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The problem of the position and spin in relativistic quantum mechanics is analyzed in detail. It is definitively
shown that the position and spin operators in the Foldy-Wouthuysen representation (but not in the Dirac one) are
quantum-mechanical counterparts of the classical position and spin variables. The probabilistic interpretation is
valid only for Foldy-Wouthuysen wave functions. The relativistic spin operators are discussed. The spin-orbit
interaction does not exist for a free particle if the conventional operators of the orbital angular momentum
and the rest-frame spin are used. Alternative definitions of the orbital angular momentum and the spin are
based on noncommutative geometry, do not satisfy standard commutation relations, and can allow the spin-orbit
interaction.
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I. INTRODUCTION

The position operator is very important for relativistic
quantum mechanics (QM). In nonrelativistic Schrödinger
QM, this operator is equal to the radius vector r. However,
a transition to relativistic QM leads to a dependence of this
operator on a representation. It has been shown by Pryce [1]
that the form of the position operator for a spin-1/2 particle
is nontrivial and some possible forms have been obtained.
Newton and Wigner [2] have obtained the form of the position
operator having commuting components and localized eigen-
functions in the manifold of positive-energy wave functions
based on the Dirac representation. Foldy and Wouthuysen
have shown [3] that this operator is equal to the radius vector
operator in the Foldy-Wouthuysen (FW) representation.

The spin angular momentum (or the spin for short) takes
one of central places in relativistic QM. The spin of a Dirac
(spin-1/2) particle is defined by the 2×2 Pauli matrices
σi (i = 1, 2, 3) which generate together with the unit matrix
an irreducible representation of the SU(2) group. The Pauli
matrices are Hermitian, unitary, and traceless. The classical
spin is connected with the three-dimensional rotation group
SO(3). Algebraically, SU(2) is the double covering group of
SO(3). This relation plays an important role in the theory
of rotations of spinors in nonrelativistic QM. As a result,
the spin dynamics defined by the Schrödinger-Pauli equation
fully corresponds to the classical picture of rotation of the
spin in external fields. When quadrupole and other multipole
interactions are neglected, the spin dynamics of particles with
higher spins (s > 1/2) is very similar to that of a spin-1/2
particle. In particular, the angular velocity of spin rotation
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depends on the electric and magnetic dipole moments of a
particle and does not explicitly depend on the spin quantum
number s. The spin operator of a nonrelativistic spin-1/2
particle, s = h̄σ/2, fully corresponds to the classical spin.

A clear correspondence between quantum-mechanical op-
erators and classical variables is a distinguishing feature of
nonrelativistic QM. This correspondence takes place for all
main operators including position (coordinate), momentum,
and angular momentum ones.

In contrast, the connection between the quantum-
mechanical operators and classical variables in relativistic
QM is not so simple. It is well known that the Dirac equation
distorts the connection among the energy, momentum, and
velocity operators. Nevertheless, the problem of operators of
relativistic QM corresponding to basic classical variables has
been definitively solved in the 1960s. Moreover, the correct
and definite solution of this problem is already contained
in the famous paper by Foldy and Wouthuysen [3]. It has
been established that quantum-mechanical counterparts of the
classical variables of the radius vector (position), momentum,
angular momentum, and spin of a Dirac particle are the
operators x, p, L = x×p, and s = h̄�/2 defined in the Foldy-
Wouthuysen (FW) representation. These conclusions agree
with the results obtained by Pryce [1] and Newton and Wigner
[2] and have been confirmed in a lot of publications.

Unfortunately, these achievements were not reflected in
textbooks and currently many researchers hold the opposite
view. After more than sixty years, the scientific literature
is full of incorrect (explicit or implicit) statements that the
position and angular momentum of a particle are defined by
the operators r and r×p in the Dirac representation. Similarly,
one often uses definitions of the spin operator different from
the operator obtained in the fundamental works by Foldy and
Wouthuysen [3] and Fradkin and Good [4]. Such definitions
may lead to a spin-orbit interaction (SOI) for a free particle.
This situation is very typical, in particular, in physics of
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twisted (vortex) electrons (see the reviews [5,6]). The de-
scription of the particle position by the Dirac radius vector
is so common that the papers containing the right descrip-
tion [7,8] were followed by the Comments [9,10]. A short
analysis of the problem has been given in Ref. [11]. In the
present work, we reproduce known (but forgotten) arguments
in favor of a definite connection between classical variables
and corresponding operators which shows the special role of
the FW representation. We also put forward some arguments
given by a contemporary development of theory of the FW
transformation. These arguments relate to a description of
spinning particles in external fields. In the present study, we
focus our attention on the spin while problems connected with
the operators of the position and the angular momentum are
also properly addressed.

The paper is organized as follows. In the next section,
we explain main distinguishing features of the relativistic
FW transformation. In Sec. III, we reproduce the past (but
forgotten) approach to carrying out an unambiguous deter-
mination of basic operators for a free Dirac particle and
the corresponding classical variables. This approach leads
to the definitions of fundamental operators of the position
and spin which were generally accepted sixty years ago but
have been unreasonably revised lately. Important additional
arguments based on the relativistic FW transformation in
external fields are presented in Sec. IV. Section V describes
the relativistic operators of the position and spin. The related
problems of relativistic QM (a probabilistic interpretation of
a wave function, spin-orbit interaction for a free particle and
Zitterbewegung) are expounded in Sec. VI. The results are
discussed and summarized in Sec. VII.

We use the system of units h̄ = 1, c = 1. We include h̄
and c explicitly when this inclusion clarifies the problem. The
square and curly brackets, [. . . , . . . ] and {. . . , . . . }, denote
commutators and Poisson brackets, respectively. The standard
denotations of Dirac matrices are applied (see, e.g., Ref. [59]).
In particular, � ≡ diag(σ, σ ), � = β�.

II. RELATIVISTIC FOLDY-WOUTHUYSEN
TRANSFORMATION

The connection between fundamental classical variables
and the corresponding operators is studied in the framework
of relativistic QM and the FW representation happens to be
very useful. Therefore, a consideration of the relativistic FW
transformation is instructive.

In this section, we focus our attention on such a transforma-
tion for a particle in external fields. However, a consideration
of relativistic particles with different spins in external fields is
not simple because of specific properties of initial equations.
All these equations substantially differ from the Schrödinger
equation of nonrelativistic QM. The Dirac equation in the
Hamiltonian form corrupts the connection among energy,
momentum, and velocity. The connection between the rel-
ativistic QM and Schrödinger QM is restored by the FW
transformation [3]. In the FW representation, the relativistic
QM takes the Schrödinger form. This fact has been first shown
[3] for a nonrelativistic Dirac particle in electromagnetic fields
and for a free relativistic Dirac particle.

The important development of QM in the FW representa-
tion has been made in Ref. [12] where the exact FW transfor-
mation operator has been derived and main properties of this
operator have been determined. This operator is defined by

�FW = UFW�D ≡ exp (iSFW)�D, (1)

where SFW is the exponential FW transformation operator. The
transformation is unitary (U †

FW = U −1
FW). There is an infinite

set of representations different from the FW representation
whose distinctive feature is a block-diagonal form of the
Hamiltonian. The FW transformation is uniquely defined by
the condition that the exponential operator SFW is odd,

βSFW = −SFWβ, (2)

and Hermitian [12,13]. This condition is equivalent to [12,13]

βUFW = U †
FWβ. (3)

Eriksen [12] found the exact expression for the nonexpo-
nential FW transformation operator. It is convenient to present
this expression in the form [14]

UFW = UE = 1 + βλ√
2 + βλ + λβ

, λ = H
(H2)1/2

. (4)

To unambiguously define the square root, these relations
should be complemented by the condition that the square root
of the unit matrix I is equal to the unit matrix [15]. The exact
exponential FW transformation operator has been determined
in Ref. [16]. The initial Hamiltonian operator H is arbitrary.
It is easy to see that [12]

λ2 = 1, [βλ, λβ] = 0, [β, (βλ + λβ )] = 0. (5)

The equivalent form of the operator UE [14] shows that it
is properly unitary:

UE = 1 + βλ√
(1 + βλ)†(1 + βλ)

. (6)

The additional substantiation of the Eriksen method was
presented in Ref. [17].

