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Although many different entanglement measures have been proposed so far, much less is known in the
multipartite case, which leads to the previous monogamy relations in the literature being not complete. We
establish here a strict framework for defining the multipartite entanglement measure (MEM): apart from
the postulates of the bipartite measure, i.e., vanishing on separable measures and nonincreasing under local
operations and classical communication, a complete MEM should additionally satisfy the unification condition
and the hierarchy condition. We then come up with a complete monogamy formula for the unified MEM (an
MEM is called a unified MEM if it satisfies the unification condition) and a tightly complete monogamy relation
for the complete MEM (an MEM is called a complete MEM if it satisfies both the unification condition and the
hierarchy condition). Consequently, we propose MEMs which are multipartite extensions of entanglement of
formation (EoF), concurrence, tangle, Tsallis q entropy of entanglement, Rényi α entropy of entanglement, the
convex-roof extension of negativity, and negativity. We show that (i) the extensions of EoF, concurrence, tangle,
and Tsallis q entropy of entanglement are complete MEMs; (ii) multipartite extensions of Rényi α entropy
of entanglement, negativity, and the convex-roof extension of negativity are unified MEMs but not complete
MEMs; and (iii) all these multipartite extensions are completely monogamous, and the ones which are defined
by the convex-roof structure (except for the Rényi α entropy of entanglement and the convex-roof extension
of negativity) are not only completely monogamous but also tightly completely monogamous. In addition, as a
byproduct, we find a class of states that satisfy the additivity of EoF. We also find a class of tripartite states one
part of which can be maximally entangled with the other two parts simultaneously according to the definition of
mixed maximally entangled state (MMES) in Li et al. [Z. Li, M. Zhao, S. Fei, H. Fan, and W. Liu, Quantum Inf.
Comput. 12, 0063 (2012)]. Consequently, we improve the definition of maximally entangled state (MES) and
prove that the only MES is the pure MES.
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I. INTRODUCTION

Entanglement is recognized as the most important resource
in quantum information processing tasks [1]. A fundamental
problem in this field is to quantify entanglement. Many entan-
glement measures have been proposed for this purpose, such
as the distillable entanglement [2], entanglement cost [2,3],
entanglement of formation (EoF) [3,4], concurrence [5–7],
tangle [8], relative entropy of entanglement [9,10], negativity
[11,12], geometric measure [13–15], squashed entanglement
[16,17], conditional entanglement of mutual information [18],
three-tangle [19], generalizations of concurrence [20–22],
sensation level (SL) invariant multipartite measure of entan-
glement [23–28], and α-entanglement entropy [29]. However,
apart from the SL invariant measures and the α-entanglement
entropy, all other measures are either only defined in the bi-
partite case or discussed with only the axioms of the bipartite
case.

*guoyu3@aliyun.com
†godyalin@163.com

One of the most important issues closely related to the
entanglement measure is the monogamy relation of entangle-
ment [30], which states that, unlike classical correlations, if
two parties A and B are maximally entangled, then neither of
them can share entanglement with a third party C. Entangle-
ment monogamy has many applications not only in quantum
physics [31–33] but also in other area of physics, such as no-
signaling theories [34,35], condensed-matter physics [36–38],
statistical mechanics [31], and even black-hole physics [39].
Particularly, it is the crucial property that guarantees secure
quantum key distribution [30,40]. An important basic issue in
this field is to determine whether a given entanglement mea-
sure is monogamous. Considerable efforts have been devoted
to this task in the last two decades [19,34,41–68] ever since
Coffman, Kundu, and Wootters (CKW) presented the first
quantitative monogamy relation in Ref. [19] for three-qubit
states. So far, we have known that the one-way distillable
entanglement (see Theorem 6 in Ref. [41]) and squashed
entanglement (see Theorem 8 in Ref. [41]) and all the other
measures that are defined by the convex-roof extension are
monogamous [60] according to the original spirit of the CKW
inequality for the monogamy relation in which a measure
of entanglement E is said to be monogamous if it satisfies
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E (A|BC) � E (AB) + E (AC) for all states. Notice that most
of the monogamy relations in the literature are discussed
via the bipartite measures of entanglement and, in general,
only the relation between A|BC, AB, and AC is revealed;
the global correlation in ABC and the correlation contained
in part BC are missed [see Eqs. (5) and (6) below], where
the vertical bar indicates the bipartite split across which we
will measure the (bipartite) entanglement. From this point
of view, the monogamy relation in the sense of the original
CKW inequality is not “complete.” We thus need to explore
a complete monogamy relation which can exhibit the en-
tanglement between ABC, AB, AC, and BC in extenso. [We
remark here that, apart from the research on the original CKW
relation, other routes of extending monogamy relations that
could exhibit “completeness” were also studied extensively,
such as the multipartite qubits extensions of CKW inequal-
ities [62–65,67] and the monogamy relations by means of
the linear entropy [66,68]. These monogamy relations are
based on the two basic axioms of entanglement measures (see
conditions E-1 and E-2 below). In this paper, we investigate a
complete monogamy relation based on the unified multipartite
entanglement measure (MEM).]

The phenomenon becomes much more complex when
moving from the bipartite case to the multipartite case [29,69–
71]. For an m-partite system, we have to encounter entan-
glement for both m-partite and k-partite cases, k � m. Par-
ticularly, a “complete monogamy relation” involves both the
MEM and bipartite measures, which requires a “unified” way,
i.e., the unification condition, to define entanglement mea-
sures. In Ref. [29], Szalay developed two kinds of indicator
functions for characterizing multipartite entanglement based
on the complex lattice-theoretic structure of partial separa-
bility classification for multipartite states. But the second
kind in fact cannot quantify entanglement effectively and
the unification condition was not considered as a necessary
requirement of the MEM. The purpose of this paper is to
give, concisely, “richer” postulates in defining a complete
MEM from which we can quantify and compare the amount
of entanglement for both bipartite and multipartite systems
in a unified way. We then explore the complete monogamy
relation under these postulates and illustrate with several
MEMs which are multipartite extensions of EoF, concurrence,
tangle, Tsallis q entropy of entanglement, Rényi α entropy
of entanglement, negativity, and the convex-roof extension of
negativity. Hereafter, we let HABC be a tripartite Hilbert space
with finite dimension and let SX be the set of density operators
acting on HX .

The rest of this paper is organized as follows. We review
the postulates of the bipartite entanglement measure and the
associated monogamy relation in Sec. II, and explore the ad-
ditional postulates for multipartite entanglement measures in
Sec. III. Section IV proposes the complete monogamy relation
and the tight complete monogamy relation for multipartite
measures with the additional postulates. We then extend some
well-known bipartite entanglement measures to the tripartite
case, and discuss their complete monogamy properties. Par-
ticularly, we find a class of states that are additive under
the tripartite entanglement of formation. Section VI mainly
discusses what is the maximally entangled state (MES). We
give a definition of the maximally entangled state by means

of its extension. Finally, in Sec. VII, we summarize our main
findings and conclusions.

II. REVIEW OF THE BIPARTITE ENTANGLEMENT
MEASURE

We begin by reviewing the bipartite entanglement mea-
sure. A function E : SAB → R+ is called an entanglement
measure if it satisfies [10] the following conditions.

(E-1) E (ρ) = 0 if ρ is separable.
(E-2) E cannot increase under local operations and clas-

sical communication (LOCC), i.e., E (�(ρ)) � E (ρ) for any
LOCC � [condition E-2 implies that E is invariant under local
unitary operations, i.e., E (ρ) = E (U A ⊗ U BρU A,† ⊗ U B,†)
for any local unitaries U A and U B]. The map � is completely
positive and trace preserving (CPTP).

In general, LOCC can be stochastic, in the sense that ρ can
be converted to σ j with some probability p j . [It is possible that
E (σ j0 ) > E (ρ) for some j0.] In this case, the map from ρ to
σ j cannot be described in general by a CPTP map. However,
by introducing a “flag” system A′, we can view the ensemble
{σ j, p j} as a classical quantum state σ ′ := ∑

j p j | j〉〈 j|A′ ⊗
σ j . Hence, if ρ can be converted by LOCC to σ j with
probability p j , then there exists a CPTP LOCC map � such
that �(ρ) = σ ′. Therefore, the definition above of a measure
of entanglement captures also probabilistic transformations.
Particularly, E must satisfy E (σ ′) � E (ρ).

Almost all measures of entanglement studied in the litera-
ture (although not all [73]) satisfy

E (σ ′) =
∑

j

p jE (σ j ), (1)

which is very intuitive since A′ is just a classical system
encoding the value of j. In this case the condition E (σ ′) �
E (ρ) becomes ∑

j

p jE (σ j ) � E (ρ).

That is, LOCC cannot increase entanglement on average.
An entanglement measure E is said to be an entanglement
monotone [72] if it satisfies Eq. (1) and is convex additionally.

