such as
Eqs. (26a)–(26c) are best sampled by generating a config-
uration using the MCMC method. The details of the CT-
QCMC algorithm and the variance analysis are demonstrated
in Appendix C.

C. Quantum mean-field approximation

In order to further accelerate the training process, we
introduce the QMF approximation into the partition function
in the PI formulation. More specifically, we group each layer
into a cluster, and the intercluster interactions can be replaced
by the average value of the whole Trotter slice in imaginary
time, as Fig. 1(d) shows. The classical mean-field theory,
however, discards all the correlations between each cluster
(layer) and preserves only the correlations in the cluster;
therefore it cannot be applied in the QRBM, since it will
lead to the weight failing to be learned. Conversely, the QMF
approach discards only the quantum fluctuation between each
layer and retains the thermal effect (averaged spins) to learn
the parameter (weight) [26]. More formally, Eq. (19) in the
context of QMF is rewritten as

Hr
QMF = −

P∑
k=1

⎛⎝∑
i

B̃iZk
i Zk+1

i +
∑
v,h

JvhZ̄vZ̄h

+
∑

v

avZk
v +

∑
h

bhZk
h

)
, (27)

where Z̄i = 1
P

∑P
k=1 Zk

i is the averaged spin value of neuron i
along with the imaginary time line. It is important to remark
that the QMF approximation affects only the spacelike cou-
plings Jvh. In the QMF approximation, the partition function
is rewritten as

ZQMF =
∫

Z̃
Dz(τ ) exp

(
−

∫ β

0
dτEQMF(z(τ ))

)
, (28)

where the energy in the QMF approximation is given by

EQMF(z(τ )) =
∑
v,h

Jvh〈zv (τ )〉〈zh(τ )〉

+
∑

v

avzv (τ ) +
∑

h

bhzh(τ ),
(29)

with 〈zi(τ )〉 = β−1
∫ β

0 zi(τ )dτ . Similarly, the classical proba-
bility measure over the QMF approximation is given by

μQMF(Z̃) = 1

ZQMF
exp

(
−

∫ β

0
tdτEQMF(z(τ ))

)
. (30)

It is clear that the expectation of observables involving the bias
parameters av, bh is the same with the nonapproximation case.
The expectation of an observable involving the interaction
parameter Jvh, i.e., Eq. (26a), in the context of the QMF
approximation, is rewritten as

Eρ

[
σ z

vσ
z
h

] =
∫

Z̃
Dz(τ )μQMF(Z̃)〈zv (τ )〉〈zh(τ )〉. (31)

It is important to remark that the CT-QCMC framework still
works under the situation of QMF approximation. The classi-
cal energy E (z(τ )) is modified to a simplified expression un-
der the situation of QMF approximation when taking the spin
value of one imaginary time line into the averaged spin value.
Thus, accept the probability R as simplified correspondingly
from Eq. (C1). The Markov process will eventually converge
to the stationary probability μQMF(Z̃) · Z̃ when making use of
the QMF approximation. The mean value of Eq. (31) will
be obtained by averaging the observable samples, and the
statistical error of the estimate also shrinks linearly with the
MC sweeps R.

In theory, the QMF approximation is able to reach thermal
equilibrium faster compared to the exact evolution in spin
networks by choosing an appropriate cluster parameter [26].
As for the QRBM’s training, there is a possibility of rendering
the network converged to the stable and optimal state by using
less training time. In addition, when using QMF approxima-
tion, the complexity of calculating the energy function can
be reduced in continuous-time world lines. More specifically,
calculating the energy function over the imaginary time β

requires the integration over a piece-wise function for each
pair of visible-hidden sites because the sign of two neigh-
boring spins is opposite for each time cut τ . Suppose each
world line contains n time cuts on average. One could use the
MergeSort oracle to render the two time-cut lists into a sorted
one, and it would then cost 2n multiplications and (n − 1)
additions on average to obtain the integration value for two
visible-hidden pairs of slices. MergeSort costs O(n ln n) time
complexity in general. After QMF approximation, the energy
function can be calculated, requiring only one multiplication
and 2(n − 1) additions to complete the integration along with
the slice for each visible-hidden pair and the MergeSort is
not required. In fact, the number of time cuts in each slice
is O(β
). Therefore, for each interaction pair, there is ap-
proximately polynomial speedup O[(β
)2 ln(β
)] in terms of
multiplication times. The computational speedup will lead to
a larger size of neural networks compared to the CT-QCMC
algorithm.
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D. Generative algorithm for efficient training QBM

For simplicity, we first consider the QRBM as the exem-
plar. Since the restricted connections of the QRBM lie be-
tween the visible and hidden layers, the gradient of the upper
bound of the exact log-likelihood function can be deduced
from Eq. (14), given by

β−1∂θ L̂ =
∑

zv

Q(zv)Eclamp
[
∂θHr

v

] − Eρ

[
∂θHr

QBM

]
, (32)

where Eclamp[·] denotes the expectation over the clamped
quantum Boltzmann distribution, Hr

v represents the clamped
Hamiltonian of the QRBM. Furthermore, the positive phase,
i.e., the data expectation over the clamped quantum Boltz-
mann distribution for θ combined with Q(zv ), can be deduced
explicitly, which is given by

E+
[
σ z

vσ
z
h

] =
∑

zv

Q(zv )
zv b̃h(zv )

�
tanh (β�) (33a)

E+
[
σ z

v

] =
∑

zv

Q(zv )zv (33b)