However, Eq. (6) containing square roots of operators is
not applicable for a derivation of relativistic expressions for
FW Hamiltonians except for a few special cases [3,17,18].
Equation (6) can be used for a calculation of series of rela-
tivistic corrections to nonrelativistic FW Hamiltonians.

Many transformation methods allowing one to derive a
block-diagonal Hamiltonian do not lead to the FW repre-
sentation (see Refs. [12–14] for more details). Paradoxically,
the original FW method [3] does not satisfy the Eriksen
conditions and does not lead to the FW representation [13,19].
Any FW transformation method satisfying these conditions
is correct. All FW Hamiltonians obtained by correct methods
coincide. Methods which do not satisfy the Eriksen conditions
can be corrected. For the original FW method [3], such
corrections have been obtained in Refs. [13,16,19–21].

Contemporary QM requires relativistic methods giving
compact relativistic FW Hamiltonians for any energy. The
first such Hamiltonian has been derived by Blount [22].
At present, there are many different relativistic FW trans-
formation methods (see Refs. [21,23–25] and references
therein). In the present work, we use the results obtained
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by the method proposed in Ref. [15] and then developed in
Refs. [16,20,21,24,26]. The validity of this method has been
rigorously proven in Ref. [24]. The general form of the initial
Hamiltonian is given by [26]

H = βM + E + O, βM = Mβ, βE = Eβ,

βO = −Oβ. (7)

The even operators M and E and the odd operator O are di-
agonal and off-diagonal in two spinors, respectively. Equation
(7) is applicable for a particle with any spin if the number
of components of a corresponding wave function is equal
to 2(2s + 1), where s is the spin quantum number. For a
Dirac particle, the M operator is usually equal to the particle
mass m:

HD = βm + E + O. (8)

The approximate nonexponential FW transformation oper-
ator can be presented as follows [24]:

U = 1 + √
1 + X 2 + βX√

2
√

1 + X 2(1 + √
1 + X 2)

, X =
{

1

2M ,O
}
. (9)

The approximate relativistic FW Hamiltonian is given by [24]

HFW = βε + E + 1

4

{
1

2ε2 + {ε,M} , (β[O, [O,M]]

− [O, [O,F]])

}
, ε =

√
M2 + O2. (10)

As an example, we can consider a spin-1/2 particle inter-
acting with electromagnetic fields. If the particle possesses
the anomalous magnetic moment (AMM) μ′ and the electric
dipole moment (EDM) d , its interaction is defined by the
Dirac equation added by the Pauli term and the term propor-
tional to the EDM (see Ref. [27]):(

iγ μDμ − m + μ′

2
σμνFμν + d

2
σμνGμν

)
� = 0, (11)

where Dμ = ∂μ + ieAμ is the covariant derivative, Gμν =
(−B, E ) is the tensor dual to the electromagnetic field one,
and Fμν = (E, B).

The Dirac-Pauli Hamiltonian added by the EDM terms has
the form (8) where E and O are defined by

E = e
 − μ′� · B − d� · E,

O = α · π + iμ′γ · E − idγ · B. (12)

The calculated FW Hamiltonian is given by [27]

HFW = H(MDM)
FW + H(EDM)

FW , (13)

H(MDM)
FW = βε′ + e
 + 1

4

{(
μ0m

ε′ + m
+ μ′

)
1

ε′ , [� · (π × E − E × π) − h̄∇ · E]

}
− 1

2

{(
μ0m

ε′ + μ′
)

,�·B
}

+ β
μ′

4

{
1

ε′(ε′ + m)
, [(B·π)(�·π) + (�·π)(π·B) + 2π h̄(π· j + j ·π)]

}
, (14)

H(EDM)
FW = −d�·E + d

4

{
1

ε′(ε′ + m)
, [(E ·π)(�·π) + (�·π)(π·E )]

}
− d

4

{
1

ε′ , (�·[π×B] − �·[B×π])

}
. (15)

Here H(MDM)
FW defines the contribution from the magnetic

dipole moment (MDM), μ0 = eh̄/(2m) is the Dirac magnetic
moment, ε′ = √

m2 + π2, and

j = 1

4π

(
c ∇×B − ∂E

∂t

)
is the density of external electric current. The term in Eq. (14)
proportional to ∇ · E defines the Darwin (contact) interac-
tion. While we take into account in Eq. (15) terms propor-
tional to h̄2 and describing contact interactions with external
charges and currents, such terms are zero due to the Maxwell
equations

∇ · B = 0, ∇ × E = −∂B
∂t

.

Terms proportional to the second and higher powers of h̄
and quadratic and bilinear in E and B are neglected. This
Hamiltonian will be used in Sec. IV.

When [E,O] = 0, the FW transformation of the Dirac
Hamiltonian (8) is exact [15]. For a free Dirac particle, the

FW transformation operator is given by [3]

UFW = ε + m + γ · p√
2ε(ε + m)

, U −1
FW = ε + m − γ · p√

2ε(ε + m)
,

ε =
√

m2 + p2. (16)

III. POSITION AND SPIN OPERATORS
FOR A FREE DIRAC PARTICLE

A definite connection among the position, angular mo-
mentum, and spin operators for a free Dirac particle and the
corresponding classical variables was one of great achieve-
ments of QM in the last century. Unfortunately, this brilliant
achievement was lately revised without appropriate substan-
tiations. An incorrect interpretation of these operators is now
so pervasive that it fully covers the theory of twisted (vortex)
particles and is often applied in other branches of physics and
also in quantum chemistry (see Refs. [28,29]).

In this section, we reproduce the previously well-known
results allowing an unambiguous determination of basic op-
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erators for the free Dirac particles. We follow the approach
based on Refs. [1,30] and developed in Refs. [31,32].

The theory of a dynamical system is built up in terms of
a number of algebraic quantities, called dynamical variables,
each of which is defined with respect to a system of spacetime
coordinates. There are ten independent fundamental quantities
Pμ = (H, P), Jμν (μ, ν = 0, 1, 2, 3) describing the momen-
tum and total angular momentum and characteristic for the
dynamical system [1,30–32]. The antisymmetric tensor Jμν

is defined by the two vectors, J and K. As a result, there
are the ten infinitesimal generators of the Poincaré group
(inhomogeneous Lorentz group [1]), namely, the generators
of the infinitesimal space translations P = (Pi ), the generator
of the infinitesimal time translation H , the generators of in-
finitesimal rotations J = (Ji ), and the generators of infinites-
imal Lorentz transformations (boosts) K = (Ki ) (i = 1, 2, 3)
[1,30–36]. These ten generators satisfy the following Poisson
brackets [1,30–35]:

{Pi, Pj} = 0, {Pi, H} = 0, {Ji, H} = 0,

{Ji, Jj} = ei jkJk, {Ji, Pj} = ei jkPk, {Ji, Kj} = ei jkKk,

{Ki, H} = Pi, {Ki, Kj} = −ei jkJk, {Ki, Pj} = δi jH. (17)

In the multiparticle case, the momenta and energies of par-
ticles are additive, P = ∑

k P(k), H = ∑
k H (k). Counterparts

of these generators in QM are ten corresponding operators.
A connection between the classical and quantum mechanics
manifests itself in the fact that the commutators of these
operators are equal to the corresponding Poisson brackets
multiplied by the imaginary unit i. Equation (17) describes the
Lie algebra of classical motion for a free particle which leads
to the ten-dimensional Poincaré algebra. The only additional
equation which should be satisfied defines the orbital and spin
parts of the total angular momentum:

J = L + S, L ≡ Q × P. (18)

There is a latitude in the definition of the position, orbital
angular momentum (OAM), and spin. An exhaustive list of
appropriate definitions has been presented in Ref. [1].