Let E be a bipartite measure of entanglement. The entan-
glement of formation associated with E , denoted by EF , is
defined as the average pure-state measure minimized over all
pure-state decompositions:

EF (ρ) := min
n∑

j=1

p jE (|ψ j〉〈ψ j |), (2)

which is also called the convex-roof extension of E . In gen-
eral, for pure state |ψ〉 ∈ HAB, ρA = TrB|ψ〉〈ψ |,

E (|ψ〉〈ψ |) = h(ρA) (3)

for some positive function h. Vidal (see Theorem 2 in
Ref. [72]) showed that EF , defined as Eqs. (2) and (3), is an
entanglement monotone if and only if h is also concave, i.e.,

h[λρ1 + (1 − λ)ρ2] � λh(ρ1) + (1 − λ)h(ρ2) (4)

for any states ρ1 and ρ2, and any λ ∈ [0, 1]. Very recently,
Guo and Gour [60] showed that, if h is strictly concave, then
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EF is monogamous; i.e., for any ρABC ∈ SABC that satisfies the
disentangling condition

EF (ρAB) = EF (ρA|BC ) (5)

we have that EF (ρAC ) = 0 or, equivalently (for continuous
measures [59]), there exists some α > 0 such that

Eα
F (ρA|BC ) � Eα

F (ρAB) + Eα
F (ρAC ) (6)

holds for all ρABC ∈ SABC .
For convenience, we list some bipartite entanglement mea-

sures. The first convex-roof extended measure is EoF [2,4],
E f , which is defined by

E f (|ψ〉) = E (|ψ〉) := S(ρA), ρA = TrB|ψ〉〈ψ |, (7)

for pure state |ψ〉 ∈ HAB, where S(ρ) := −Tr(ρ ln ρ) is the
von Neumann entropy, and

E f (ρ) := min
{pi,|ψi〉}

∑
i

piE (|ψi〉) (8)

for the mixed state, where the minimum is taken over all
pure-state decompositions {pi, |ψi〉} of ρ ∈ SAB (throughout
this paper, we identify the original bipartite entanglement of
formation with E f ; the notation EF with capital F in the sub-
script denotes other general convex-roof extended measures).
For bipartite pure state |ψ〉 ∈ HAB, concurrence [5–7] and
tangle [8] are defined by

C(|ψ〉) =
√

2[1 − Tr(ρA)2]

and

τ (|ψ〉) = C2(|ψ〉),

respectively. For the mixed state, they are defined by the
convex-roof extension as Eq. (2). The negativity [11,12] is
defined by

N (ρ) = 1
2 (‖ρTa‖Tr − 1), ρ ∈ SAB,

where Tx denotes the transpose with respect to the subsystem
X , and ‖ · ‖Tr denotes the trace norm. The convex-roof exten-
sion of N , NF , is defined as Eq. (2) (i.e., taking E = N). Any
function that can be expressed as

Hg(ρ) = Tr[g(ρ)] =
∑

j

g(p j ) , (9)

where p j denotes the eigenvalues of ρ, is strictly concave if
g′′(p) < 0 for all 0 < p < 1 [60]. This includes the quantum
Tsallis q entropy [74–76] Tq with q > 0 and the Rényi α

entropy [77–79] Rα with α ∈ [0, 1]. Consequently, accord-
ing to Eq. (5), it is proved that all bipartite entanglement
monotones are monogamous for pure states and all EF in the
literature so far—such as E f , C, τ , NF , Tsallis q entropy of
entanglement (q > 0), and Rényi α entropy of entanglement
(0 < α < 1)—are monogamous [60].

III. POSTULATES FOR THE MULTIPARTITE
ENTANGLEMENT MEASURE

A. Multipartite entanglement monotone

We now turn to the discussion of multipartite measures of
entanglement. A function E (m) : SA1A2···Am → R+ is called a

m-partite entanglement measure in the literature [20,21,69] if
it satisfies the following conditions.

(E1) E (m)(ρ) = 0 if ρ is fully separable.
(E2) E (m) cannot increase under m-partite LOCC.

In addition, E (m) is said to be an m-partite entanglement
monotone if it is convex and does not increase on average
under m-partite stochastic LOCC. For simplicity, throughout
this paper, we call E (m)

F defined as

E (m)
F (ρ) := min

∑
i

piE
(m)(|ψi〉) (10)

an m-partite entanglement of formation associated with E (m)

provided that E (m) is an m-partite entanglement measure on
pure states. From now on, we only consider the tripartite
system HABC unless otherwise stated, and the case for m � 3
could be argued analogously. As a generalization of Vidal’s
scenario for the bipartite entanglement monotone proposed in
Ref. [72], we give at first a necessary-sufficient criterion of the
tripartite entanglement monotone (TEM).

Proposition 1. Let E (3) : HABC → R+ be a function de-
fined by

E (3)(|ψ〉) = h(3)(ρA ⊗ ρB ⊗ ρC ), |ψ〉 ∈ HABC (11)

and let E (3)
F be a function defined as Eq. (10). Then E (3)

F is
a TEM if and only if (1) h(3) is invariant under local unitary
operations and (2) h(3) is LOCC concave, i.e.,

h(3)(ρA ⊗ ρB ⊗ ρC ) �
∑

k

pkh(3)(σ A
k ⊗ σ B

k ⊗ σC
k

)
(12)

holds for any stochastic LOCC {�k} acting on |ψ〉〈ψ |, where
σ x

k = Trx̄σk , pkσk = �k (|ψ〉〈ψ |).
Proof. According to the scenario in Ref. [11], we only

need to consider a family {�k} consisting of completely
positive linear maps such that �k (ρ) = pkσk , where

�k (ρ) = MkρM†
k = MA

k ⊗ IBCρMA,†
k ⊗ IBC

transforms pure states to some scalar multiple of pure
states,

∑
k MA,†

k MA
k = IA. We assume at first that the ini-

tial state ρ ∈ SABC is pure. Then it yields that E (3)(ρ) �∑
k pkE (3)(σk ) holds if and only if h(3) is LOCC concave.

Apparently, E (3)(ρ) = h(3)(ρA ⊗ ρB ⊗ ρC ) and E (3)(σk ) =
h(3)(σ A

k ⊗ σ B
k ⊗ σC

k ) since σk still is a pure state for each
k. Therefore, the inequality E (3)(ρ) �

∑
k pkE (3)(σk ) can be

rewritten as

h(3)(ρA ⊗ ρB ⊗ ρC ) �
∑

k

pkh(3)
(
σ A

k ⊗ σ B
k ⊗ σC

k

)
.

That is, if h(3) is LOCC concave, then E (3) does not increase
on average under LOCC for pure states and vice versa. So it
remains to be shown that E (3)

F does not increase on average
under LOCC for mixed states with the assumption that h(3) is
LOCC concave. For any mixed state ρ ∈ SABC , there exists an
ensemble {t j, |η j〉} such that

E (3)
F (ρ) =

∑
j

t jE
(3)(|η j〉).

For each j, let

t jkσ jk = �k (|η j〉〈η j |), t jk = Tr[�k (|η j〉〈η j |)].
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Then we obtain that

E (3)
F (ρ) =

∑
j

t jE
(3)(|η j〉) �

∑
j,k

t jt jkE (3)(σ jk )

�
∑

k

pkE (3)
F (σk ),

where pk = ∑
j t jt jk . In addition, it is well known that entan-

glement is invariant under local unitary operation, which is
equivalent to the fact that h is invariant under local unitary
operation. The proof is completed. �

Remark 1. The inequality (12) in condition 2 above reduces
to Eq. (4) for the bipartite case. That is, for the bipartite case,
concavity is equivalent to LOCC concavity, but it is unknown
whether it also true for the tripartite case.

B. Unification condition for the multipartite
entanglement measure

As mentioned before, for MEM, a natural question that
arisen from the monogamy relation is whether it obeys:

(E3): the unification condition, i.e., E (3) is consistent

with E (2).

That is, when we analyze the entanglement contained in a
given tripartite state ρABC ∈ SABC , we have to cope with not
only the total entanglement in ρABC measured by E (3) but also
the entanglement in ρAB, ρAC , ρBC , ρA|BC , ρB|AC , and ρAB|C
measured by E (2), and thus E (3) and E (2) must be defined in
the same way. Then, how can we define them in the same
way? We begin with a simple observation. Let |ψ〉ABC be a
biseparable pure state in HABC , e.g., |ψ〉ABC = |ψ〉AB|ψ〉C . It
is clear that the only entanglement of such a state is contained
in |ψ〉AB, namely, we must have

E (3)(|ψ〉AB|ψ〉C ) = E (2)(|ψ〉AB). (13)

In this way, we can find the link between E (2) and E (3) (or
h(2) and h(3)). For instance, if E (3)(|ψ〉ABC ) = h(3)(ρA ⊗ ρB ⊗
ρC ), we have E (2)(|ψ〉AB) = h(2)(ρA ⊗ ρB) with the same
“action” of function h [e.g., EoF and the tripartite EoF (also
see Sec. V): E (2)(|ψ〉AB) = h(2)(ρA ⊗ ρB) = 1

2 S(ρA ⊗ ρB)
while E (3)(|ψ〉ABC ) = h(3)(ρA ⊗ ρB ⊗ ρC ) = 1

2 S(ρA ⊗ ρB ⊗
ρC )]. In general, E (2) is uniquely determined by E (3) but not
vice versa. It is worth mentioning that h(2)(ρA ⊗ ρB) can exist
instead by h(ρA) since any bipartite pure state has Schmidt
decomposition, which guarantees that the eigenvalues of ρA

coincide with those of ρB. That is, h(ρA) is in fact h(2)(ρA ⊗
ρB), and part A and part B are symmetric, or, equivalently,

h(2)(ρA ⊗ ρB) = h(2)(ρB ⊗ ρA).

So, as one may expect, for the multipartite case, the uni-
fication condition requires that the measure of multipartite
entanglement must be invariant under the permutations of the
subsystems. Namely, the amount of entanglement contained in
a state is fixed:

E (3)(ρABC ) = E (3)(ρπ (ABC) ), (14)

where π is a permutation of the subsystems [note that
E (ρA|BC ) 	= E (ρX |Y Z ) in general whenever X 	= A, X,Y, Z ∈
{A, B,C}]. For instance, the three-tangle of three qubits is
invariant under permutations of the qubits [19]. In addition,

we always have

E (3)(ABC) � E (2)(XY ), X,Y,∈ {A, B,C} (15)

since the partial trace is a special LOCC. E (3) is called a uni-
fied multipartite entanglement measure if it satisfies condition
E3. Hereafter, we always assume that E (3) is a unified measure
unless otherwise specified.

We note here that, although the analytic formulas for E (2)

and E (3) cannot be uniquely determined, namely, the “same
action” of h has a little ambiguity since they are defined on
different systems, E (2) can be uniquely determined for any
given E (3) by the requirements in Eqs. (13) and (14) generally.