E+
[
σ z

h

] =
∑

zv

Q(zv )
b̃h(zv)

�
tanh (β�), (33c)

where � =
√


2 + b̃2
h(zv ), and E+[·] denotes the positive

phase expectation. It is found that when 
 → 0, the positive
phase is the same as the classical RBM, as Eqs. (10a)–(10c)
show. The negative phase, i.e., the model expectation over
the quantum Boltzmann distribution for θ , can be obtained
by sampling from Eqs. (26a)–(26c) by using the CT-QCMC
algorithm. A more efficient expectation estimation can be ob-
tained by using the QMF approximation. The detailed training
process is presented below:

It is necessary to remark that the positive phase formulation
for semirestricted QBM has a similar form. The negative
phase can also be calculated by invoking Algorithm 1. The
difference between these two QBMs is the Hamiltonian pa-
rameter replaced with θ = {Jvi, bi}. For a fully connected
QBM, the positive phase cannot be calculated explicitly.
However, the positive phase can be obtained efficiently, since
the training set {ẑ} scales with polynomial size. The neg-
ative phase of full connected QBM is efficiently estimated
by the CT-QCMC algorithm . As a result, Algorithm 1 is
also available for these types of QBMs. As for restricted
ZZXX QBM, when using the Golden-Thompson inequality,
the clamped operation i.e., 〈zv|HZZXX

QBM |zv〉, will eliminate the
term σ x

v σ x
h and the rest of the terms in the Hamiltonian are the

same as the case of Hr
QBM. A similar mathematical operation

can be provided for a restricted ZX QBM. Therefore, the
positive phase for both more complex QBMs can be car-
ried out explicitly. More calculation details are presented in
Appendix B. However, the negative phase updating is not the
same thing as the case of QRBM, because restricted ZX and
ZZXX quantum Hamiltonians belong to the κ-local (κ � 2)
Hamiltonian, which is proven to be QMA complete [24]. The
state-of-the-art quantum Monte Carlo method still requires
exponential time to converge, which thus renders the training
process inefficient or even inaccessible. For small-scale QBM,

Algorithm 1. Efficient algorithm for QRBM training.

Input: Training set: ẑ(i), i = 1, . . . , m; learning rate α; traverse
field hyperparameter 


1: Initialization: J ← 0, a ← 0, b ← 0
2: while not converged do
3: for i = 1, . . . m do
4: for all visible and hidden qubits do
5: Choose a sample ẑ(i), calculate the positive phase

for θ by using Eqs. (33a)–(33c)
6: Obtain the negative phase for θ by sampling from

Eqs. (26a)–(26c) or Eq. (31) with an efficient method
7: Calculate the gradient of Hamiltonian parameters

∂Jvh L̂, ∂av
L̂, ∂bh L̂ by Eq. (32)

8: Jvh ← Jvh − α∂Jvh L̂ � Updating θ

9: av ← av − α∂av
L̂

10: bh ← bh − α∂bh L̂
11: end for
12: end for
13: end while
Output: J, a, b

the negative phase can be solved by exact diagonalization,
which is an exponential complexity algorithm.

IV. EXPERIMENTAL ANALYSIS

A. Small-scale data set

We first apply the standard test in Refs. [16,22] as the
benchmark. A multimode multivariate Bernoulli distribution
is capable of representing the distribution of binary images
[37], which is given by

Q(zv ) = 1

M

M∑
i=1

PB(zv; pi, si ), (34)

where

PB(zv; pi, si ) = pNv−|(zv−si )/2|
i (1 − pi )

|(zv−si )/2| (35)

is the ith mode of the Bernoulli distribution centered at
si = {s1

i , s2
i , . . . , sNv

i }. Note that |x| denotes the number of
components equal to −1 of x. The modes’ center points sv

i ∈
{+1,−1} are randomly and independently generated from a
uniform distribution for each training data. Nv is the number of
visible qubits for QBM, pi is the probability of qubit |zv〉 be-
ing aligned with sv

i . Each single-mode Bernoulli distribution is
in fact a factorizable multivariate Bernoulli distribution. Here,
we adopt M modes and equal weight to compose the ultimate
equal-weighted artificial data set. In the experiments, pi is set
to be 0.9 identically for each mode. Each data set contained
1000 training examples. Generally, larger M indicates a more
complex data distribution. The artificial data generated by
multi-mode Bernoulli distribution is typical for illustrating the
learning ability of the machine learning model in a small-scale
data set.

To measure the learning ability of the machine learning
model, we adopt the KL divergence as the metric. The KL
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divergence is given by

KL = L − Lmin =
∑

zv

Q(zv ) ln
Q(zv )

P (zv)
. (36)

The KL value is non-negative and reaches the minimum value
0 when two distributions are identical.

In the experiment, the restricted ZX, ZZXX and semi-
restricted QBMs and QRBM are tested by using the artificial
data set compared to RBM. The number of visible and hidden
neurons is set to be Nv = 8 and Nh = 2, respectively. The
transverse field parameter is treated as a hyperparameter and
is set to be 
 = 2 [16]. The QRBM is trained via Algorithm
1. The positive phase of ZX and ZZXX QBMs adopts the
equations in Appendix B. The negative phase updating is
also executed by the CT-QCMC method where the respective
Hamiltonian is changed but the concrete algorithm framework
is aligned with Algorithm 1. The other model parameters such
as Jvh, av, bh are tunable and optimized in the training process.
Figure 3 shows the performance of QBMs and CBM.