A consideration of the particle position variables Qi brings
the following Poisson brackets [1,31,32]:

{Qi, Pj} = δi j, {Qi, Jj} = ei jkQk,

{Qi, Kj} = 1
2 (Qj{Qi, H} + {Qi, H}Qj ) − tδi j . (19)

The last term in the relation for {Qi, Kj} has been missed in
Refs. [31,32]. It follows from Eqs. (17)–(19) that

{Li, Pj} = ei jkPk, {Si, Pj} = 0. (20)

Equations (17)–(20) should be satisfied for any correct
definition of fundamental variables. However, these equations
do not uniquely define the fundamental variables and different
sets of the variables Q, L, S can be used [1].

The conventional particle position defines the center of
charge of a charged particle if the particle EDM is negligible.
The term “mass point” is also useful. For a single particle,
the mass point always coincides with the conventional particle
position. It also coincides with the center of charge of a
charged particle when the particle EDM is neglected. Under
this assumption, the mass point is the center of both positive

and negative charges of an uncharged particle like a neutron.
The Poisson brackets for the conventional particle position are
equal to zero:

{Qi, Qj} = 0. (21)

The property (21) is equivalent to the commutativity of the
particle position operators [cf. Eq. (29)] and is nontrivial (see
Refs. [1,32]). Other sets of fundamental variables violating
Eq. (21) can also be used [1]. We will consider this problem
in Secs. V and VI. Equations (17)–(21) describe a classical
Hamiltonian system.

The well-known deep connection between the Poisson
brackets in classical mechanics (CM) and the commutators
in QM also takes place in this case. It is important that
this connection remains valid in any representation. We need
only to present the corresponding commutation relations for
free spinning Dirac fermions. These relations allow one to
establish definite forms of operators corresponding to basic
classical variables in the Dirac and FW representations.

In the framework of CM, Eqs. (17)–(21) allow one to
obtain the following Poisson brackets [1,32,37]

{Qi, Lj} = ei jkQk, {Qi, S j} = 0, {Pi, S j} = 0,

{Li, Lj} = ei jkLk, {Si, S j} = ei jkSk . (22)

Evidently,

{Li, S j} = 0. (23)

The main variables of a free spinning particle in CM are
specified by Eqs. (18) and

H =
√

m2 + P2, K = QH − S × P
m + H

− tP (24)

(see also Refs. [34,35] and Eq. (A.23) in Ref. [38]). In
Refs. [32,33,36,38], the last term in the relation for P has been
missed.

The Poisson brackets (22) and (23) show that the variable
Q defined by Eq. (21) does not depend on the spin and is the
same for spinning and spinless particles with equal Q, P, and
H . For a particle ensemble, the variable Q defines the position
of the center of charge. Otherwise, a violation of the condition
(21) leads to a dependence of Q on the spin.

In CM, the position vector satisfying Eq. (21) is the ra-
dius vector R. For a free Dirac particle, the most straight-
forward way for a determination of the position and spin
operators in any representation is the use of the FW rep-
resentation as a starting point. The reason is a deep simi-
larity between the classical Hamiltonian (24) (which is spin
independent for a free particle) and the corresponding FW
Hamiltonian [3]

HFW = β
√

m2 + p2, p ≡ −ih̄
∂

∂r
. (25)

In addition, the lower spinor of the FW wave function �FW

is equal to zero if the total particle energy is positive. The
Hamiltonian (25) results from the FW transformation of the
Dirac Hamiltonian

HD = βm + α · p. (26)
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The remaining operators read [32]

j = l + s, l ≡ q × p, K = 1

2
(qH+Hq) − s × p

βm +H − t p, (27)

where q is the position operator.
The operators being counterparts of fundamental classical variables should satisfy the relations [cf. Eqs. (17)–(23)]

[pi, p j] = 0, [pi,H] = 0, [ ji,H] = 0, [ ji, j j] = iei jk jk, [ ji, p j] = iei jk pk,

[ ji, Kj] = iei jkKk, [Ki,H] = ipi, [Ki, Kj] = −iei jk jk, [Ki, p j] = iδi jH,

[qi, Kj] = 1
2 (q j[qi,H] + [qi,H]q j ) − itδi j, [qi, p j] = iδi j, [qi, j j] = iei jkqk,

[qi, s j] = 0, [si, p j] = 0, [li, s j] = 0, [li, l j] = iei jk lk, [si, s j] = iei jksk, (28)

[qi, q j] = 0. (29)

Let us first consider the set of operators p,HD, j, K, q, sD, where sD = h̄�/2 and all these operators are defined in the Dirac
representation (in particular, the position operator is the Dirac radius vector r). Some of commutators in Eq. (28) which contain K
are not satisfied by these operators. This fact follows from a noncoincidence of the position operator in the Dirac representation
with r which has been shown for the first time in Ref. [1].

A consideration of the set of operators p,HFW, j, K, q, s defined in the FW representation leads to an opposite conclusion. In
this representation, the definition of s is the same (s = h̄�/2) and the position operator q is equal to the FW radius vector x. We
can check that Eqs. (28) and (29) are now satisfied. Thus, the counterparts of the classical Hamiltonian, the position vector, the
orbital angular momentum (OAM), and the spin are the operators HFW, x, x×p, and h̄�/2 defined in the FW representation.
The operators p and J are not changed by the transformation from the Dirac representation to the FW one and the counterpart of
the classical variable K is the FW operator (27) with q = x.

Evidently, the Hamiltonian (25) commutes with the OAM and spin operators.
The choice between the definitions of fundamental operators in the Dirac and FW representations becomes evident when the

commutators of the Hamiltonian with the position operator are considered. The corresponding Poisson bracket following from
Eq. (24) is equal to

{H, Q} = − p
H

.

Since the center-of-charge velocity is defined by

V ≡ dQ
dt

= ∂H

∂ p
= p

H
,

we obtain the relation

V = p
H

. (30)

The commutators are given by

[HD, r] = −i
dr
dt

≡ −ivD = −iα,

[HFW, x] = −i
dx
dt

≡ −ivFW = −i
p

HFW
. (31)

Equations (30) and (31) show that only the FW operators are the quantum-mechanical counterparts of the corresponding classical
variables. The connection between the velocity and momentum operators is closely related to the problem of Zitterbewegung
considered in Sec. VI C. An importance of the proportionality between the velocity and momentum operators has been noted in
Refs. [49–51].

Of course, the counterparts of the fundamental classical variables can be determined in any representation. In the Dirac
representation, they are defined by the transformation of the corresponding FW operators [3,32,34–37]. This transformation is
inverse with respect to the FW one and is performed by the operator U −1

FW. If we denote by A any fundamental operator in the FW
representation, the same operator in the Dirac representation is equal to U −1

FWAUFW. Thus, the counterparts of the fundamental
classical variables in the Dirac representation read

P → p = pD = pFW, H → HD = U −1
FWHFWUFW,

J → j = jD = jFW, Q → q = X = U −1
FWxUFW,

L → l = lD = U −1
FWx × pUFW = X × p, S → s = S = h̄

2
U −1

FW�UFW,
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K → KD = U −1
FW

[
1

2
(xHFW + HFWx) − s × p

m + HFW
− t p

]
UFW

= 1

2
(XHD + HDX ) − S × p

m + HD
− t p. (32)

Here the operators of the position (“mean position” [3]) and the spin (“mean spin angular momentum” [3]) in the Dirac
representation are equal to [1,3,19]

q = X = r − � × p
2ε(ε + m)

+ iγ

2ε
− i(γ · p)p

2ε2(ε + m)
, (33)

S = m

2ε
� − i

γ × p
2ε

+ p(� · p)

2ε(ε + m)
, ε =

√
m2 + p2. (34)

We underline that the conventional spin operator corresponding to the classical rest-frame spin commutes with the OAM operator,
the Hamiltonian, and the position and momentum operators in any representation. For any operators satisfying the relation
CFW = [AFW, BFW],

CD = U −1
FWCFWUFW=U −1

FW(AFWBFW− BFWAFW)UFW=U −1
FWAFWUFWU −1

FWBFWUFW−U −1
FWBFWUFWU −1

FWAFWUFW= [AD, BD].