C. Hierarchy condition for the multipartite
entanglement measure

There are different kinds of separability in the tripartite
case: the fully separable state, two-partite separable state,
and genuinely entangled state. We denote by E (3−2) the two-
partite entanglement measure associated with E (3), which is
defined by

E (3−2)(|ψ〉)

:= min{E (2)(|ψ〉A|BC ), E (2)(|ψ〉AB|C ), E (2)(|ψ〉B|AC )}. (16)

For any given ρABC ∈ SABC , E (3)(ρABC ) extracts the “total
entanglement” contained in the state while E (2)(ρX |Y Z ) only
quantifies the “bipartite entanglement” up to some bipartite
cutting X |Y Z , X,Y, Z ∈ {A, B,C}. For instance, for any en-
tanglement monotone E , the pure state |ψ〉ABC satisfying the
disentangling condition E (|ψ〉A|BC ) = E (ρAB) has the form of
|ψ〉AB1 |ψ〉B2C for some subspace HB1B2 in HB [58–60]. In such
a case, E (A|BC) only reflects the entanglement between A and
BC; the entanglement between B and C is missed whenever
|ψ〉B2C is entangled (in fact, |ψ〉B2C can be a maximally
entangled sate; also see Sec. VI). We thus need additionally
the hierarchy condition:

(E4): E (3)(ρABC ) � E (2)(ρX |Y Z ) � E (3−2)(ρABC )

holds for all ρABC, X,Y, Z ∈ {A, B,C}.
That is, a non-negative function E (3), as a “complete” tripartite
entanglement measure, not only must obey conditions E1 and
E2 but also must satisfy conditions E3 and E4. One can
easily check that the tripartite squashed entanglement and
the tripartite conditional entanglement of mutual information
are complete entanglement monotones, i.e., they also satisfy
conditions E3 and E4, but the k-ME concurrence [20] vio-
lates condition E4, and the three-tangle is even not a uni-
fied measure. Note that the three-tangle, denoted by τABC , is
defined by

τABC := C2
A|BC − C2

AB − C2
AC,

which is not symmetric up to the three parts A, B, and C
in general (except for the three-qubit case [19]), and there
are no uniform formulas for h(2) and h(3). In addition, it is
worth mentioning that τABC is different from E (3) here since
the former only quantifies the genuine entanglement shared
by the three parts simultaneously while the latter one reflects
all the entanglement contained in the state.

Remark 2. Condition E4 is consistent with the multipartite
monotonic indicator functions of the first kind [see Eq. (87) in
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Ref. [29]]. From the arguments in this paper, the multipartite
monotonic indicator function of the second kind in Ref. [29]
is meaningless for defining the MEM.

Remark 3. Hereafter, the tripartite squashed entanglement,
a little bit different from the one in Ref. [17], is defined by

E (3)
sq (ρABC ) := 1

2 inf I (A : B : C|E ), (17)

where

I (A : B : C|E ) = I (A : B|E ) + I (C : AB|E ),

with I (A : B|E ) the conditional mutual information, i.e.,

I (A : B|E ) = S(AE ) + S(BE ) − S(ABE ) − S(E ),

and where the infimum is taken over all extensions ρABCE of
ρABC , i.e., over all states satisfying TrE (ρABCE ) = ρABC . In
Ref. [17], the tripartite squashed entanglement, denoted by
Eq

sq, is defined by Eq
sq(ρABC ) := inf I (A : B : C|E ). Observe

that

E (3)
sq (ρABC ) = 1

2 inf[S(ρAE ) + S(ρBE ) + S(ρCE )

− S(ρABCE ) − 2S(ρE )]

and, by definition Eq. (17), it is immediate that this formula is
symmetric with respect to the subsystems A, B, and C though
parties A, B, and C in the definition are asymmetric. There-
fore we conclude that E (3)

sq is a unified tripartite monotone.

IV. COMPLETE MONOGAMY RELATION
FOR THE MULTIPARTITE MEASURE

A. Complete monogamy relation for the unified MEM

Since there is no bipartite cut among the subsystems when
we consider the complete MEM, we thus, following the spirit
of the bipartite case proposed in Ref. [59], give the following
definition of monogamy for the unified tripartite measure of
entanglement.

Definition 1. Let E (3) be a unified tripartite entanglement
measure. E (3) is said to be completely monogamous if for any
ρABC ∈ SABC that satisfies

E (3)(ρABC ) = E (2)(ρAB) (18)

we have that E (2)(ρAC ) = E (2)(ρBC ) = 0.
We remark here that, for tripartite measures, the subsys-

tems A and B are symmetric in the tripartite disentangling
condition (18), which is different from that of the bipartite
disentangling condition (5). The tripartite disentangling con-
dition (18) means that, for a given tripartite state shared by
Alice, Bob, and Charlie, if the entanglement between A and
B reached the “maximal amount” which is limited by the
“total amount” of the entanglement contained in the state, i.e.,
E (3)(ABC), then both part A and part B cannot be entangled
with part C additionally. While the monogamy relation up to
bipartite measures is not complete (we can call it the partial
monogamy relation), Definition 1 (or Proposition 2 below)
captures the nature of the monogamy law of entanglement
since it reflects the distribution of entanglement thoroughly
and we thus call it completely monogamous. The difference
between these two kinds of monogamy relations, i.e., Eqs. (6)
and (19) (see below) [or equivalently, Eqs. (5) and (18)], is

FIG. 1. Schematic picture of the monogamy relation under
(a) the unified tripartite entanglement measure and (b) the bipartite
entanglement measure.

illustrated in Fig. 1. By the proof of Theorem 1 in Ref. [59],
the following theorem is obvious.

Proposition 2. Let E (3) be a continuous unified tripartite
entanglement measure. Then E (3) is completely monogamous
if and only if there exists 0 < α < ∞ such that

Eα (ρABC ) � Eα (ρAB) + Eα (ρAC ) + Eα (ρBC ), (19)

for all ρABC ∈ SABC with fixed dim HABC = d < ∞, where
we omit the superscript (3) of E (3) for brevity.

As with the monogamy exponent α in Eq. (6) for the
bipartite measure, we call the smallest possible value for
α satisfying Eq. (19) in a given dimension d = dim HABC

the monogamy exponent associated with a unified measure
E (3), and we identify it with α(E (3) ). That is, the completely
monogamous measure E (3) together with its monogamy ex-
ponent α(E (3) ) exhibit the monogamy relation more clearly.
In general, the monogamy exponent is hard to calculate. It
is worth mentioning that almost all entanglement measures
by now are continuous [59]. Hence, it is clear that, to decide
whether E (3) is completely monogamous, the approach in
Definition 1 is much easier than the one from Proposition 2
since we only need to check the states that satisfy the tripartite
disentangling condition in (18) while all states should be
verified in Eq. (19).

Let E (3)
F be a unified TEM defined as in Eq. (10). By re-

placing E f (A|BC) and E f (A|B) with E (3)
F and E (2)

F in Theorem
3 in Ref. [59], respectively, we can conclude that, if E (3)

F is
completely monogamous in pure tripartite states in HABC , then
it is also completely monogamous in tripartite mixed states
acting on HABC .

The first disentangling theorem was investigated in
Ref. [58] with respect to bipartite negativity. Very recently,
Guo and Gour showed in Ref. [60] that the disentangling
theorem is valid for any bipartite entanglement monotone
in pure states and also valid for any bipartite convex-roof
extended measures so far. We present here the analogous
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one up to tripartite measures. One can check, following the
argument of Theorem 4 and Corollary 5 in Ref. [59], that
Lemma 1 below is valid.

Lemma 1. Let E (3) be a unified tripartite entanglement
monotone, and let ρABC be a pure tripartite state satisfying the
disentangling condition (18). Then,

E (2)(ρAB) = E (2)
F (ρAB) = E (2)

a (ρAB), (20)

where E (2)
F is defined as in (10), and E (2)

a is also defined as in
(10) but with a maximum replacing the minimum.

By Lemma 1 we have the following result that character-
izes the form of the states satisfying the tripartite disentan-
gling condition in detail.

Theorem 1. Let E (3) be a complete TEM for which h,
induced from h(3) as defined in (3), i.e., h(ρA) = E (2)(|ψ〉A|BC )
whenever h(3)(ρA ⊗ ρB ⊗ ρC ) = E (3)(|ψ〉ABC ), is strictly con-
cave. Then, if ρABC is a tripartite state and E (3)

F (ρABC ) =
E (2)

F (ρAB), then

ρABC =
∑

x

px|ψx〉〈ψx|ABC, (21)

where {px} is some probability distribution, and each pure
state |ψx〉ABC admits the form

|ψ〉ABC = |φ〉AB|η〉C . (22)

Proof. By Lemma 1, we can derive that if ρABC is a pure
tripartite state satisfying the disentangling condition (18) then

E (2)(ρAB) = E (2)
F (ρAB) = E (2)

a (ρAB),

where E (2)
F is defined as in (10), and E (2)

a is also defined
as in (10) but with a maximum replacing the minimum.
Let ρAB = ∑n

j=1 p j |ψ j〉〈ψ j |AB be an arbitrary pure state
decomposition of ρAB with n = rank(ρAB). Then,

E (2)(ρAB) � E (2)
F (ρAB) =

n∑
j=1

p jE
(2)(|ψ j〉〈ψ j |AB).

On the other hand,

E (2)
F (ρAB) � E (3)(|ψ〉〈ψ |ABC ) = h(3)(ρA ⊗ ρB ⊗ ρC ).

Therefore, denoting by ρA,B
j := TrB,A|ψ j〉〈ψ j |AB and writing

h
(
ρA

j

) = h
(
ρB

j

) = h(2)
(
ρA

j ⊗ ρB
j

)
(23)

we conclude that if Eq. (18) holds then we must have
n∑

j=1

p jh
(
ρA

j

) =
n∑

j=1

p jh
(
ρB

j

) = h(ρA) = h(ρB)

since

h(ρA) = E (2)(|ψ〉A|BC ) � E (3)(|ψ〉ABC )

= h(3)(ρA ⊗ ρB ⊗ ρC ),

h(ρB) = E (2)(|ψ〉B|AC ) � h(3)(ρA ⊗ ρB ⊗ ρC ).