It is found that QRBM presents the best performance
compared to other machines and reaches the minimum KL
divergence, KL ≈ 0.30. Moreover, all QBMs are superior to
CBM under the same training data, which demonstrates that
QBMs preserve a more powerful learning ability. Restricted
ZX (RZX) and ZZXX (RZZXX) QBM nearly have the same
performance, probably because they fall into the same com-
plexity class. In principle, RZX and RZZXX QBMs should
have a smaller KL value than QRBM, since the latter is easier
to be simulated by a classical Turing machine. However, in
the context of a bound-based training example, their perfor-
mance is weakened, perhaps due to the clamp operation. The
converged KL value of a semirestricted QBM (QSBM) is
only larger than the QRBM but less than other models, which
illustrates that restrictions are not necessarily required in BM
when using bound-based training. Here, QRBM is trained by
QMF-approximated and CT-QCMC algorithms, respectively.
Both algorithms reach the optimal KL distance indicated by
Fig. 3(a) by using the appropriate MC sweeps. In particular,
we find that QMF-approximated algorithm exhibits slightly
faster convergence in the early stage of training. This advan-
tage is gradually decreased compared to the CT-QCMC train-
ing algorithm. Nevertheless, the QMF-approximated training
algorithm still improves the KL distance with the increase of
iterations. Moreover, we calculate the difference of logarithm
of partition function between QMF, CT-QCMC, and their
exact value (i.e., ln Ẑ − ln Z) to demonstrate their convergence
rate, as Figs. 3(b) and 3(c) shows. Note that the exact value is
available for only a small-scale data set. Here, the estimated
partition function of QMF and CT-QCMC trained QRBM are
calculated by annealed importance sampling (AIS) [38,39],
in which we used 103 βk spaced uniformly from 0 to 1.
In Fig. 3(b), the difference and their variance approaches 0
when the AIS runs increase, which implies that more runs are
required to estimate the exact value. It is found that 100 AIS
runs are enough to estimate the partition function in a small-
scale data set. In Fig. 3(c), we find that the estimated value
approaches the exact value, implying that two algorithms
are improving the QRBM’s performance with the increase
of iterations. In particular, the QMF-approximated algorithm
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FIG. 3. Performance illustration of various QBMs compared to
RBM. The parameters are set as follows: 
 = 2.5, M = 8, Nv =
8, Nh = 2. The MC sweeps is set to be 103 of each iteration and the
learning rate α = 10−3. (a) KL distance is the average value of 100
repeated experiments. (b) Comparison of QMF approximation and
CT-QCMC algorithm in terms of ln Ẑ − ln Z when given different
AIS runs. ln Z is calculated by a brute-force algorithm, and the vari-
ance is ±3σ [the same with (c)]. (c) Tracking of partition function
during training process with QMF and CT-QCMC algorithm. Each
record is estimated over 100 AIS runs.

has a smaller difference when iterations are less than 10,
which indicates that the QMF algorithm perseveres at a faster
convergence rate.

As a result, the QMF approximation is more efficient and
it requires fewer iterations to reach a suboptimal KL distance,
although a larger number of iterations is required to reach the
optimal KL distance. In addition, although this superiority is
not significant in a small data set, the experimental results still
imply that the QMF approximation is feasible to train QBMs.

B. Large-scale data set

In order to further illustrate the efficiency of QMF al-
gorithm, we train QRBM via algorithm 1 and its QMF
approximation in the MNIST data set. MNIST is a well-
known data set consisting of 0–9 handwritten digital images.
Each image is composed of 28 × 28 = 784 pixels, and each
pixel can be represented by a binary neuron of BM. The
data set consists of 6 × 104 training and 104 testing images
and their corresponding labels. However, the original data
set requires 784 visible qubits to encode the data, which is
expensive for NISQ devices. Moreover, although the proposed
algorithm is able to improve the training efficiency, it is
still computationally expensive, preventing us from training
784 qubits. Therefore, before training the large-scale images
set, the data dimension requires it to be reduced to adapt
to our experimental settings. We first employ the principal
component analysis (PCA) to analyze the data redundancy,
which is achieved through finding a lower-dimensional repre-
sentation of the data by using an orthogonal transformation to
project the data onto uncorrelated directions [40]. It is found
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FIG. 4. t-SNE visualization of image data with 50 dimensions
reduced by PCA. The learning rate of t-SNE is set to be 500 and
the perplexity is 30. Ten colors map ten different categories of
handwritten digital images.

that nearly 85% variation of the data information is retained
when the dimension reduces to 50, which demonstrates that a
reduced image set will not decrease network performance dra-
matically. We visualize the dimension reduced training data
by means of the t-distributed stochastic neighboring entities
(t-SNE) algorithm [41], as Fig. 4 shows. The image data is
well clustered into 10 categories, which indicates that nearly
50 dimensions are a feasible choice for our model training.
We adopt the static binarization to process the image set.
Here, we utilize PCA only to illustrate the feature redundancy
and not to change the basis before feeding the data to the
network. Our dimension-reduced data is achieved by using
a variational auto-encoder which will not change the data
basis and is proven to possess better performance in terms of
dimension reduction [42]. The dimension-reduced image will
be regarded as input to train our quantum model. The final
reconstructed images by QRBM are reshaped into the original
size through cubic interpolation for convenient comparison
with the original images.