The validity of the above-mentioned results on the po-
sition, spin, and other fundamental operators in the Dirac
and FW representations has been demonstrated by numerous
methods. Newton and Wigner [2] (see also Ref. [39]) have
investigated localized states for elementary systems. They
have shown that the operator (33) is the only position operator
(with commuting components) in the Dirac theory which has
localized eigenfunctions in the manifold of wave functions
describing positive-energy states [2]. Therefore, the operator
(33) is called the Newton-Wigner (NW) position operator.

It is important that the deep similarity between the funda-
mental classical variables and the corresponding FW opera-
tors does not disappear for different definitions of the position
operator. It has been shown still in Ref. [1] that definitions of
this operator violating the relation [qi, q j] = 0 are possible for
spinning particles. The subsequent investigations [38,40–45]
have confirmed the possibility of position operators with
noncommutative components for spinning particles. However,
the position operator with commutative components should
satisfy Eqs. (27)–(33).

The fundamental conclusion that the NW position operator
q and the radius vector in the FW representation x are iden-
tical has been confirmed in many papers [46–54]. Some of
them have been fulfilled by different methods. In particular,
the extended-type position operator has been proposed in
Ref. [52] and definite relations between the velocity (q̇) and
momentum operators have been introduced in Refs. [49,50].

The equivalence of the classical spin S and the
FW mean-spin operator has also been shown in
Refs. [4,46,50,51,54–58]. A rather important result has
been obtained by Fradkin and Good [4]. They not only
have confirmed Eq. (34) for the spin operator in the Dirac
representation but also have demonstrated that the result
obtained by Foldy and Wouthuysen remains valid for a Dirac
particle in electric and magnetic fields. The FW mean-spin
operator defines the rest-frame spin [4], while the use of
the four-component spin operator aμ is also admissible
[4,59]. This operator is orthogonal to the four-momentum one
(aμ pμ = 0) and is defined by

aμ = 1

2m
eαβνμ pαSβν, (35)

where Sβν is the antisymmetric spin tensor. Evidently, the
four-component spin operator

aμ = (a0, a) =
[

p · s
m

, s + p(s · p)

m(ε + m)

]
(36)

also commutes with the Hamiltonian. However, a cannot be
the conventional spin operator because it does not commute
with the operators q, l and does not satisfy other commutative
relations [see Eq. (28)]. Certainly, the rest-frame spin s is
invariant relative to Lorentz boosts.

We also note important analyzes presented in
Refs. [56,57,60]. It has been shown in Refs. [56,57] that
the operator defining the conventional spin in the Dirac
representation is the mean-spin operator (34) introduced by
Foldy and Wouthuysen. It has been concluded in Ref. [60]
that the Gordon decomposition of the energy momentum and
spin currents of the Dirac electron corresponds to the FW
transformation of its wave function.

Dirac particles in (1+1) dimensions have been considered
in Refs. [61,62]. In the FW representation, wave packets
described by the (1+1)-dimensional Dirac equation also be-
have much more like a classical particle than in the Dirac
representation [61,62].

Thus, the correct forms of conventional operators of the
position and spin of a free Dirac particle are defined by
Eqs. (33) and (34) in the Dirac representation. These operators
are equal to the radius vector x and to the spin operator h̄�/2
in the FW representation.

IV. CLASSICAL LIMIT FOR A DIRAC FERMION AND
SPIN-0 AND SPIN-1 BOSONS IN EXTERNAL FIELDS

In the precedent section, we have analyzed free particles
and this analysis is fully based on the results obtained many
years ago. However, the contemporary development of theory
of the FW transformation allows us to put forward important
arguments in favor of the similarity between the classical
position and spin and the corresponding operators in the
FW representation. This section, unlike the precedent one, is
devoted to a consideration of particles in external fields.
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Relativistic methods giving compact relativistic FW
Hamiltonians for any energy allow one to establish a di-
rect connection between classical and quantum-mechanical
Hamiltonians. To find this connection, it is convenient to
pass to the classical limit of relativistic quantum-mechanical
equations. Importantly, this procedure is very simple in the
FW representation. When the conditions of the Wentzel-
Kramers-Brillouin approximation are satisfied, the classical
limit can be obtained by replacing the FW operators with
the respective classical variables [63]. This property leads
to the conclusion that the quantum-mechanical counterparts
of the classical variables are the corresponding operators in
the FW representation.

Let us begin the analysis of Dirac particle interactions with
external fields from the result obtained in Ref. [4]. In this pa-
per, the equation of spin motion has been derived in the Dirac
representation and its classical limit has been obtained. A par-
ticle with an AMM has been considered and the initial Dirac-

Pauli equation [Eq. (11) with d = 0] has been used. In the
classical limit, Fradkin and Good have obtained the equation
[4] coinciding with the famous classical Thomas-Bargmann-
Michel-Telegdi (T-BMT) one [64,65]. The presence of the
Thomas term shows that the both equations are derived for the
rest-frame spin S but not for the spin in the laboratory frame
or in the instantaneously accompanying one. The distinction
between the rest frame and the instantaneously accompanying
one can be made only for an accelerated particle.

The use of the FW representation leads to the same conclu-
sion. The relativistic FW Hamiltonian for the Dirac particle
with the AMM and EDM obtained in Ref. [27] is given by
Eqs. (13)–(15). To compare the position and spin operators
with their classical counterparts, we can use the weak-field
approximation and can disregard terms proportional to h̄2 and
describing contact interactions. When the fields are uniform,
the gauge 
 = −E · x, A = (B×x)/2 can be used. In this
case, the Hamiltonian (13) takes the form

HFW = β

√
m2 +

(
p − e

2
B × x

)2

− eE · x + � · s, � = �MDM + �EDM,

�MDM = e

m

[
−β

(
m

ε
+ a

)
B + β

a

ε(ε + m)
(p · B)p + 1

ε

(
m

ε + m
+ a

)
p × E

]
, (37)

�EDM = − eη

2m

[
βE − β

(p · E )p
ε(ε + m)

+ p × B
ε

]
, s = �

2
, ε =

√
m2 + p2,

where a = (g − 2)/2, g = 4mc(μ0 + μ′)/(eh̄), and η = 4mcd/(eh̄) is the “gyroelectric” factor corresponding to g. The matrix
β may be removed if one considers positive-energy states and disregards the zero lower spinor. The equation of spin motion is
given by

2
ds
dt

= d�

dt
= � × �. (38)

The operator of the angular velocity of spin rotation � has the two parts, �MDM and �EDM, defining the contributions of the
magnetic dipole moment and the EDM, respectively.

The related relativistic FW Hamiltonians derived in Refs. [15,23,25,26] agree with the Hamiltonian (37). We underline that the
method of the relativistic FW transformation used in Ref. [25] substantially differs from that applied in other above-mentioned
works. The operator �MDM is in compliance with the operator of the angular velocity of spin motion in the Dirac representation
obtained in Ref. [4].