Given that ρA = ∑n
j=1 p jρ

A
j , ρB = ∑n

j=1 p jρ
B
j , and h(2) is

strictly concave we must have

ρA
j = ρA, ρB

j = ρB, j = 1, . . . , n. (24)

This leads to |ψ〉ABC = |ψ〉AB|ψ〉C . The case of the mixed
state can be easily followed. �

Comparing with the theorem in Ref. [60], we can see that
the strict concavity of h(2) for the tripartite case is stronger
than that of the bipartite case, which leads to the fact that
the state satisfying the tripartite disentangling condition is a
special case of the one satisfying the bipartite disentangling
condition. This also indicates that the complete monogamy
formula is really different from the previous monogamy rela-
tions up to the bipartite measures.

For the case of the m-partite case, m � 4, we can easily
derive the following disentangling conditions with the same
spirit as that of the tripartite disentangling condition in mind
(we take m = 4 for example): Let E (4) be a unified tripartite
entanglement measure. E (4) is said to be monogamous if (i)
either for any ρABCD ∈ SABCD that satisfies

E (4)(ρABCD) = E (2)(ρAB) (25)

we have that E (2)(ρAB|CD) = E (2)(ρCD) = 0 or (ii) for any
ρABCD ∈ SABCD that satisfies

E (4)(ρABCD) = E (3)(ρABC ) (26)

we have that E (2)(ρABC|D) = 0.
The difference between the two kinds of disentangling

conditions can also be revealed by the following theorem,
which is the complement of the theorem in Ref. [60].

Theorem 2. Let E (2) be an entanglement monotone for
which h(2), as defined in Eq. (3), is strictly concave, and let
|ψ〉ABC be a pure state in HABC . Then,

E (2)(ρAB) = E (2)(|ψ〉A|BC ) iff ρAC = ρA ⊗ ρC,

and in turn, if and only if

|ψ〉ABC = |ψ〉AB1 |ψ〉B2C

for some subspaces HB1 and HB2 in HB up to some local
unitary on part B, where |ψ〉AB1 ∈ HAB1 and |ψ〉B1C ∈ HB1C ,
if ρAC is separable but ρAC 	= ρA ⊗ ρC , then E (2)(ρAB) <

E (2)(|ψ〉A|BC ).
Proof. Let |ψ〉ABC be a pure state. If ρAC = ρA ⊗ ρC ,

we assume that rank(ρA) = m with spectrum decomposition
ρA = ∑

i (λA
i )2|ψi〉〈ψi|A and rank(ρC ) = n with spectrum de-

composition ρC = ∑
j (λC

j )2|ψ j〉〈ψ j |C . It follows that |ψ〉ABC

admits the form

|ψ〉ABC =
∑
i, j

λA
i λC

j |ψi〉A|ψi j〉B|ψ j〉C

with 〈ψi j |ψkl〉B = δikδ jl . Let K := span{|ψi j〉B} ⊆ HB; then
K ∼= HB1 ⊗ HB2 for some subspaces HB1 and HB2 . We thus
conclude that there exists a unitary operator U B acting on HB

such that

U B|ψi j〉B = |xi〉B1 |y j〉B2 , ∀i, j.

This implies that

|ψ〉ABC = |ψ〉AB1 |ψ〉B2C

with |ψ〉AB1 = ∑
i λ

A
i |ψi〉A|xi〉B1 and |ψ〉B2C = ∑

j λ
C
j |y j〉

B2 |ψi〉C up to local unitary operator U B. It is now clear that
E (ρAB) = E (|ψ〉A|BC ).

Together with the theorem in Ref. [60], we get

ρAC = ρA ⊗ ρC ⇔ E (2)(ρAB) = E (2)(|ψ〉A|BC ).
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FIG. 2. Schematic picture of the tight monogamy relation.

That is, if ρAC is separable but ρAC 	= ρA ⊗ ρC , then
E (2)(ρAB) < E (2)(ρA|BC ). For example, we let

|ψ〉ABC =
∑

k

λk|k〉A|k〉B|k〉C

be a generalized Greenberger-Horne-Zeilinger state; then
ρAC is separable but ρAC 	= ρA ⊗ ρC and E (2)(ρAB) = 0 <

E (2)(|ψ〉A|BC ). �
The bipartite squashed entanglement is shown to be

monogamous [16] with the monogamy exponent being at
most 1. We prove here that E (3)

sq is complete monogamous.
Proposition 3. E (3)

sq is completely monogamous; i.e.,

E (3)
sq (ρABC ) � Esq(ρAB) + Esq(ρAC ) + Esq(ρBC ) (27)

holds for any ρABC ∈ SABC .
Proof. By the chain rule for the conditional mutual infor-

mation with any state extension ρABCE , it is obvious that
1
2 I (A : B : C|E )

= 1
2 I (A : B|E ) + 1

2 I (C : A|E ) + 1
2 I (C : B|AE )

� Esq(ρAB) + Esq(ρAC ) + Esq(ρBC ).

The proof is completed. �
Moreover, if there exists an optimal extension ρABCE such

that E (3)
sq (ρABC ) = 1

2 I (A : B : C|E ), then ρABC is the tripartite
disentangling condition (18) with respect to E (3)

sq if and only if
ρABEC is a Markov state [80], which implies that

ρABC =
∑

j

q jρ
AB
j ⊗ ρC

j ,

where {q j} is a probability distribution.

B. Tight complete monogamy relation for the complete MEM

For the complete MEM, condition E4 exhibits the relation
between E (3)(ABC), E (2)(A|BC), and E (2)(AB). This moti-
vates us to discuss the following tight complete monogamy
relation which connects the two different kinds of monogamy
relations, i.e., the monogamy relation up to the bipartite
measure and the complete one, together (see Fig. 2).

Definition 2. Let E (3) be a unified MEM. We say E (3) is
tightly complete monogamous if for any state ρABC ∈ SABC

satisfying

E (3)(ρABC ) = E (2)(ρA|BC ) (28)

we have E (2)(ρBC ) = 0.
As one may expect, we show below that the tightly

complete monogamy Eq. (28) is stronger than the complete
monogamy relation Eq. (18) in general.

Theorem 3. Let E (3) be a complete multipartite entangle-
ment monotone. If E (3) is tightly completely monogamous

on pure states and E (3)
F is tightly completely monogamous,

then E (3) is completely monogamous on pure states and E (3)
F

is completely monogamous.
Proof. We assume that for any |ψ〉ABC that satisfies

E (3)(|ψ〉ABC ) = E (2)(|ψ〉A|BC ) we have E (2)(ρBC ) = 0. There-
fore, if E (2)(ρAB) = E (3)(|ψ〉ABC ), then

E (2)(ρAB) = E (2)(|ψ〉A|BC ) = E (3)(|ψ〉ABC ) (29)

since E (2)(ρAB) � E (2)(ρA|BC ) � E (3)(ρABC ) holds for any
state ρABC . This follows from the assumption that ρBC is
separable. Together with Theorem 2, we can conclude that

|ψ〉ABC = |ψ〉AB|ψ〉C . (30)

That is, ρAC is a product state and thus E (ρAC ) = 0. Namely,
E (3) is completely monogamous for any pure state. We can
easily check that E (3)

F is completely monogamous. �
Notice in particular that, if E (3)

F is a TEM defined as in
Eqs. (10) and (11), then condition E4 is equivalent to the
following condition (E4′): h(ρA ⊗ ρB ⊗ ρC ) � h(ρA ⊗ ρBC ),
∀|ψ〉 ∈ HABC . By Definition 2, the following can be easily
checked.

Theorem 4. Let E (3)
F , defined as in Eq. (10), be a unified

TEM for which h, as defined in (11), satisfies condition E4′
where the equality holds if and only if ρBC = ρB ⊗ ρC . Then
E (3)

F is tightly completely monogamous.

V. EXTENDING BIPARTITE MEASURES TO COMPLETE
MULTIPARTITE MEASURES

A. Tripartite extension of bipartite measures

Observing that, for pure state |ψ〉 ∈ HAB,

E (2)
f (|ψ〉) = E f (|ψ〉) = S(ρA) = S(ρB)

= 1
2 S(|ψ〉〈ψ |‖ρA ⊗ ρB) = 1

2 S(ρA ⊗ ρB)

= 1
2 [S(ρA) + S(ρB)],

where S(ρ‖σ ) := Tr[ρ(ln ρ − ln σ )] is the relative entropy,
we thus define tripartite entanglement of formation as

E (3)(|ψ〉) := 1
2 [S(|ψ〉〈ψ |‖ρA ⊗ ρB ⊗ ρC )]

= 1
2 [S(ρA) + S(ρB) + S(ρC )] (31)

for pure state |ψ〉 ∈ HABC , and then by the convex-roof exten-
sion, i.e.,

E (3)
f (ρABC ) = min

{pi,|ψi〉}

∑
i

piE
(3)(|ψi〉) (32)

for mixed state ρABC ∈ SABC , E (3)
f coincides with the α-

entanglement entropy defined in Ref. [29].
Let P2

3 (|ψ〉) = {ρA ⊗ ρBC, ρAB ⊗ ρC, ρB ⊗ ρAC}; then

E (3−2)(|ψ〉) := 1
2 min

σ∈P2
3 (|ψ〉)

S(|ψ〉〈ψ |‖σ ). (33)

For any mixed state ρ ∈ SABC , the entanglements of formation
associated with E (3) and E (3−2) are denoted by E (3)

f and

E (3−2)
f , respectively. (In order to remain consistent with the

original bipartite entanglement of formation E f , we call E (3)
f

here the tripartite EoF, and denote it by E (3)
f throughout
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TABLE I. Comparison of E (3) and E (2) (or h(3) and h(2) for entanglement of formation E (3,2)
F ) for E (3)

f , tripartite concurrence C (3), tripartite
tangle τ (3), tripartite Tsallis q entropy of entanglement T (3)

q , tripartite Rényi α entropy of entanglement R(3)
α , tripartite convex roof extended

negativity N (3)
F , tripartite negativity N (3), tripartite squashed entanglement E (3)

sq , tripartite conditional entanglement of mutual information E (3)
I ,

tripartite relative entropy of entanglement E (3)
r , and tripartite geometric measure of entanglement E (3)

G . M denotes E (2) is monogamous, CM
denotes E (3) is completely monogamous, and TCM denotes E (3) is tightly completely monogamous.