We adopt different Nv to demonstrate the reconstruction
performance of QRBM, where QRBM is trained by CT-
QCMC and QMF-approximated algorithms, respectively. We
do not analyze the performance of RBM and leave the com-
parison in the classification task. To measure the performance
of BM quantitatively, we calculate the estimation value of
the logarithm of the quantum partition function by population
annealing (PA) [25,43], and the ultimate exact value of QRBM
is not calculated due to expensive computation costs [44].
We also do not estimate the log-likelihood function, since
it requires calculating the quantum probabilities for a large
number of latent configurations, even for a medium number of
hidden qubits, which is also computationally expensive. The
PA method is employed to accelerate CT-QCMC and QMF
algorithms. We have used the number momentum method
with momentum equal to 0.95 and batch normalization [45] to
increase the speed of learning. The batch size is chosen as 100.
Note that other batch sizes present similar results, and small

(a) Recontructed images: CT-QCMC algorithm trained QRBM

(b) Recontructed images: QMF-approximated algorithm trained QRBM

FIG. 5. Reconstructed MNIST samples on the test set. The size
of QRBM is 36 × 36. Total iterations are 150 and 
 = 2. In ex-
periments (a) and (b), the number of population replicas is 2000.
Ten and five MCMC sweeps are considered for (a) and (b) per
gradient update. The total reconstruction error for (a) and (b) is 0.075
and 0.052, respectively. Yellow boxes highlight the obvious better
reconstruction.

batch sizes only result in less stable learning curves. Figures 5
and 6 display a proportion of reconstructed MNIST samples
from 0 to 9 handwritten digital images by QRBM (even and
odd columns are original and reconstructed images, respec-
tively). To analyze the convergence rate, the partition function
of both algorithms is estimated under different MC sweeps, as
Fig. 7 shows. We do not report the estimated partition function
during the training process due to the expensive computation
cost.

It is found that two algorithms are capable of efficiently
training QRBM in large-scale data sets, and the QMF-
approximated algorithm shows better performance in terms
of reconstruction error in Figs. 5 and 6. In particular, the ad-
vanced performance of the QMF approximation is magnified
in large-size QRBM and it requires fewer MC sweeps to reach
the optimal partition function from Fig. 7(b). The variance
of the QMF approximation is also smaller compared to the
CT-QCMC algorithm, although large enough MC sweeps will
render both algorithms converged to the ultimate partition
function. In a relatively small network, the partition function
of QMF still shows a slightly faster convergence rate than

(a) Recontructed images: CT-QCMC algorithm trained QRBM 

(b) Recontructed images: QMF-approximated algorithm trained QRBM

FIG. 6. Reconstructed MNIST samples on the test set. The size
of QRBM is 81 × 81. Total iterations are 100 and 
 = 2. In ex-
periment (a), 2500 population replicas and eight MCMC sweeps
are considered for each gradient evaluation. In experiment (b), the
number of population replicas is 1000, and MCMC sweeps are four
per gradient evaluation. The total reconstruction error for (a) and
(b) is 0.0312 and 0.0213, respectively.
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FIG. 7. Logarithm of partition function comparison between CT-
QCMC and QMF approximation algorithm under different MC
sweeps. Each estimation value uses 14 500 annealed βk spaced
uniformly in [0,1] and 3000, 1500 population replicas are considered
in (a) and (b). The variance is ±3σ .

CT-QCMC in Fig. 7(a). As a result, the QMF approximation
is able to accelerate the QRBM’s training and improves the
quality of generated images.

To achieve the classification by using QRBM, it is required
that a top supervised learning layer be added to complete the
task, including the following: (1) The QRBM first learns the
optimal model parameters via Algorithm 1 by using training
data and adopts the one-hot encoding method to encode the
training labels. (2) Feed the training and test images into the
visible qubits, and obtain encoded data by hidden qubits. (This
step is equivalent to a dimensions reduction.) (3) Feed the
QRBM-encoded data and the one-hot encoded labels into the
softmax learner (both for training and testing data). (4) Train
the softmax learner to obtain prediction (classification) values
of training data and test data. Note that steps (3) and (4) are the
standard method of using BM to achieve the classification task
[2]. A trained BM is an encoder to complete the feature ex-
traction. This task is different from the discriminative learning
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FIG. 8. QRBM performance test under different parameters.
3000 replicas and eight MCMC sweeps per gradient evaluation
are used. Momentum is 0.9, and α = 10−3. (a) Error during train-
ing QRBM with CT-QCMC compared to training with QMF-
approximated algorithm. Nv = 50, Nh = 10. (b) Accuracy of training
set of QRBM with different visible qubits Nv = 70, 60, 50, 40 and
the same hidden qubits Nh = 10. The error bars are the variance of
100 repeated experiments with QMF-approximated Algorithm 1.

using QRBM in which the conditional distribution is required
and is inaccessible when using bound-based training [16].

We depict the �2-norm error of two algorithms during train-
ing QRBM in Fig. 8(a). As can be seen, although the error of
the QMF-approximated algorithm is larger than the exact one,
it can be neglected at the final stage of training. Therefore, we
are convinced that QMF-approximated Algorithm 1 is feasible
and efficient for the classification task. Furthermore, in order
to find the optimal hyperparameter of 
 in the classification
task, we test accuracy on the training set with different 


in Fig. 8(b) for different visible qubits (Nv = 70, 60, 50, 40)
via a QMF-approximated training algorithm, and it is found
that better performance is displayed at different 
 values.
In general terms, 
 ∈ [1, 3] exhibits better performance for
different visible qubits. In addition, a larger number of visible
qubits shows better classification accuracy, which is capable
of a more powerful representation ability. Note that Nh = 10
is chosen because a large number of hidden units will lead to
overfitting. In practice, the accuracy of the independent test
set, however, represents the generalization ability of the ma-
chine learning model. Thus, we further test both the training
and test accuracy with the QMF-approximated algorithm on
the training and test sets, respectively. RBM has the same
number of neurons as a comparison. The training accuracy
and test accuracy for QRBM and RBM are presented in
Table I.