We can now compare the Hamiltonian (37) and the equation of spin motion (38) with their classical counterparts. In the same
approximation, the classical Hamiltonian of a spinning particle in uniform electric and magnetic fields has the form

H =
√

m2 +
(

P − e

2
B × R

)2

− eE · R + � · S, (39)

where the angular velocity of spin rotation � = �MDM + �EDM is defined by (see Refs. [66–68] and references therein)

�MDM = e

m

[
−

(
m

ε
+ a

)
B + a

ε(ε + m)
(P · B)P + 1

ε

(
m

ε + m
+ a

)
P × E

]
,

�EDM = − eη

2m

[
E − (P · E )P

ε(ε + m)
+ P × B

ε

]
, ε =

√
m2 + P2. (40)

The comparison of Eqs. (37) and (38) with Eqs. (39)
and (40) unambiguously shows that the classical counterparts
of the FW position operator x and the FW spin operator
s = h̄�/2 are the radius vector R and the rest-frame spin
S, respectively. This is a strong argument in favor of the
statements that the position operators are the FW radius

vector x and the Dirac operator (33) and that the conven-
tional spin operators are the FW operator h̄�/2 and the
Dirac operator (34). In this section, Eqs. (33) and (34) define
the Dirac position and spin operators only approximately
because the FW transformation operator depends on external
fields.
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One can confirm these statements for a Dirac particle in
gravitational fields and noninertial frames. It has been defi-
nitely shown in many papers devoted to this problem [69–78]
that the relativistic quantum-mechanical Hamiltonians and
equations of motion in the FW representation are similar to
the corresponding classical ones. As an example, let us con-
sider the Dirac particle in the general noninertial frame. This
frame is characterized by the acceleration a and the rotation
with the angular velocity ω. The relativistic FW Hamiltonian
reads [73]

HFW = β

2

[(
1 + a · x

c2

)
ε + ε

(
1 + a · x

c2

)]
− ω · l + h̄

2
� · �,

� = β
a × p

ε + mc2
− ω, ε =

√
m2c4 + c2 p2, l = x × p.

(41)

Let us stress that Eq. (41) has been derived for the strong
kinematical effects when the ratios |a · x|/c2 and |ω×x|/c are
not small.

The corresponding classical Hamiltonian can be obtained
with a substitution of the metric of the general noninertial
frame into Eq. (3.18) from Ref. [73]:

H =
(

1 + a · R
c2

)
ε − ω · L + � · S,

� = a × P
ε + mc2

− ω, ε =
√

m2c4 + c2P2. (42)

It follows from Eqs. (41) and (42) that the position and spin
operators are the FW operators x and s = h̄�/2 and the Dirac
operators (33) and (34), respectively.

Because of the unification of relativistic QM in the FW
representation [79], similar statements can be made for spin-
0 and spin-1 particles. In connection with this unification,
we can mention the existence of bosonic symmetries of the
standard Dirac equation [80–86]. When terms proportional to
h̄2 are disregarded and the weak-field approximation is used,
the relativistic Hamiltonian for a spin-0 particle in the uniform
electric and magnetic fields has the form [87]

HFW = ρ3

√
m2 +

(
p − e

2
B × x

)2

− eE · x, (43)

where ρ3 is the corresponding Pauli matrix acting on a
two-component wave function. On the same conditions, the
relativistic Hamiltonian for a spin-1 particle with the AMM
and EDM in the uniform electric and magnetic fields is given
by [88]

HFW = β

√
m2 +

(
p − e

2
B × x

)2
− eE · x + � · s(1), � = �MDM + �EDM,

�MDM = e

m

[
−β

(m

ε
+ a

)
B + β

a

ε(ε + m)
(p · B)p + 1

ε

(
m

ε + m
+ a

)
p × E

]
, (44)

�EDM = − eη

2m

[
βE − β

(p · E )p
ε(ε + m)

+ p × B
ε

]
, ε =

√
m2 + p2,

where

β =
(
I 0
0 −I

)
, s(1) =

(
S(1) 0
0 S(1)

)
, (45)

a = (g − 2)/2, g = 2mcμ/(eh̄), and η = 2mcd/(eh̄). Here S(1) = (S(1)
i ) is the conventional 3×3 spin matrix for spin-1 particles

and I is the 3×3 unit matrix. The wave function has six components. The matrix β may be removed if one considers positive-
energy states and disregards the zero lower spinor-like part of the FW wave function.

Evidently, the definition of the position operator as the radius vector in the FW representation remains valid for spin-0 and
spin-1 particles. The use of the FW transformation for a description of a relativistic spin-0 particle in gravitational fields and
noninertial frames [89] confirms this definition of the position operator. The fundamental spin operator for a spin-1 particle in
the FW representation is the matrix (45).

The basic role of the FW representation in nonstationary QM has been shown in Ref. [90]. The classical time-dependent
energy corresponds to the time-dependent expectation value of the energy operator. The latter is the Hamiltonian in the
Schrödinger QM and the FW representation (but not in the Dirac representation) [90]. The energy expectation values are defined
by [90]

E (t ) =
∫

�
†
FW(r, t )HFW(t )�FW(r, t )dV . (46)

In the Dirac representation,

E (t ) =
∫

�
†
D(r, t )H̃(t )�D(r, t )dV , (47)
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where H̃(t ) is the energy operator which defines the energy expectation values by averaging. It does not coincide with the Dirac
Hamiltonian and is equal to [90]

H̃(t ) = HD + eh̄

8

{
1

ε′(ε′ + m)
, [−i{ε′, γ · Ȧ} − 2imγ · Ȧ + � · (π × Ȧ − Ȧ × π)]

}
+ i

eh̄

8

{
1

ε′2(ε′ + m)
, [(π · Ȧ)(γ · π) + (γ · π)(Ȧ · π)]

}
, (48)

where HD is the Dirac Hamiltonian, ε′ = √
m2 + π2, and dots

denote time derivatives.
The contribution to the energy expectation values given

by the two last terms in Eq. (48) can be rather important.
This equation shows that the Dirac Hamiltonian does not
correspond to the classical one in the nonstationary case [90].

In fact, the difference between the position operator (33)
and the radius vector r in the Dirac representation is very
important. The assumption that r is the true Dirac position
operator leads to the misleading conclusion that the quantity
�D = �

†
D(r)�D(r) is the probability density that the particle

is at the point r and the quantity e�†
D(r)�D(r) describes the

electron charge distribution. This assumption also results in
a calculation of incorrect expectation values of operators. We
will discuss these problems in Sec. VII.

Thus, the consideration of a Dirac particle in external
fields leads to results fully supporting the conclusions made
in the precedent section. An analysis of spin-0 and spin-1
particles in external fields also presents arguments in favor of
these conclusions. In contrast to the results for a free particle
presented in Sec. III, the particle spin motion in electric and
magnetic field is sensitive to the Thomas effect [64] and
unambiguously shows that the fundamental spin operator is
defined in the particle rest frame. The analysis presented
excludes the possibility of a definition of this operator in the
instantaneously accompanying frame.

V. RELATIVISTIC OPERATORS
OF THE POSITION AND SPIN

The rest-frame spin s and the four-component one aμ do
not exhaust the list of relativistic spin operators. The spin can
also be represented by the antisymmetric tensor (see Ref. [59],
Sec. 29)

Sμν = 1

m
eμναβaα pβ. (49)

Similarly to the OAM, the spatial part (components Si j) of
this antisymmetric tensor forms the three-component vector
ζ with the following transformation properties (see Ref. [59],
Sec. 29):

ζ(0) = s, ζ‖ = ζ (0), ζ⊥ = ε

m
ζ (0),

ζ = ε

m
ζ(0) − (ζ(0) · p)p

m(ε + m)
, (50)

where ζ(0) characterizes the particle rest frame. Evidently,
the vectors a and ζ differ. The quantity ζ defines the three-
component laboratory-frame spin and can be written in

the form

ζ = s − p × (p × s)

m(ε + m)
. (51)

The quantities l and s forming the total angular momentum
j have different physical meanings. The OAM l is the spatial
part of the antisymmetric tensor Lμν = (−κ,−l ) with κ =
(qH + Hq)/2 − t p and is noninvariant relative to Lorentz
transformations. The rest-frame spin s is invariant relative to
such transformations. It is natural to constitute the total an-
gular momentum from spatial parts of the two antisymmetric
tensors, Lμν and Sμν :

Jμν = Lμν + Sμν = xμ pν − xν pμ + Sμν. (52)

Since the spatial part of Sμν is presented by the vector ζ,
the definition of this vector is analogous to the definition of
the total angular momentum j. Equation (27) shows that the
corresponding operators of the position and OAM should be
redefined in order to avoid a change of the operator j:

j = l + s = L + ζ, L = X × p. (53)

Equations (51) and (53) specify the position operator X
[1,38,40]. In the FW representation [1,38,40],

X FW = x + s × p
m(ε + m)

, LFW = X FW × p, (54)

where x is the FW center-of-charge position operator and the
spin operator ζFW = ζ is given by Eq. (51).