E (3) E (3) or h(3)(ρA ⊗ ρB ⊗ ρC ) E (2) or h(2)(ρA ⊗ ρB ) E3 E4 M CM TCM

E (3)
f

1
2 S(ρA ⊗ ρB ⊗ ρC ) 1

2 S(ρA ⊗ ρB) � � � [60] � �
C (3) [3 − Tr(ρA)2 − Tr(ρB )2 − Tr(ρC )2]

1
2 [2 − Tr(ρA)2 − Tr(ρB)2]

1
2 � � � [60] � �

τ (3) 3 − Tr(ρA)2 − Tr(ρB)2 − Tr(ρC )2 2 − Tr(ρA)2 − Tr(ρB)2 � � � [60] � �
T (3)

q
1
2 [Tq(ρA) + Tq(ρB) + Tq(ρC )] 1

2 [Tq(ρA) + Tq(ρB)] � � � [60] � �
R(3)

α
1
2 Rα (ρA ⊗ ρB ⊗ ρC ) 1

2 Rα (ρA ⊗ ρB) � × � [60] ? ×
N (3)

F Tr2
√

ρA + Tr2
√

ρB + Tr2
√

ρC − 3 Tr2
√

ρA + Tr2
√

ρB − 2 � × � [60] � ?

N (3) ‖ρTa‖Tr + ‖ρTb‖Tr + ‖ρTc‖Tr − 3 ‖ρTa‖Tr + ‖ρTb‖Tr − 2 � × ? � ?

E (3)
sq [17] 1

2 inf I (A : B : C|E ) 1
2 inf I (A : B|E ) � � � [41] � ?

E (3)
I [18] 1

2 inf[I (AA′ : BB′ : CC′) − I (A′ : B′ : C′)] 1
2 inf[I (AA′ : BB′) − I (A′ : B′)] � � ? ? ?

E (3)
r [9] infσ S(ρABC‖σ ABC

sep ) infσ S(ρAB‖σ AB
sep ) � ? ? ? ?

E (3)
G [15] 1 − supφ |〈ψ |φ〉ABC |2 1 − supφ |〈ψ |φ〉AB|2 � ? ? ? ?

this paper. The notations E (m)
F and E (m−k)

F with capital F
in the subscript denote other general convex-roof extended
measures.)

Note that, for |ψ〉 ∈ HAB, τ (|ψ〉) and N (|ψ〉) can be rewrit-
ten as

τ (|ψ〉) = 2 − Tr(ρA)2 − Tr(ρB)2,

N (|ψ〉) = 1
4 (Tr2

√
ρA + Tr2

√
ρB − 2).

We thus give the definitions for any |ψ〉 ∈ HABC as

τ (3)(|ψ〉) = 3 − Tr(ρA)2 − Tr(ρB)2 − Tr(ρC )2, (34)

C(3)(|ψ〉) =
√

τ (3)(|ψ〉), (35)

N (3)(|ψ〉) = Tr2
√

ρA + Tr2
√

ρB + Tr2
√

ρC − 3 (36)

for pure states and define them by the convex-roof extensions
for the mixed states (in order to coincide with the bipar-
tite case, we denote by τ (3), C(3), and N (3)

F the convex-roof
extensions):

τ (3)(ρABC ) = min
{pi,|ψi〉}

∑
i

piτ
(3)(|ψi〉〈ψi|),

C(3)(ρABC ) = min
{pi,|ψi〉}

∑
i

piC
(3)(|ψi〉〈ψi|),

N (3)
F (ρABC ) = min

{pi,|ψi〉}

∑
i

piN
(3)(|ψi〉〈ψi|),

where the minimum is taken over all pure-state decomposi-
tions {pi, |ψi〉} of ρABC . Observe that

N (3)(|ψ〉) = ‖ρTa‖Tr + ‖ρTb‖Tr + ‖ρTc‖Tr − 3

for pure state ρ = |ψ〉〈ψ | ∈ SABC ; we define

N (3)(ρ) = ‖ρTa‖Tr + ‖ρTb‖Tr + ‖ρTc‖Tr − 3 (37)

for mixed states ρ ∈ SABC . By definition, all these tripartite
measures are unified (see Table I). It is worth mentioning here

that E (3) is not unique in general for a given E (2) for bipartite
states; e.g., we also can define

τ ′(3)(|ψ〉ABC ) = 2[1 −
√

Tr(ρA)2
√

Tr(ρB)2
√

Tr(ρC )2] (38)

for the tripartite system. τ ′(3) does not obey condition
E4: It is easy to see that the two-qubit state σ BC with
spectra {87/128, 37/128, 1/32, 0} as in Eq. (41) leads to
Tr(σ B)2Tr(σC )2 < Tr(σ BC )2 [the existence of such state is
guaranteed by the result in Ref. [81]; also see Eq. (41) below].

Since the Tsallis q entropy is subadditive if and only if q >

1, i.e.,

Tq(ρAB) � Tq(ρA) + Tq(ρB), q > 1, ρA,B = TrB,AρAB,

where

Tq(ρ) := (1 − q)−1[Tr(ρq) − 1]

is the Tsallis q entropy, but not additive [i.e., Tq(ρ ⊗ σ ) 	=
Tq(ρ) + Tq(σ ) in general] in general [76], we can define the
tripartite Tsallis q entropy of entanglement by

T (3)
q (|ψ〉) := 1

2 [Tq(ρA) + Tq(ρB) + Tq(ρC )], q > 1 (39)

for pure state |ψ〉 ∈ HABC , and then define this by the convex-
roof extension for mixed states. The Rényi entropy is additive
[82], i.e.,

Rα (ρ ⊗ σ ) = Rα (ρ) + Rα (σ ),

and we thus define the tripartite Rényi α entropy of entangle-
ment by

R(3)
α (|ψ〉) := 1

2 Rα (ρA ⊗ ρB ⊗ ρC ), 0 < α < 1 (40)

for the pure state and by the convex-roof extension for mixed
states, where

Rα (ρ) := (1 − α)−1 ln(Trρα )

is the Rényi α entropy.
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B. Monogamy of these extended measures

We can easily show that E (3)
f , τ (3), and C(3) satisfy condi-

tion E4′ and, furthermore, the theorem below is true.
Theorem 5. E (3)

f , τ (3), C(3), T (3)
q , N (3)

F , and N (3) are com-

pletely monogamous TEMs. E (3)
f , τ (3), C(3), and T (3)

q are

complete TEMs while R(3)
α , N (3)

F , and N (3) are unified TEMs
but not complete TEMs.

Proof. The unification condition for all these quantities is
clear from the definition. We show at first that E (3)

f , τ (3), C(3),

and T (3)
q satisfy condition E4′. The cases of E (3)

f and T (3)
q

are obvious since S(ρAB) � S(ρA) + S(ρB) and Tq(ρAB) �
Tq(ρA) + Tq(ρB) (note that q > 1). For the case of τ (3), we
have τ (3)(|ψ〉ABC ) � τ (2)(|ψ〉A|BC ) since (see Theorem 2 in
Ref. [83])

1 + Tr(ρBC )2 � Tr(ρB)2 + Tr(ρC )2.

Therefore the case of C(3) is also true.
The complete monogamy of E (3)

f , τ (3), C(3), and T (3)
q is

clear by Theorem 1. For any ρABC ∈ SABC , if N (3)(ρABC ) =
N (2)(ρAB), i.e., ‖ρTa

ABC‖Tr + ‖ρTb
ABC‖Tr + ‖ρTc

ABC‖Tr − 3 =
‖ρTa

AB‖Tr + ‖ρTb
AB‖Tr − 2, then ‖ρTc

ABC‖Tr = 1, which implies
that ρAB|C is a positive partial transpose (PPT) state, and
therefore ρAC and ρBC are PPT states. Thus N (3) and N (3)

F are
completely monogamous.

For any E (3) ∈ {E (3)
f , τ (3), C(3), T (3)

q , R(3)
α , N (3)

F } and any
pure state |ψ〉ABC ∈ HABC , we have

E (3)(|ψ〉ABC )

= 1
2 [E (2)(|ψ〉A|BC ) + E (2)(|ψ〉AB|C ) + E (2)(|ψ〉B|AC )],

which indicates that E (3) is a TEM from the fact that E (2) is
an entanglement monotone. Similarly, one can show that N (3)

is also a TEM.
Recall that mixed two-qubit state ρAB with spectrum λ1 �

λ2 � λ3 � λ4 � 0 and marginal states ρA and ρB exist if and
only if the minimal eigenvalues λA and λB of the marginal
states satisfy the following inequalities [81]:⎧⎪⎨

⎪⎩
min(λA, λB) � λ3 + λ4,

λA + λB � λ2 + λ3 + 2λ4,

|λA − λB| � min(λ1 − λ3, λ2 − λ4).

(41)

Based on this result, we can find counterexamples, which
shows that N (3)

F violates condition E4′ (thus N (3) also violates
condition E4′). Specifically, we take the following two-qubit
state ρBC with spectrum {327/512, 37/128, 37/512, 0} and
two marginal states, i.e., ρB and ρC having spectra {7/8, 1/8}
and {3/4, 1/4}, respectively. Then

1 + Tr2(
√

ρBC ) > Tr2(
√

ρB) + Tr2(
√

ρC ).

If we take another two-qubit state σ BC such that σ BC, σ B, and
σC have spectra {87/128, 37/128, 1/32, 0}, {7/8, 1/8} and
{3/4, 1/4}, then

1 + Tr2(
√

σ BC ) < Tr2(
√

σ B) + Tr2(
√

σC ).