It is found that QRBM has a higher training and test
accuracy than RBM. However, we can see that when the
number of visible neurons increases, the test accuracy is not
increased accordingly and the training accuracy is nearly the
same, which implies that less qubits have more powerful
generalization ability. Therefore, we can conclude that when
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TABLE I. Training and test accuracy for RBM and QRBM.

RBM QRBM

Training accuracy Test accuracy Training accuracy Test accuracy

Nv = 70 0.828 0.865 0.856 0.878
Nv = 50 0.825 0.881 0.850 0.895
Nv = 40 0.822 0.892 0.848 0.906

Nv = 70, 50, the model is overfitting. By decreasing the num-
ber of visible qubits, the overfitting problem can be reduced
efficiently. In particular, the QRBM trained by Algorithm
1 in large-scale data set presents better performance than
RBM, which indicates that our efficient training algorithm
is feasible to QRBM. More significantly, based on general
PI formulation, the negative phase is efficiently sampled via
a state-of-the-art QMC method. From this point of view,
Algorithm 1 provides a general scheme for efficiently training
varieties of QBMs. Although the most advanced machine
learning model can reach 98% accuracy by using a convo-
lution neural network [46], our algorithm still presents insight
into efficiently solving the problem of QML training by means
of quantum statistical mechanics. In addition, there may be a
more efficient approach to the positive phase updating process
than just training an approximate upper bound L̂. Therefore,
mathematically, further approximation or approaching of this
upper bound may improve the performance of the QRBM.
Moreover, our training algorithm is capable to be extended
into a fully quantum situation where the training data is
accessed by a quantum memory, which will bring a quadratic
speedup for our algorithm [8]. In particular, QBMs considered
in this work are known to be universal for full quantum
computing: with the appropriate parameter adjustments, these
machines can execute any algorithm that a general-purpose
quantum computer can perform.

V. CONCLUSIONS

In this paper, we have proposed an efficient algo-
rithm for training QBMs based on the CT-QCMC method
and its QMF approximation. We have considered various
types of QBMs and provided the analytical expressions
for their positive phase when applying the bound-based
approximation. The proposed algorithm is capable of effi-
ciently training various QBMs by integrating their analytical
expressions of the positive phase. In particular, we have
made use of the QMF approximation to further accelerate the
training process of the CT-QCMC algorithm. We have tested
the performance of QBMs on a small-scale artificial data
set. Compared with RBM, QRBM trained by CT-QCMC and
QMF-approximated algorithms presents the most advanced
learning ability in terms of KL divergence. By calculating the
partition function, the QMF approximation shows a slightly
faster convergence compared to the CT-QCMC algorithm. To
validate the efficiency of our algorithm on a large-scale data
set, we have conducted the experiments on the MNIST data
set and analyzed the reconstructed images of both algorithms.
Moreover, we have estimated their partition function under
different MC sweeps. It is found that the QMF approximation
is able to train QRBM more efficiently and have a better

reconstruction quality. Furthermore, the classification experi-
ment is conducted to demonstrate the application of QRBM on
supervised learning. The training and test accuracy imply that
QMF-trained QRBM has a higher learning and generalization
ability compared to RBM. Based on our training algorithm,
varieties of QBMs can be implemented on quantum annealers
as generative models to learn the MNIST data or other more
complex tasks, such as to show quantum supremacy. Our
work provides insight into the practical application of QML
algorithms by making use of the quantum statistical method.
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APPENDIX A: BOUND-BASED TRAINING FOR QBMs

The consistency of QBMs with CBMs is achieved by
treating the quantum Hamiltonian HQBM as a diagonal matrix.
Therefore, the energy function E (z) is obtained by measuring
the quantum Hamiltonian in the basis of visible and hidden
qubits, namely, E (z) = 〈z|HQBM|z〉. However, when the quan-
tum Hamiltonian has the off-diagonal terms, the ground states
are not easily obtained. Neurons are in a superposition state,
and their tensor products compose the ground state. From this
point, the diagonal quantum Hamiltonian is a special case
of nondiagonal quantum Hamiltonian. More generally, the
quantum Hamiltonian of a QBM can be written as

HQBM = −Hoff −
∑
i, j

Ji jσ
z
i σ z

j −
∑

i

biσ
z
i , (A1)

where Hoff is composed of terms that are not diagonal in
the computational basis, σ z is the Pauli-z matrix. It is the
noncommutation effect, i.e., [HQBM, ∂θ HQBM] �= 0, that leads
to the quantum fluctuations in a QBM. In fact, there are
different nondiagonal terms in HQBM, and we present some
general cases in Appendix B.

The quantum thermal distribution of visible qubits can be
rewritten in terms of free energy with Eq. (12) as

PQ(zv ) = Z−1
Qv exp(−βFQ), (A2)

where ZQv = Tr[exp(−βFQ)]. The goal of QBM is to adjust
the Hamiltonian parameters θ = {Jvh, 
i, av, bh} to render the
quantum thermal distribution PQ(zv) indistinguishable from
Q(zv ).

The gradient of LQ with respect to Hamiltonian param-
eters θ can be calculated by substituting FQ into Eq. (7)
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TABLE II. The various quantum Hamiltonians to construct the
QBM.