In the Dirac representation [1,38],

XD = r + i

[
γ

2m
− (γ · p)p

2mε2

]
, LD = XD × p, (55)

ζD = �

2
− i

γ × p
2m

, (56)

where r is the Dirac position operator. Certainly, XD×p +
ζD = X FW×p + ζ = j.

The Dirac and FW position operators have the same form,
r = (x, y, z) and x = (x, y, z). However, they define differ-
ent physical quantities; see Eq. (33). Only the FW posi-
tion operator (“mean position operator” [3]) is the quantum-
mechanical counterpart of the classical position variable
R = (X,Y, Z ) [3].

In the framework of covariant spin physics, the operator q
should define the position of the center of mass. In this case,
its determination is based on the use of the laboratory-frame
spin ζ and OAM X×p and of the corresponding position
operator X . Therefore, just the operator q = X characterizes
the center of mass of a particle. By virtue of Eq. (54), the
positions of the center of mass and the center of charge (or the
mass point for an uncharged particle; see Sec. III) differ.
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The corresponding classical variables are very similar. In
classical physics, the center-of-mass position, the correspond-
ing OAM, and the laboratory-frame spin are given by

X = R + S × P
m(H + m)

, L = X × P, ζ = S − P × (P × S)

m(H + m)
.

(57)

More recent investigations [41,42,57,58,91] have con-
firmed the validity of results obtained in Refs. [1,38,40] and
have given important substantiations of the meaning of the
operator X . In particular, the shift of the center of mass rel-
ative to the center of charge manifests itself in spin-orbit and
spin-spin effects in gravitational interactions [41]. The shift
X FW − x = s×p/[m(ε + m)] naturally appears in the original
quantum-mechanical approach expounded in Refs. [42,91].

Since Eq. (52) is covariant and it leads only to the relation
j = L + ζ (but not to any different relation like j = l + s),
the covariant spin physics should be based on the operators
X ,L, ζ. In the general case, equations of momentum and spin
dynamics obtained with the operators and any different set
of fundamental operators (e.g., x, l, s) are noncovariant. This
fact (first noted in Refs. [41,42,91]) does not mean that the
use of different sets can result in some mistakes. In particular,
the correct utilization of the conventional operators x, l, s is
ensured by Eq. (53). While equations of motion obtained with
these operators can be noncovariant, such a noncovariance
does not lead to any fallacy.

The Pauli-Lubanski four-vector (see Refs. [56,58])

W μ = 1
2 eαβνμ pαJβν (58)

is also widely used as a relativistic spin operator. It is easy to
check that the four-vectors maμ and W μ are equivalent. The
tensor of the total angular momentum is given by Eq. (52).
The tensor of the OAM does not contribute to the Pauli-
Lubanski vector. For an extended object like an atom, the spin
tensor involves the internal OAM (for example, the OAM of
an electron in an atom). In this case, Eqs. (35), (52), and (58)
lead to the relation

W μ = maμ. (59)

In the FW representation,

W μ = (W 0,W ) =
[

p · �

2
,

m�

2
+ p(p · �)

2(ε + m)

]
. (60)

A spinning particle is characterized by the two Casimir
invariants (Casimir operators of the Poincaré group):

pμ pμ = m2, W μWμ = −m2s2 = −m2s(s + 1)I, (61)

where I is the unit matrix. It has been noted at the end
of Sec. III that the rest-frame spin s is invariant relative to
Lorentz boosts. Therefore, the square of the spin operator is
the Casimir invariant and the Lorentz scalar and s is the correct
spin operator.

It has been obtained in Ref. [56] that the only spin operator
satisfying the required commutation relations has the form

s′ = 1

m

( |p0|
p0

W−W0
p

|p0| + m

)
= 1

m

(
W −W0

p
p0+ m

)
. (62)

The total energy is expected to be positive. It has been noted
in Ref. [56] that this operator is equivalent to the rest-frame
spin operator s. In Ref. [56], nevertheless, the operators s and
s′ are defined by different formulas. The use of Eqs. (36),
(59), and (62) shows that s′ = s. This result has been first
obtained by Ryder [55] (see also Ref. [58]). Therefore, the
transformation of the operator s′ to the Dirac representation
leads to the operator (34). The operator (62) is also useful in
the quantum field theory [92].

In Refs. [58,93–96], the projected spin operator has been
considered. It is possible to project some operators onto
positive- and negative-energy subspaces, eliminating the cross
terms corresponding to the electron-positron transitions. In
particular, the projected radius vector operator is given by
[58,93,94,96]

R = �+r�+ + �−r�−, (63)

where the projectors are given by

�± = 1

2
U †

FW(1 ± β )UFW = 1

2

(
1 ± β

m

ε

)
± α · p

2ε
.

In the Dirac and FW representations, the projected opera-
tors of the radius vector (position) and spin are equal to

RD = r − � × p
2ε2

+ i
mγ

2ε2
, RFW = x − � × p

2ε(ε + m)
(64)

and

SD = 1

2ε2
[m2� + p(p · �) − imγ × p],

SFW = m�

2ε
+ p(p · �)

2ε(ε + m)
, (65)

respectively [58,93–96]. The projected OAM operator is
given by

LD = RD × p, LFW = RFW × p. (66)

Despite the assertion in Ref. [96] that the projected spin
operator “corresponds to the spatial part of the Pauli-Lubanski
four-vector,” the two vectors substantially differ (SFW =
W/ε �= W/m). This conclusion follows also from Eq. (16) in
Ref. [96]. In Pryce’s classification [1], the projected operators
of the position and spin correspond to the case (c). When our
denotations are used, the classical counterpart of the projected
position operator obtained by Pryce [1] reads [cf. Eqs. (27)
and (64)]

Ri = tPi + Ji0

H
, R = tP + K

H
= R − S × P

H (H + m)
. (67)

It has been asserted in Ref. [96] (p. 5) that the expectation
value of the projected position operator “for a single-electron
state corresponds to the center of the probability density
(center of charge).” However, Eqs. (64) and (67) unambigu-
ously show that the projected position depends on the spin.
Therefore, this assertion is not correct. It can be added that the
operator R substantially differs from the center-of-mass posi-
tion operator X (the quantities X FW − x and RFW − x have
even opposite signs). The projected and laboratory-frame spin
operators are also substantially different. In the general case,
this circumstance results in the noncovariance of equations of
motion based on the projected operators.
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Nevertheless, the projected operators are needed for the
description of Berry phase effects. In this case, the noncom-
mutativity of components of the projected position operator is
important and defines the Berry curvature [95–100].

Thus, we can select three sets of fundamental FW opera-
tors, x, l, s, X ,L, ζ, and R,L,S. Other fundamental oper-
ators in these sets coincide. The three sets are self-consistent
but the operators in these sets have different meanings. For
a charged particle, the first set defines the conventional op-
erators of the center-of-charge position, the OAM, and the
rest-frame spin. These operators satisfy Eq. (28). While the
NW position operators in the Dirac representation (X ) and in
the FW one (x) do not exactly determine the center-of-mass
position of an ensemble of spinning particles; they define the
center-of-charge position of this ensemble (see Sec. III).