Namely, N (3)
F and N (3) violate condition E4′ for pure states.

R(3)
α violates condition E4′ since the Rényi α entropy is not

subadditive except for α = 0 or 1 [84]. �

From the proof of Theorem 5, we can conclude that if E (3)
F

satisfies condition E4′ where the equality holds if and only
if ρBC = ρB ⊗ ρC for |ψ〉ABC = |φ〉AB1 |η〉B2C then it is com-
pletely monogamous, but not necessarily tightly completely
monogamous as in (28).

Proposition 4. E (3)
f , C(3), τ (3), and T (3)

q are tightly com-
pletely monogamous.

Proof. Since S(ρBC ) � S(ρB) + S(ρC ) holds for any pure
state |ψ〉 ∈ HABC , E (3)

f (ABC) � E (2)
f (A|BC) for any ρ ∈

SABC . In addition, ρBC = ρB ⊗ ρC provided E (3)
f (|ψ〉ABC ) =

E (2)
f (|ψ〉A|BC ). Thus E (3)

f is tightly completely monogamous
by Theorem 4. Observe that

τ (3)(|ψ〉ABC ) = 3 − [Tr(ρA)2 + Tr(ρB)2 + Tr(ρC )2]

� 2 − [Tr(ρA)2 + Tr(ρBC )2]

= τ (2)(|ψ〉A|BC )

since 1 + Tr(ρBC )2 � Tr(ρB)2 + Tr(ρC )2 (see Theorem 2 in
Ref. [83]). By Proposition 4.5 in Ref. [85], we can get the fol-
lowing result (i.e., Lemma 2; see the Appendix for details): for
any bipartite state ρ ∈ SAB, 1 + Tr(ρ2) = Tr(ρA)2 + Tr(ρB)2

if and only if ρ = ρA ⊗ ρB with min{rank(ρA), rank(ρB)} =
1. This guarantees that

1 + Tr(ρBC )2 = Tr(ρB)2 + Tr(ρC )2

if and only if ρB or ρC is pure. For the Tsallis entropy, we have
[76]

Tq(ρ ⊗ σ ) = Tq(ρ) + Tq(σ ) (42)

if and only if either ρ or σ is pure. By Theorem 4, C(3), τ (3),
and T (3)

q are tightly completely monogamous. �
We conjecture that R(3)

α is not tightly completely monog-
amous since Rα (ρAB) = Rα (ρA) + Rα (ρB) may not imply
ρAB = ρA ⊗ ρB necessarily. Whether N (3)

F and N (3) are tightly
completely monogamous is still unknown.

For E ∈ {E (3)
f ,C(3), τ (3), T (3)

q }, with some abuse of nota-
tions, by Proposition 2, Eq. (28) holds if and only if

Eα1 (ρABC ) � Eα1 (ρA|BC ) + Eα1 (ρBC )

for some α1 > 0. In addition,

Eα2 (ρA|BC ) � Eα2 (ρAB) + Eα2 (ρAC )

for some α2 > 0 from Theorem 1 in Ref. [59]. Taking α =
max{α1, α2}, we have that

Eα (ρABC ) � Eα (ρA|BC ) + Eα (ρBC )

� Eα (ρAB) + Eα (ρAC ) + Eα (ρBC )

holds for these E .

C. Additivity of the entanglement of formation

As a byproduct of the tripartite entanglement of formation
E (3)

f , we discuss in this section the additivity of this measure.

Recall that the additivity of the entanglement formation E (2)
f

is a long-standing open problem which was conjectured to be
true [86] and then disproved by Hastings in 2009 [87]. We
always expect intuitively that the measure of entanglement
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should be additive in the sense of [88]

E (ρAB ⊗ σ A′B′
) = E (ρAB) + E (σ A′B′

), (43)

where E (ρAB ⊗ σ A′B′
) := E (ρAB ⊗ σ A′B′

) up to the partition
AA′|BB′. Equation (43) means that, from the resource-based
point of view, sharing two particles from the same preparing
device is exactly “twice as useful” to Alice and Bob as having
just one. By now, we know that the squashed entanglement
[16] and the conditional entanglement of mutual information
[18] are additive. Although EoF is not additive for all states,
construction of additive states for EoF is highly expected [89].
In what follows, we present a class of states such that E (2)

f is

additive (and thus for such class of states we have E (2)
f = Ec

[86], where Ec denotes the entanglement cost), and present,
analogously, a class of states such that E (3)

f is additive.
Theorem 6.
(i) Let ρAB ⊗ σ A′B′

be a state in SAA′BB′
. If there

exists an optimal ensemble {pi, |ψi〉AA′BB′ } for E f , i.e.,
E f (ρAB ⊗ σ A′B′

) = ∑
i piE (|ψi〉AA′BB′

), such that any
pure state |ψi〉AA′BB′

is a product state, i.e., |ψi〉AA′BB′ =
|φi〉AB|ϕi〉A′B′

for some pure state |φi〉AB ∈ HAB and
|ϕi〉A′B′ ∈ HA′B′

, then we have

E (2)
f (AB ⊗ A′B′) = E (2)

f (AB) + E (2)
f (A′B′). (44)

(ii) Let ρABC ⊗ σ A′B′C′
be a state in SAA′BB′CC′

. If there
exists an optimal ensemble {pi, |ψi〉AA′BB′CC′ } for E (3)

f such

that any pure state |ψi〉AA′BB′CC′
is a product state, i.e.,

|ψi〉AA′BB′CC′ = |φi〉ABC |ϕi〉A′B′C′
for some pure state |φi〉ABC ∈

HABC and |ϕi〉A′B′C′ ∈ HA′B′C′
, then we have

E (3)
f (ABC ⊗ A′B′C′) = E (3)

f (ABC) + E (3)
f (A′B′C′). (45)

Proof. We only discuss the additivity of E (3)
f ; the case of

E f can be followed analogously. For pure states |φ〉ABC ∈
HABC and |ϕ〉A′B′C′ ∈ HA′B′C′

, this is clear since

E (3)
f (|φ〉〈φ|ABC ⊗ |ϕ〉〈ϕ|A′B′C′

)

= 1
2 [S(|φ〉〈φ|ABC ⊗ |ϕ〉〈ϕ|A′B′C′ ‖ρAA′ ⊗ ρBB′ ⊗ ρCC′

)]

= 1
2 [S(ρAA′

) + S(ρBB′
) + S(ρCC′

)]

= 1
2 [S(ρA) + S(ρB) + S(ρC ) + S(σ A′

)

+ S(σ B′
) + S(σC′

)]

= 1
2 [S(|φ〉〈φ|ABC‖ρA ⊗ ρB ⊗ ρC )

+ S(|ϕ〉〈ϕ|A′B′C′ ‖σ A′ ⊗ σ B′ ⊗ σC′
)]

= E (3)
f (ρABC ) + E (3)

f (σ A′B′C′
),

where ρxx′ = Trxx′ (|φ〉〈φ|ABC ⊗ |ϕ〉〈ϕ|A′B′C′
), ρx = Trx̄(|φ〉

〈φ|ABC ), and σ x′ = Trx̄′ (|ϕ〉〈ϕ|A′B′C′
).

Assume that both ρABC and σ A′B′C′
are mixed. Let

{pi, |ψi〉AA′BB′CC′ } be the optimal ensemble satisfying

E (3)
f (ρABC ⊗ σ A′B′C′

) =
∑

i

piE
(3)
f (|ψi〉AA′BB′CC′

).

Then ∑
i

piE
(3)
f (|ψi〉AA′BB′CC′

)

=
∑

i

pi
[
E (3)

f (|φi〉ABC ) + E (3)
f (|ϕi〉A′B′C′

)
]

� E (3)
f (ρABC ) + E (3)

f (σ A′B′C′
)

since by assumption we have

|ψi〉AA′BB′CC′ = |φi〉ABC |ϕi〉A′B′C′
.

On the other hand, let {ti, |φi〉ABC} and {q j, |ϕ j〉A′B′C′ } be the
optimal ensembles satisfying

E (3)
f (ρABC ) =

∑
i

tiE
(3)
f (|φi〉ABC ),

E (3)
f (σ A′B′C′

) =
∑

j

q jE
(3)
f (|ϕ j〉A′B′C′

).

Writing |ψi j〉AA′BB′CC′ = |φi〉ABC |ϕ j〉A′B′C′
reveals that

E (3)
f (ρABC ) + E (3)

f (σ A′B′C′
)

=
∑

i

tiE
(3)
f (|φi〉ABC ) +

∑
j

q jE
(3)
f (|ϕ j〉A′B′C′

)

=
∑
i, j

tiq jE
(3)
f (|ψi j〉AA′BB′CC′

)

� E (3)
f (ρABC ⊗ σ A′B′C′

).

The case that ρABC is pure while σ A′B′C′
is mixed can be proved

similarly. �
Particularly, if ρAB or σ A′B′

(respectively, ρABC or σ A′B′C′
) is

pure, then ρAB ⊗ σ A′B′
(respectively, ρABC ⊗ σ A′B′C′

) is addi-
tive under E (3)

f (respectively, E (2)
f ). Together with the result of

Hastings in Ref. [87], we conclude that the state ρAB ⊗ σ A′B′

(respectively, ρABC ⊗ σ A′B′C′
) that violates the additivity (43)

definitely has an optimal pure-state decomposition in which
some pure states are not product states up to the partition
AB|A′B′ (respectively, ABC|A′B′C′). Our approach is far dif-
ferent from that of Ref. [89], in which it is shown that a
state with range in the entanglement-breaking space is always
additive.