Quantum Boltzmann machine

HQBM = −∑
i 
iσ

x
i − ∑

i, j Ji jσ
z
i σ z

j − ∑
i biσ

z
i

Hs
QBM = −∑

i 
iσ
x
i − ∑

v,i Jviσ
z
vσ

z
j − ∑

i biσ
z
i

Hr
QBM = −∑

i 
iσ
x
i − ∑

v,h Jvhσ
z
vσ

z
h − ∑

v avσ
z
v − ∑

v bhσ
z
h

HZZXX
QBM = −∑

i 
iσ
x
i − ∑

i biσ
z
i − ∑

v,h Jvh

(
σ z

vσ
z
h + σ x

v σ x
h

)
HZX

QBM = −∑
i 
iσ

x
i − ∑

i biσ
z
i − ∑

v,h Jvh

(
σ z

vσ
x
h + σ x

v σ z
h

)

given by

∂LQ

β∂θ
=

∑
zv

Q(zv )
Tr[�v∂θe−βHQBM ]

Tr[�ve−βHQBM ]
− Tr[∂θHQBMe−βHQBM ]

Tr[e−βHQBM ]
,

(A3)

where Tr[∂θe−βHQBM ] = −βTr[∂θHQBMe−βHQBM ] is applied.
However, the exact negative log-likelihood minimization is
impractical, since the positive phase of Eq. (A3) (i.e., the
gradient of free energy for visible qubits) requires efficient
sampling from a quantum average of a projector using Gibbs
ensembles. This challenge can be mitigated by replacing the
projection measurement with a positive operator value mea-
surement (POVM) [18], with which it is possible to train these
off-diagonal elements, though the prior knowledge about data
distribution is necessarily provided to derive a POVM and
thus is generally difficult in practice [22]. Here, we adopt the
bound-based projection training method [16,25], by which the
gradient of free energy for visible qubits can be efficiently
sampled. More formally, the visible-clamped free energy Fv

Q
is given by

FQ � Fv
Q = −β−1 ln Tr[exp (−βHv )], (A4)

where Hv = 〈zv|HQBM|zv〉, and we have applied the inequal-
ity Tr[�v exp(−βHQBM)] � Tr[exp (−βHv )] derived with the
Golden-Thompson inequality [47]. Thus, the lower bound of
LQ is given by

LQ � L̂Q =
∑

zv

Q(zv ) ln

(
exp

(−βFv
Q

)
ZQv

)
. (A5)

We maximize the lower bound L̂Q by using the gradient over
θ , which is exactly Eq. (14).

APPENDIX B: GRADIENT OF FREE ENERGY
IN POSITIVE PHASE

The quantum Boltzmann machine can be constructed by
different types of quantum Hamiltonians. The off-diagonal
component in a quantum Hamiltonian can enhance the expres-
sive power of the QBM. For instance, taking Hoff to be com-
posed of tunable σ x

i and σ x
i σ x

j terms renders the ground state
of Hamiltonian QMA complete (i.e., universal for adiabatic
quantum computation). In Table II, we list the representative
Hamiltonians among which the restricted ZZXX model and
the restricted ZX model are believed to be QMA complete.

The restriction means that the σ z
vσ

z
h and σ x

v σ x
h terms in

the ZZXX model and the σ z
vσ

x
h and σ x

v σ z
h terms in the ZX

model share the same interaction strength Jvh. Note that the
ZX model cannot be rewritten as the form of Eq. (A1). Here
we do not consider the XY model, which will lead to the
vanishing of gradient in the positive phase.

For a restricted transverse Ising Hamiltonian, let Hoff =∑
i 
iσ

x
i . Moreover, we restrict the interactions of qubits

in the visible-hidden layer. The clamped quantum restricted
Boltzmann distribution with Ising model Hr

QBM is given by

Hr
v = −

∑
h


hσ
x
h −

∑
v,h

Jvhzvσ
z
h −

∑
v

avzv −
∑

h

bhσ
z
h

= −
∑

h

[

hσ

x
h +

(∑
v

Jvhzv + bh

)
σ z

h

]
−

∑
v

avzv

= −
∑

h

(

hσ

x
h + b̃h(zv)σ z

h

) −
∑

v

avzv, (B1)

where the matrix elements of the clamped Hamiltonian with
respect to the Pauli-x matrix σ x for visible qubits (nondi-
agonal terms) are zeros since the nondiagonal terms satisfy
〈zv|σ x

v |zv〉 = 0. The function of Hamiltonian clamping is to
render the visible qubits |zv〉 clamps to its classical data
zv, namely, 〈zv|σ z

v |zv〉 = zv . In the previous, we have known
the eigenstate of the quantum Ising Hamiltonian HQBM is
the superposition of |zvzh〉. The eigenspace of the clamped
Hamiltonian Hv is thus tensored by the hidden eigenstate
|zh〉. As a result, the operation of Hamiltonian clamping is
semi-quantum mechanical, since it only leaves the hidden
qubits quantum mechanical. Due to the restricted connections
between the hidden and visible qubits, the density matrix of
the clamped Boltzmann distribution for QRBM is simplified
and can be presented explicitly as follows:

ρclamped = e−βHr
v

Tr[e−βHr
v ]

, (B2)

where

e−βHr
v = exp

{
β

∑
h

[

hσ

x
h + b̃h(zv)σ z

h

] + β
∑

v

avzv

}

= exp(βaT z)
∏

h

exp
[
β
(

hσ

x
h + b̃h(zv)σ z

h

)]
. (B3)