The second set characterizes the center-of-mass position,
the corresponding OAM, and the laboratory-frame spin. The
quantity X defines the center-of-mass position of an ensemble
of spinning particles. However, the Cartesian components of
the operator X do not commute and the standard commutation
relations for the components of the OAM and spin are not
satisfied either:

[Xi,X j] �= 0, [Li,L j] �= iei jkLk, [ζi, ζ j] �= iei jkζk,

i �= j; [Li, ζ j] �= 0 for any i, j. (68)

The third set defines the projected operators and is useful
for the description of the Berry phase effects. For the operators
forming this set, the commutation relations are similar to
Eq. (68):

[Ri,R j] �= 0, [Li,L j] �= iei jkLk, [Si,S j] �= iei jkSk,

i �= j; [Li,S j] �= 0 for any i, j. (69)

Certainly, explicit forms of the commutators in Eqs. (68) and
(69) differ.

It can be easily shown that the first set is much more
convenient than the second and third sets. Besides a com-
mutative geometry, an important reason is a definition of
electromagnetic and other interactions. It is very important
that the electromagnetic fields act on charges and currents.
Therefore, the electromagnetic interactions are defined by the
center-of-charge position but not by the center-of-mass one.
The interaction energy depends on the fields in the center-
of-charge point but not in the center-of-mass one. The same
situation takes place for gravitational, inertial, and weak inter-
actions. In all quantum-mechanical equations describing the
gravitational and inertial interactions (see Refs. [69–79,89]
and references therein), the radius vector relates to the posi-
tion of the mass point coinciding with the center of charge
for charged particles with negligible EDMs. Equations of
motion obtained with the first (conventional) set of fundamen-
tal operators are fully right while some of these equations
can be noncovariant [42,91]. When the weak interaction is
considered in the framework of QM [101–103], the situation
is the same. As a result, there is no reason for a wide use
of the second and third sets of fundamental operators for
a description of the fundamental interactions. In particular,
these operators are useless for relativistic quantum chemistry
and physics of heavy atoms. Nevertheless, we agree with
Refs. [42,91] that the noncovariance of equations of motion

can be avoided by passing to the center-of-mass position.
For this purpose, the second set of fundamental operators
is useful. Another exception is a determination of the Berry
phase effects with the third set. In other cases, one needs to
apply the first set of fundamental operators.

The necessity of using the mathematical tool of noncom-
mutative geometry significantly complicates all derivations
with the second and third sets. Further, the laboratory-frame
spin ζ, the corresponding OAM L, and the projected operators
L and S are momentum dependent. As a result, the com-
mutation relations for their components given by Eqs. (68)
and (69) are not similar to the commutation relations (28)
for the components of the total angular momentum j. In
addition, the use of the above-mentioned operators prevents
one from introducing the quantum numbers l and s connected
with the conventional operators l and s. Only the conventional
operators belonging to the first set satisfies the commutation
relations similar to those for the total angular momentum [see
Eq. (28)].

The consideration of relativistic operators of the position
and spin carried out in this section leads to the conclusions
which agree with the results obtained in Refs. [38,40,42,55–
58,91]. However, our conclusions contradict the conclusions
which have been made in Refs. [9,10,28,29,95,96,104–107]
and are widely used in physics of twisted electrons and
relativistic quantum chemistry. The analysis of the latter con-
clusions launched in this section will be finalized in Sec. VI.

VI. RELATED PROBLEMS OF RELATIVISTIC
QUANTUM MECHANICS

In this section, we analyze and correct two common errors:
a probabilistic interpretation of a wave function in the Dirac
representation and an assertion about an existence of SOI for a
free particle. We also discuss the problem of Zitterbewegung.

A. Probabilistic interpretation of a wave function

Unfortunately, many scientists suppose that the Dirac rep-
resentation corrupting the connection among energy, mo-
mentum, and velocity provides the right distribution of the
probability density and the FW representation restoring the
Schrödinger picture of relativistic QM distorts this density.
While this point of view is not correct, it is presented in
almost all papers on twisted (vortex) electrons and, moreover,
prevails in publications devoted to some other problems. In
particular, the probabilistic interpretation of the wave function
in the Dirac representation is commonly used in relativistic
quantum chemistry (see below). Of course, this situation is
not satisfactory.

It is generally accepted that nonrelativistic Schrödinger
QM admits a probabilistic interpretation of the wave function.
The classical center-of-charge position R corresponds to the
Schrödinger position operator (the radius vector x). In the
relativistic case, the classical center-of-charge position is a
counterpart of the FW position operator which is also equal
to the radius vector x. This property has been first established
in Ref. [3] and unambiguously follows from our analysis. As
a result, just the FW wave function being an expansion of the
Schrödinger wave function on the relativistic case admits the
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probabilistic interpretation. The wave function in the Dirac
representation cannot have such an interpretation [11] because
the Dirac radius vector r is not the counterpart of the classical
position.

It can also be noted that the components of the
Schrödinger position operator commute. Therefore, any
quantum-mechanical approach based on a position operator
with noncommuting components cannot be a relativistic ex-
tension of the Schrödinger QM. In Sec. V, we have considered
the sets of operators, X ,L, ζ and R,L,S, containing the
laboratory-frame spin ζ and the projected operators, respec-
tively. The components of the position operators are noncom-
muting in the both sets. As a result, the quantum-mechanical
approaches based on these sets lead to wave functions which
cannot be relativistic extensions of the Schrödinger wave
functions and cannot have a direct probabilistic interpreta-
tion. However, wave functions based on the above-mentioned
(second and third) sets of operators can be derived from the
FW wave functions. For any set of fundamental operators,
the classical limit of the FW Hamiltonian coincides with the
corresponding classical Hamiltonian. While the Hamiltonians
are equal for different sets, their functional dependencies on
the corresponding operators of the position, OAM, and spin
vary. It can be added that the Schrödinger-Pauli spin operator
satisfies the commutation relations (28) which remain valid
for the FW spin operator but are violated for the operators ζ

and S.
Therefore, the assertion that the quantity �D(r) =

�
†
D(r)�D(r) is the probability density of the particle position

[9,10,104] is not correct. In fact, the probability density of the
particle position is equal to �(x) = �FW(x) = �

†
FW(x)�FW(x)

[11,108]. This statement has also been made in Refs. [34,79]
and has been implicitly used in Refs. [7,8,109,110]. The basic
role of the FW representation for a particle in nonstationary
fields has been properly shown in Ref. [90] (see also Sec. IV).

The quantities �D and �FW can significantly differ
[10,11,111,112]. A general connection between the Dirac
and FW wave functions at the exact FW transformation has
been obtained in Ref. [112]. In this case, upper spinors in
the two representations differ only by constant factors and
lower FW spinors vanish. An origin of the difference between
�D and �FW is clear from the following derivation. Since
�FW = UFW�D and UFW is a self-adjoint unitary operator, the
integration of the probability density results in∫

�FWdV =
∫

�
†
FW�FWdV =

∫ (
�

†
DU −1

FW

)
(UFW�D)dV

=
∫

�
†
D

(
U −1

FWUFW�D
)
dV =

∫
�

†
D�DdV = 1,

where the operator U −1
FW in (�†

DU −1
FW) and (U −1

FWUFW�D) acts
to the left and to the right, respectively. However, the self-
adjointness of operators manifests at the integration but cannot
be used in any fixed point of a domain of definition. Therefore,

�
†
FW�FW = (

�
†
DU −1

FW

)
(UFW�D) �= �

†
D�D

and �FW �= �D.
The probabilistic interpretation of the FW wave function

allows one to calculate expectation values of all operators. In
particular, the mean squared radius 〈r2〉 and the quadrupole

moment tensor Qi j are given by

〈r2〉 =
∫

�
†
FWx2�FWdV ,

Qi j =
∫

�
†
FW(3xix j − x2δi j )�FWdV . (70)