VI. MAXIMALLY ENTANGLED STATE
AND THE MONOGAMY RELATION

A. Original definition of the maximally entangled state

The MES, as a crucial quantum resource in quantum
information processing tasks such as quantum teleportation
[90–92], superdense coding [93,94], quantum computation
[95], and quantum cryptography [96], has been explored
considerably [97–112]. For a bipartite system with state space
HAB = HA ⊗ HB, dim HA = m, dim HB = n (m � n), a pure
state |ψ〉AB is called a maximally entangled state if and only
if ρA = 1

m IA [113], where ρA is the reduced state of ρAB =
|ψ〉〈ψ |AB with respect to subsystem A. Equivalently, |ψ〉AB is
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an MES if and only if

|ψ〉AB = 1√
m

m∑
i=1

|i〉A|i〉B, (46)

where {|i〉A} is an orthonormal basis of HA and {|i〉B} is an
orthonormal set of HB. An MES |ψ〉AB always archives the
maximal amount of entanglement for a certain entanglement
measure [102] (such as entanglement of formation [3,4] and
concurrence [5–7]). For example, the well-known Einstein-
Podolsky-Rosen states are maximally entangled pure states.

It was proved in Ref. [114] that any MES in a d ⊗ d
system is pure. Later, Li et al. showed in Ref. [102] that
the maximal entanglement can also exist in mixed states for
m ⊗ n systems with n � 2m (or m � 2n). A necessary and
sufficient condition of the mixed maximally entangled state
(MMES) was proposed [102]: an m ⊗ n (n � 2m) bipartite
mixed state ρAB is maximally entangled if and only if

ρAB =
r∑

k=1

pk|ψk〉〈ψk|AB,
∑

k

pk = 1, pk � 0, (47)

where |ψk〉ABs are maximally entangled pure states with

|ψk〉AB = 1√
m

m−1∑
i=0

|i〉A|ik〉B, (48)

{|i〉A} is an orthonormal basis of HA, and {|ik〉B} is an or-
thonormal set of HB, satisfying 〈is| jt 〉B = δi jδst . Let HB′

be the subspace spanned by {|ik〉B : i = 0, 1, . . . , m − 1, k =
1, 2, . . . , r}. Then there exists a unitary operator U B′

acting on
HB′

such that

U B′ |ik〉B = |i〉B1 |k〉B2 ,

where

HB1 := span{|i〉B1 : i = 0, 1, . . . , m − 1}
and

HB2 = span{|k〉B2 : k = 1, 2, . . . , r}.
That is, the MMES ρAB can be rewritten as

ρAB = |ψ+〉〈ψ+|AB1 ⊗
(

r∑
k=1

pk|k〉〈k|B2

)
, (49)

up to some local unitary on part B, where

|ψ+〉AB1 = 1√
m

m−1∑
i=0

|i〉A|i〉B1

is the maximally pure state in HAB1 ,
∑

k pk = 1, pk � 0. The
main purpose of this section is to show that ρAB in Eq. (47) [or
equivalently in Eq. (49)] is not a complete MES physically;
there does not exist a mixed MES in any bipartite system.

B. Incompatibility of the MMES and the monogamy law

We begin with the fact that it seems that entanglement can
be freely shared.

Theorem 7. Let ρABC be a state acting on HABC with
2 dim HA � dim HB. If ρAB = TrCρABC is a mixed state as in

Eq. (47), then ρAC is a product state but ρBC is not necessarily
separable.

Proof. We assume with no loss of generality that ρAB has
the form as in Eq. (49) for some subspaces HB1 and HB2 of
HB. If |ψ〉ABC is a state with reduced state ρAB, then it is
straightforward that

|φ〉ABC = |ψ+〉AB1 |ψ〉B2C (50)

with

|ψ〉B2C =
∑

k

√
pk|k〉B2 |k〉C, (51)

where {|k〉C} is an orthonormal set in HC . It is easy to see that
ρAC = ρA ⊗ ρC and ρBC is entangled.

If ρABC is a mixed state with reduced state ρAB as an
assumption, we let

E f (ρA|BC ) =
l∑

s=1

qsE f (|φs〉〈φs|A|BC ).

It follows that

E f (|φs〉〈φs|A|BC ) = E f
(
ρAB

s

)
since ln m � E f (A|BC) � E f (AB) for any ρABC and∑

s qsE f (ρAB
s ) � E f (ρAB) = ln m, where m = dim HA,

ρAB
s = TrC |φs〉〈φs|ABC . By the theorem in Ref. [60], together

with the assumption of ρAB, we have

|φs〉ABC = |ψ+〉AB1 |φs〉B2C,

where |ψ+〉AB1 ∈ HA ⊗ HB1 and |φs〉B2C ∈ HB2 ⊗ HC . We
now can obtain that

ρABC = |ψ+〉〈ψ+|AB1 ⊗ ρB2C, (52)

where

ρB2C =
∑

s

qs|φs〉〈φs|B2C (53)

with

|φs〉B2C =
r∑

k=1

√
pk

∣∣e(s)
k

〉B2
∣∣ f (s)

k

〉C
. (54)

Together with the form of ρAB as supposed, we have |e(s)
k 〉B2 =

|k〉B2 . It is clear that ρAC is a product state and ρBC is entangled
in general in such a case. �

By the argument in the proof above, we find that, in the
state space HABC , even ρAB achieves the maximal entan-
glement between part A and part B (i.e., it is a maximally
entangled state according to Ref. [102]), and ρAC and ρBC are
far from each other (the former one is a product state and the
latter one can be entangled). Furthermore, by the arguments
above, if pk ≡ 1

r , k = 1, 2, . . . , r, then ρBC = TrA|ψ〉〈ψ |ABC

as in Eq. (51) is also an MES according to Ref. [102]. In such
a case

|ψ〉BAC =
∑
i,k

1

mr
(|i〉B1 |k〉B2 ) ⊗ (|i〉A|k〉C ) (55)

is a maximally entangled pure state with respect to the cutting
B|AC. Let | f (s)

k 〉C as in Eq. (54). If dim HC � lr, we let∣∣ f (s)
k

〉C = |k〉C1 |s〉C2 , (56)
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for some orthonormal sets {|k〉C1 : k = 1, . . . , r} and {|s〉C2 :
s = 1, 2, . . . , l} in HC , where

HC1 := span{|k〉C1 : k = 1, . . . , r}

and

HC2 = span{|s〉C2 : s = 1, 2 . . . , l}.

Then ρB2C in Eq. (53) is an MMES according to Ref. [102]
whenever pk ≡ 1

r . That is, if ρAB is an MMES in the sense
of Ref. [102], it is possible that ρBC is also an MMES in the
sense of Ref. [102]. In fact,

ρBAC =
l∑

s=1

1

l
|φs〉〈φs|BAC (57)

with

|φs〉BAC =
∑
i,k

1

rm
(|i〉B1 |k〉B2 ) ⊗ (|i〉A|k〉C1 |s〉C2 ) (58)

is an MES with respect to the cutting B|AC according to
Ref. [102]. Namely, B can maximally entangled with A and
C simultaneously.

However, this fact contradicts with the monogamy law of
entanglement [19,34,41–61]: entanglement cannot be freely
shared among many parties. In particular, if two parties A and
B are maximally entangled, then neither of them can share
entanglement with a third party C.

It is clear that for both |φ〉ABC in Eq. (50) [or (55)] and ρABC

in Eq. (52) [or (57)] the disentangling conditions (5) and (18)
are valid (we take E (2) = E (2)

f = E f and E (3) = E (3)
f here). In

fact, we have the following.

(1) E (2)
f (|ψ〉A|BC ) = E (2)

f (ρAB) and E (2)
f (ρ〉AC ) = 0.

(2) E (2)
f (|ψ〉B|AC ) = E (2)

f (ρAB) + E (2)
f (ρBC ).

(3) E (2)
f (|ψ〉C|AB) = E (2)

f (ρBC ) and E (2)
f (ρAC ) = 0.

(4) E (3)
f (|ψ〉ABC ) = E (2)

f (ρAB) + E (2)
f (ρBC ).

(5) E (2)
f (ρA|BC ) = E (2)

f (ρAB) and E (2)
f (ρ〉AC ) = 0.

(6) E (2)
f (ρB|AC ) = E (2)

f (ρAB) + E (2)
f (ρBC ).

(7) E (2)
f (ρC|AB) = E (2)

f (ρBC ) and E (2)
f (ρAC ) = 0.

(8) E (3)
f (ρABC ) = E (2)

f (ρAB) + E (2)
f (ρBC ).

That is, the above examples in Eqs. (55) and (57) indicate
that, while part B and part A are maximally entangled, part B
and part C can also be maximally entangled, which is not con-
sistent with the monogamy law of entanglement on one hand
and indicates that they satisfy the monogamy inequality on
the other hand. So, why does this incompatible phenomenon
which seems a contradiction occur? Is the monogamy law
not true, or is the maximally entangled state not a “genuine”
MES? We show below that the maximally entangled state
should be defined by its tripartite extension with the unified
entanglement measure and the monogamy of entanglement
should be characterized by the complete monogamy relation
under the unified entanglement measure. That is, the multipar-
tite entanglement and the monogamy of entanglement cannot
be revealed completely by means of the bipartite measures.

C. When is a state an MES?

We remark here that both the monogamy relation with
respect to the bipartite measure as in Eq. (5) and the complete
monogamy relation as in Eq. (18) support the monogamy law
of entanglement. Although the states in Eqs. (55) and (57) are
MMESs according to Ref. [102], we have

E (3)
f (ρABC ) = ln(mr) > E (2)

f (ρAB) = ln m. (59)

That is, all these monogamy relations support the monogamy
law of entanglement. In other words, the monogamy relations
above are compatible with the monogamy law. We thus be-
lieve that the monogamy law is true.

On the other hand, for pure state |ψ〉AB ∈ SAB, if it is max-
imally entangled, then any tripartite extension |ψ〉ABC (i.e.,
|ψ〉AB = TrC |ψ〉〈ψ |ABC) must admit the form of |ψ〉ABC =
|ψ〉AB|η〉C , that is, both A and B cannot be entangled with C
whenever A and B are maximally entangled. And in such a
case we have E (2)(|ψ〉AB) = E (3)(|ψ〉ABC ) for E (2,3) = E (2,3)

f .
That is, a maximal entanglement does not depend on whether
a third part is added; a maximal amount of entanglement
remains in any extended system. Namely, for the maximally
entangled state, the maximal entanglement cannot increase
when we add a new part. Therefore, we give the following
definition.