Since the hidden qubits are independent from each other, the
clamped density matrix for a single hidden qubit |h〉 is thus the
multiplicative of the single quantum Boltzmann distribution.
Thus, the clamped Boltzmann expectation over one single
hidden qubit is given by

Eclamp
[
σ z

h

] = Tr
[
ρclamped(|h〉)σ z

h

]
= exp(βaT z)Tr

{
exp

[
β
(

hσ

x
h + b̃h(zv)σ z

h

)]
σ z

h

}
exp(βaT z)Tr

{
exp

[
β
(

hσ

x
h + b̃h(zv)σ z

h

)]}
=

2b̃h(zv) sinh
(
β

√

2

h + b̃2
h(zv )

)
/

√

2

h + b̃2
h(zv)

2 cosh
(
β

√

2

h + b̃2
h(zv)

)
= b̃h(zv )√


2
h + b̃2

h(zv )
tanh

(
β

√

2

h + b̃2
h(zv)

)
. (B4)
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The gradient over bh can be calculated by Eq. (14) combined
with the data distribution Q(zv ). The main difference of
Eq. (B4) compared with the classical RBM in terms of the gra-
dient updating for the bias item is the traverse field magnitude

h in the QRBM. The visible qubits now are reduced to the
classical case, since the clamp operation projects the qubits
to the classical data. And we also assume the visible qubits
are independent from each other. Thus, the expectation over
one single visible qubits is zv, and the gradient of av can also
be calculated exactly by Eq. (14), which is the same as with
the classical case, i.e., the first term of Eq. (10b). Simi-
larly, the expectation of σ z

vσ
z
h over the clamped Boltzmann

distribution with respect to one visible and hidden qubit is
given by

Eclamp
[
σ z

vσ
z
h

] = Tr
[
ρclampedzvσ

z
h

]
= zv b̃h(zv )√


2
h + b̃2

h(zv)
tanh

(
β

√

2

h + b̃2
h(zv)

)
.

(B5)

Therefore, we have finished the expectation calculation over
the clamped Boltzmann distribution with respect to three
different parameters for QRBM. Combined with the empirical
data distribution Q(zv), we can deduce the equation of the
positive phase explicitly.

For restricted ZZXX QBM, the positive phase involves
calculating the gradient of the visible-clamped free en-
ergy. The visible-clamped quantum ZZXX Hamiltonian is
given by

HZZXX
v = 〈zv|HZZXX

QBM |zv〉 = Hr
v . (B6)

In Eq. (B6), we decompose the parameter bi into two bias
terms av, bh with respect to visible and hidden qubits. The
clamp operation transforms the restricted ZZXX Hamiltonian
into the semiquantum one similar as with the restricted trans-
verse Hamiltonian. Thus, the deduction for the gradient of
the free energy over a clamped Boltzmann distribution is the
same with the case of QRBM. That is, the expectation of
σ z

h , σ z
vσ

z
h , σ z

v over the clamped Boltzmann distribution can be
represented by Eqs. (B4) and (B5) and zv .

As for the restricted ZX model, the clamped quantum
Hamiltonian is given by

HZX
v = 〈zv|HZX

QBM|zv〉
= −

∑
h


hσ
x
h −

∑
v

avzv −
∑

h

bhσ
z
h −

∑
v,h

Jvhzvσ
x
h

= −
∑

h

[(

h +

∑
v

Jvhzv

)
σ x

h + bhσ
z
h

]
−

∑
v

avzv

= −
∑

h

(
γ̃h(zv )σ x

h + bhσ
z
h

) −
∑

v

avzv. (B7)

Thus, the clamped quantum Boltzmann distribution can be
represented as the density matrix

ρZX
clamped = e−βHZX

v

Tr[e−βHZX
v ]

. (B8)

It is necessary to remark that the independence of visible
and hidden qubits which leads to the density matrix be de-
composed into the multiplicative of a single hidden qubit’s
density matrix. The expectation of σ z

h over the clamped ZX
Boltzmann distribution is given by

EρZX
clamped

[
σ z

h

] = Tr
[
ρZX

clampedσ
z
h

]
= γ̃h(zv)√

b2
h + γ̃ 2

h (zv)
tanh

(
β

√
b2

h + γ̃ 2
h (zv)

)
.

(B9)

Similarly, the expectation of σ z
vσ

z
h over the clamped ZX

quantum Boltzmann distribution is given by

EρZX
clamped

= Tr
[
ρZX

clampedzvσ
z
h

]
= zv γ̃h(zv)√

b2
h + γ̃ 2

h (zv)
tanh

(
β

√
b2

h + γ̃ 2
h (zv)

)
. (B10)

The expectation of σ z
v is the same with the classical case, i.e.,

EρZX
clamped

[σ z
v ] = zv . It turns out that the positive phase of re-

stricted ZX QBM is similar to the QRBM. Next, by combining
the empirical data distribution, the positive phase of restricted
ZX QBM can be obtained explicitly and efficiently. It is
important to remark that the negative phase of these models,
especially for the ZX and ZZXX models, is not similar to that
with the QRBM. The former is proven to be QMA complete.
This is a complexity class defined by a quantum computation
machine, which is widely believed to be harder than NP
problems. Although there is a high efficiency of CT-QCMC
for Ising models, it is still hard to converge in polynomial
time. By using an adiabatic algorithm in a quantum computer,
these models may be solved efficiently.