Definition 3. Let ρAB be a state in SAB with dim HA = m �
dim HB. Then ρAB is an MES if and only if (i)

E (2)
f (ρAB) = ln m (60)

and (ii) for any extension ρABC of ρAB (i.e., ρAB = TrCρABC)
we have

E (3)
f (ρABC ) = E (2)

f (ρAB). (61)

By this definition, the states in Eqs. (55) and (57) are not
MESs since E (3)

f (ρABC ) > E (2)
f (ρAB). Note that this definition

of MESs is compatible with the monogamy law and makes
the concept of MESs more clear: if ρAB is an MES, then by
the monogamy of E (3)

f we immediately obtain that both ρAC

and ρBC are separable. This also indicates that the complete
monogamy relation can reflect the monogamy law more ef-
fectively. From Theorem 7, we obtain our main result.

Theorem 8. There is no MMES in any bipartite quantum
system.

In fact, we can also show that there is no multipartite
MMES since any extension of MMES would increase entan-
glement from the new part. Note that the states in Eqs. (55)
and (57) are really maximal to some extent; we thus propose
the following definition.

Definition 4. Let dim HABC be a tripartite state space with
dim HA = m and dim HB = n � 2m. If ρAB ∈ SAB admits the
form of Eq. (47), we call it an MMES up to part A. If pk ≡ 1

r
in Eq. (47) additionally, then ρAB is an MMES up to part B.

That is, the definition of the MMES in [102] is in fact
an MMES up to part A with the assumption that dim HB �
2 dim HA. It is clear that ρB2C in Eq. (53) with | f (s)

k 〉C as in
Eq. (56) is an MMES up to part B2 whenever pk ≡ 1

r , and
if qs ≡ 1

l additionally then ρB2C is an MMES up to part C.
We can easily check that, if ρAB is an MMES up to part
A, then ρA = 1

m IA, and if ρAB is an MMES up to part B,
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then ρA = 1
m IA and ρB = 1

mr IB1B2 for some subspace HB1B2

of HB. In addition, we can conclude that the maximally
entangled state must reach the maximal entanglement for a
well-defined entanglement measure (such as entanglement of
formation, concurrence, and negativity) but there do exist
states that are not genuine maximally entangled states (e.g.,
the MMES up to part A) that also achieve the maximal amount
of entanglement. Namely, the MMES up to one subsystem is
an MES mathematically but not physically.

VII. CONCLUSION AND DISCUSSION

We established a “fine grained” framework for defin-
ing a complete MEM and proposed the associated com-
plete monogamy formula. In our framework, together
with the complete monogamy formula, we can explore
multipartite entanglement more efficiently. We not only can
investigate the distribution of entanglement in more detail
than the previous monogamy relation but also can verify
whether the previous bipartite measures of entanglement are
“good” measures. By justification, we found that EoF, concur-
rence, tangle, Tsallis q entropy of entanglement, and squashed
entanglement are better than Rényi α entropy of entangle-
ment, negativity, and relative entropy of entanglement. In
addition, we improved the definition of maximally entangled
states and showed that for any bipartite quantum system the
only maximally entangled state is the maximally entangled
pure state. We can conclude that the property of the bipartite
state is more clear when it is regarded as a reduced state
of its extension, namely, the quantum system is always not
closed, and it should be studied in a bigger picture. The most
tripartite measures by now support both the monogamy law of
entanglement and the additional protocols of multipartite en-
tanglement measures and the associated complete monogamy
relation we proposed. Especially, the maximally entangled
state is highly consistent with our scenario. We believe that
our results present tools and insights into investigating multi-
partite entanglement and other multipartite correlation beyond
entanglement.

As a byproduct, interestingly, we found a class of states
that are additive with respect to the entanglement of forma-
tion, which would shed light on the problem of the classical
communication capacity of the quantum channel [86,115].

However, we still do not know (i) whether the tripartite
conditional entanglement of mutual information is completely
monogamous and tightly complete monogamous, (ii) whether
the tripartite squashed entanglement is tightly completely
monogamous, and (iii) whether the tripartite relative en-
tropy of entanglement and the tripartite geometric measure
are complete multipartite entanglement measures (also see
Table I). We conjecture that the answers to these questions
are affirmative.
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APPENDIX: PROOF OF LEMMA 2

By modifying the proof of Proposition 4.5 in Ref. [85], we
can get the following lemma, which is necessary in order to
prove C(3) and τ (3) are tightly monogamous. In the proof of
Lemma 1, we replace the notation ρX and IX by ρX and IX ,
respectively, for simplicity of notations.

Lemma 2. For any bipartite state ρAB ∈ SAB, we have

1 + max
{
Tr

(
ρ2

A

)
, Tr

(
ρ2

B

)}
Tr

(
ρ2

AB

)
� Tr

(
ρ2

A

) + Tr
(
ρ2

B

)
,

(A1)

where ρA,B = TrB,AρAB. Moreover, 1 + Tr(ρ2
AB) =

Tr(ρ2
A) + Tr(ρ2

B) if and only if ρAB = ρA ⊗ ρB with
min {rank(ρA), rank(ρB)} = 1.

Proof. Without loss of generality, we assume that
Tr(ρ2

B) � Tr(ρ2
A). Let spec(ρA) = {x1, x2, . . .} and

spec(ρB) = {y1, y2, . . .}. For any real number κ , we see
that

Tr
(
ρ2

A

) + Tr
(
ρ2

B

)
= Tr[(ρA ⊗ IB + IA ⊗ ρB)ρAB]

= κ + Tr[(ρA ⊗ IB + IA ⊗ ρB − κIAB)ρAB]

� κ + Tr[(ρA ⊗ IB + IA ⊗ ρB − κIAB)+ρAB],

i.e.,

Tr
(
ρ2

A

) + Tr
(
ρ2

B

)
� κ + Tr(ZκρAB),

where Zk = (ρA ⊗ IB + IA ⊗ ρB − κIAB)+, the positive part of
the operator ρA ⊗ IB + IA ⊗ ρB − κIAB. Furthermore, we have

Tr
(
ρ2

A

) + Tr
(
ρ2

B

)
� κ + Tr

(
Z2

κ

)
Tr

(
ρ2

AB

)
.

It suffices to show

min
{
κ + Tr

(
Z2

κ

)
Tr

(
ρ2

AB

)}
� 1 + Tr

(
ρ2

AB

)
. (A2)

Consider now the function

fκ (a) =
∑

j

(y j + a − κ )2
+ = ‖(y + a − κ )+‖2

2,

where y + a − κ := (y1 + a − κ, y2 + a − κ, . . .). This func-
tion is convex and

fκ (κ ) = ‖y‖2
2 = Tr

(
ρ2

B

)
� 1.

If we assume that κ � max j y j = ‖y‖ = ‖ρB‖∞, then

fκ (0) = 0.

Hence, under this assumption, we conclude that the convex
function is below the straight line through (0,0), (κ, Tr(ρ2

B)),

the equation of which is given by y = Tr(ρ2
B )

κ
x. It follows from

the above discussion that

fκ (a) �
Tr

(
ρ2

B

)
κ

a, a ∈ [0, κ].
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Thus, if κ � ‖ρB‖∞, apparently all xi ∈ [0, κ]; then

Tr
(
Z2

κ

) = ‖Zκ‖2
2 =

d∑
i, j

(xi + y j − κ )2
+ =

∑
i

fκ (xi )

�
∑

i

Tr
(
ρ2

B

)
κ

xi = 1

κ
Tr

(
ρ2

B

)
.

Therefore, for any κ � max{‖ρA‖∞, ‖ρB‖∞}, we have

Tr
(
ρ2

A

) + Tr
(
ρ2

B

)
� κ + 1

κ
Tr

(
ρ2

B

)
Tr

(
ρ2

AB

)
.

Next we consider the function

g(κ ) = κ + 1

κ
Tr

(
ρ2

B

)
Tr

(
ρ2

AB

)
,

where

κ � max{‖ρA‖∞, ‖ρB‖∞} := κ0.

It is easy to see that g is strictly convex and it has a global
minimum at

κmin := ‖ρB‖2‖ρAB‖2

with a minimum value gmin := 2κmin. Clearly, g is strictly
decreasing in the interval (0, κmin] and strictly increasing in
[κmin, 1].

(i) If κmin < κ0, then

min{g(κ ) : κ � κ0} = κ0 + 1

κ0
κ2

min.

(ii) If κmin � κ0, then

min{g(κ ) : κ � κ0} = 2κmin.

In summary, we get that

min{g(κ ) : κ � κ0} =
{

κ0 + 1
κ0

κ2
min, if κmin < κ0,

2κmin, if κmin � κ0.

Therefore, since κ0 � 1, we finally get that

Tr
(
ρ2

A

) + Tr
(
ρ2

B

)
� min{g(κ ) : κ � κ0} � 1 + κ2

min

� 1 + Tr
(
ρ2

AB

)
.

If Tr(ρ2
A) + Tr(ρ2

B) = 1 + Tr(ρ2
AB), then

1 + Tr
(
ρ2

B

)
Tr

(
ρ2

AB

) = 1 + Tr
(
ρ2

AB

)
.

Thus ρB is a pure state. Similarly, by the symmetry of A and
B, we can also conclude that, if Tr(ρ2

A) � Tr(ρ2
B), then

Tr
(
ρ2

A

) + Tr
(
ρ2

B

)
� 1 + Tr

(
ρ2

A

)
Tr

(
ρ2

AB

)
.

In such a case, we see that

1 + Tr
(
ρ2

A

)
Tr

(
ρ2

AB

) = 1 + Tr
(
ρ2

AB

)
(A3)

implies ρA is pure. �
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