APPENDIX C: CT-QCMC ALGORITHM DETAILS

Here we demonstrate the details of CT-QCMC for QRBM
training. Taking �τ → 0 in the context of CT-QCMC means
P → ∞, the consecutive spins with the same value along
with the imaginary-time direction (world line), e.g., Zk

i =
Zk+1

i = · · · = Zk+S
i , form continuous segments Z̄k+t

i of length
t = S�τ . Since we take these time limits implicitly, we will
consider these world line segments as the dynamical objects
in a MC algorithm and not the individual spins at discrete
imaginary times. The spin-flips between two segments with
different spin value is called kinks or cuts. As the next step
we apply the scheme of the Swendsen-Wang update method
[48]. In this scheme, neighboring spins in the world line of one
site i, for instance, Zk

i and Zk+1
i , are connected with a certain

probability pi = 1 − exp(−2�τ B̃) = 1 − 1
2�τ
 + O(�2τ ).

Connected neurons of visible-hidden qubits (neighboring neu-
rons) in the space direction, for instance, Zk

v and Zk
h are placed

with a bond with a probability pvh = 1 − exp (−2�τJvh) =
1
2�τJvh + O(�2τ ). These spin connection probabilities are
now translated into probabilities for cutting and bonding
segments.

In the context of a continuous-time limit, the probability to
place cuts (not connecting) between neighboring pairs of one
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site i along with the imaginary time line is lim�τ→0(1 − pi ) =
lim�τ→0 1/2�τ
, which amounts to cutting the segments of
constant spins into shorter ones by inserting cuts randomly
distributed on the imaginary time line according to the uni-
form probability density 1/2
. The probability to place a
bond between two segments of neighboring neurons with a
nonvanishing time overlap (e.g., Z̄t1+t2

v and Z̄t3+t4
h with over-

lapping time [t1, t2] ∩ [t3, t4] �= 0) is lim�τ→0
1
2�τJvh, which

means that these bonds bind two overlapping neighboring
segments with density 1/2Jvh if they have the same spin value.
The generation of the uniformly and randomly distributed cuts
or bond times with a density forms a homogeneous Poisson
process.

In Sec. III, we demonstrate the CT-QCMC algorithm for
solving the expectation of observable. When using MCMC
method, we need to compute accept probability between the
updated configuration and the original configuration such
as to determine whether the updated configuration is ac-
cepted or rejected according to the Metropolis rule, which is
given by

R = exp

(
−

∫ β

0
�E (z(τ ))dτ

)
, (C1)

where �E is the energy difference between the original and
updated configuration. Starting form an arbitrary distribution,
the Markov chain will converge exponentially to a stationary
distribution Z̃ · μ(Z̃) after quantities of MC sweeps according
to the Metropolis updating rule. Finally, the expectation of
observable Eq. (25) will be estimated by the average of R MC
sweeps,

Eρ[O] ≈ 1

R

R∑
r=1

1

β

∫ β

0
O(r)(z(τ ))dτ, (C2)

where O(r)(z(τ )) denotes the rth observable estimation by
using the rth sample. According to the central limit theorem,
as long as the number of MC sweeps is large enough the
estimate of Eq. (C2) will be normally distributed around the
exact value of Eq. (25) with statistical error (variance) given
by

�O =
√

Var[O](2τa + 1)

R
, (C3)

where Var[O] is the variance of observable O, and the in-
tegrated autocorrelation time τa is a measure of the auto-
correlations of the sample sequences O(r)(z(τ )). In practice,
the autocorrelation time will be burnt out in CT-QCMC to
assure high independence of the successive samples. In gen-
eral, the MC methods can solve the observable expectation
with polynomial time as long as τa increases not faster than

polynomially with the number of qubits N . The detailed CT-
QCMC algorithm is demonstrated in Appendix C.

Here we present the detailed realization framework of this
algorithm as follows:

Algorithm 2. CT-QCMC: Continuous-time quantum cluster
Monte Carlo algorithm for QBM.

Input: N, β, 
, n
Output: Expectation estimation of observables σ z

vσ
z
h , σ z

v , σ
z
h .

1: function METRO Z̃old, Z̃upd, β

2: Calculate �E by Eq. (23) or �EQMF by Eq. (29)
3: u ← uniform random sampling from [0,1]
4: if R � u then � accept probability satisfied
5: returnZ̃upd

6: else
7: return Z̃old

8: end if
9: end function

10:
11: function CT-QC Z̃old, β, n
12: for every qubit do
13: Remove all redundant cuts
14: Generate new cuts by selecting the cut times τ ∈ [0, β )

uniformly and randomly with density 1/2


15: end for
16: for every pair of visible-hidden qubits do
17: Generate potential bond times τ ∈ [0, β ) uniformly and

randomly with density 1/2Jvh

18: for each bond time τ do
19: if they have the same spin value at τ then
20: Insert a bond for the two segments at τ

21: end if
22: end for
23: end for
24: Identify clusters of bonded segments
25: for every cluster do
26: Flip the spin on all the segments in the cluster with

probability 1/2
27: end for
28: return the updated configuration Z̃upd

29: end function
30:
31: Randomly initialize configuration: Z̃
32: Z̃old ← Z̃
33: for r from 1 to R do
34: Configuration updating: Z̃upd ← CT-QC(Z̃old, β, n)

35: Metropolis updating: Z̃
(r)
upd ← METRO(Z̃old, Z̃upd, β)

36: Z̃old ← Z̃
(r)
upd

37: end for
38: Observable Expectation approximated by using Eq. (C2)
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