In relativistic quantum chemistry, the term “FW trans-
formation” is used for the original transformation by Foldy
and Wouthuysen [3] and the relativistic FW transformation
is called the “Douglas-Kroll-Hess transformation.” The latter
transformation can be carried out with any needed accuracy.
For this purpose, analytical or numerical calculations can
be fulfilled. In contemporary relativistic quantum chemistry,
the point of view contradictory to our analysis is generally
accepted (see Sec. 15.2 in Ref. [28] and Refs. [29,105,106]).
It is supposed that expectation values of operators are defined
in the Dirac representation. In this case, the use of the FW
representation needs the transformation of operators to the
FW representation and expectation values of transformed op-
erators are determined. The expectation values of any operator
A in the Dirac and FW representations are defined by

〈A〉 ≡ 〈AD〉 =
∫

�
†
DA�DdV

=
∫

�
†
FW(UFWAU −1

FW)�FWdV =
∫

�
†
FWA′�FWdV ,

Ã ≡ 〈AFW〉 =
∫

�
†
FWA�FWdV , A′ = UFWAU −1

FW. (71)

The difference

PCE (A) = 〈A〉 − Ã (72)

is called the “picture change error” [28,29,105,106]. For ex-
ample, the formula used for a calculation of the quadrupole
moment tensor reads

Qi j =
∫

�
†
D(3xix j − r2δi j )�DdV . (73)

Our analysis unambiguously shows that this definition is not
correct. The picture change error is, indeed, equal to zero and
the expectation values of all operators should be defined in the
FW representation. Therefore, all results obtained in relativis-
tic quantum chemistry with Eq. (72) should be reconsidered.

B. Spin-orbit interaction for a free particle

The analysis presented in Secs. III and IV shows
the correspondence between the classical rest-frame spin
S, the Pauli spin, and the FW mean-spin operator (s = h̄�/2
in the FW representation). This correspondence has been
discovered by Foldy and Wouthuysen [3] and has been shown
in Refs. [32,37,39,46–54]. Evidently, the FW mean-spin op-
erator commutes with the FW Hamiltonian (25) and the FW
mean-OAM operator (l = x×p in the FW representation).
Therefore, the SOI cannot exist for the conventional rest-
frame spin operator s and the corresponding OAM operator
l . In the Dirac representation, the operator h̄�/2 does not
commute with the Dirac Hamiltonian. However, it does not
describe the conventional spin defined by Eq. (34). Thus,
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applying the first set of fundamental operators (see Sec. V)
leads to the nonexistence of the SOI.

In Refs. [95,96,107], the existence of the SOI for a free
Dirac particle has been claimed. This statement is based on
the assumption that the quantum-mechanical counterparts of
the position, OAM, spin, and other fundamental classical
variables are the corresponding operators in the Dirac repre-
sentation. However, it has been explicitly shown in numerous
publications considered in detail in Secs. III–V that these
counterparts are the corresponding operators in the FW rep-
resentation, x, l, s. In relation to the spin, it has been made
in Refs. [3,4,46,50,51,54–57]. The connection between the
classical and quantum-mechanical descriptions of the spin has
been expounded in Secs. III–V. All these results contradict to
the key statement in Ref. [96] that the spin is defined by the
operator sD = h̄�/2 in the Dirac representation.

It is instructive to discuss why this statement leads to the
SOI for a free particle. The use of the projected operators
analyzed in Sec. V considerably simplifies the consideration
of the SOI. There is some similarity between operators in the
Dirac representation and the corresponding projected opera-
tors. For any localized particle state, they have the same ex-
pectation values [93,96]. In particular, the spin operator in the
Dirac representation sD transformed to the FW representation
takes the form [3]

sD→FW = m�

2ε
+ p(p · �)

2ε(ε + m)
+ iγ × p

2ε
. (74)

Its similarity to the projected spin operator in the FW repre-
sentation SFW defined by Eq. (65) is evident. Since the lower
FW spinor for positive-energy states and the upper FW spinor
for negative-energy ones are equal to zero, the expectation
values of the operators SFW and sD→FW coincide. Certainly,
they also coincide with the expectation values of these opera-
tors in the Dirac representation, 〈SD〉 and 〈sD〉.

It is worth mentioning that the Dirac operators and the
corresponding projected ones are not equivalent. In par-
ticular, the Dirac spin operator satisfies the standard al-
gebra [(sD)i, (sD) j] = iei jk (sD)k (i, j, k = 1, 2, 3). Its square
is equal to s2

D = s(s + 1)I = 3I/4, where I is the 2×2
unit matrix. The Dirac position operator has commutative
components ([ri, r j] = 0). These properties remain valid in
any representation. The corresponding projected operators do
not satisfy these properties [see Eq. (69)]. Because of the
nonequivalence of the Dirac and projected operators and the
inconsistency of the former operators with any fundamental
classical variables, the Dirac operators are useless. In contrast
to them, the projected operators may be useful for a solution
of some physical problems. However, their application needs
noncommutative geometry (see Sec. V).

The connection between the expectation values of the
Dirac spin operator and the rest-frame spin (e.g., “mean spin
angular momentum” [3]) follows from Eqs. (65) and (74) and
is given by Eq. (7) in Ref. [96]:

〈sD〉 = m

ε
〈s〉 + p(p · 〈s〉)

ε(ε + m)
. (75)

In disagreement with Ref. [96], the Dirac spin operator and
the projected spin substantially differ from the spatial parts
of the four-component spin operator and the Pauli-Lubanski

four-vector, a and W = ma, respectively. This fact has already
been mentioned in Sec. V.

The opposite statement presented in Ref. [96] is rather
strange because Eqs. (15) and (16) in this paper give the
correct relation between the projected and Pauli-Lubanski
operators, SFW = W/ε [see also Eq. (60) in Sec. V].

It is also claimed in Ref. [96] that the projected op-
erators are covariant. However, the results obtained in
Refs. [38,40–42,91] unambiguously show that covariant equa-
tions of motion can be obtained only with the laboratory-frame
spin ζ and the corresponding operators of the position and
OAM, X and L. These quantities form the second set of
fundamental operators (see Sec. V). As a result, the use of the
projected operators of the position, OAM, and spin leads to
noncovariant equations of motion for the spin and momentum
in the presence of external fields. Even if some equations of
spin motion are covariant, it is not so in the general case.
This conclusion remains valid for the corresponding operators
in the Dirac representation, r, lD, sD. Moreover, even the
application of a as a spin part of the total angular momentum
j with the corresponding redefinition of the position operator
cannot result in covariant equations of motion. In this case,
j = �×p + a, where � is the corresponding position operator.
The quantities a and j are covariant. However, a is a spatial
part of a four-vector and j is formed by spatial components
of an antisymmetric tensor. Therefore, the quantities a and j
are dissimilar and their simultaneous use does not lead to the
covariant equations of motion. The problem of the covariant
fundamental operators and the covariant equations of motion
has been definitively solved in Refs. [38,40]. However, these
papers are not cited in Ref. [96].

We should also mention that Eq. (7) in Ref. [96] coinciding
with Eq. (75) in the present study has nothing in common
with “the Lorentz boost to the rest frame.” It describes the
connection between the expectation values of the Dirac spin
〈sD〉 (defined as 〈S〉 in Ref. [96]) and the FW (rest-frame) spin
〈s〉. The Lorentz boosts define only the connections between
the expectation values of the FW spin and the spatial parts of
either the four-component spin vector (〈a〉) or the antisym-
metric spin tensor (〈ζ〉). These connections are given by

〈a〉 = 〈s〉 + p(p · 〈s〉)

m(ε + m)
,

〈ζ〉 = ε

m
〈s〉 − p(p · 〈s〉)

m(ε + m)
. (76)

Evidently, they substantially differ from the connection
described by Eq. (75) (Eq. (7) in Ref. [96]).

Our next comment relates to one of principal Pryce’s
assumptions [1] that a choice of the fundamental variables
Q, L, S is not unique and the use of different sets of these
variables is possible. The revision of this assumption made
in Ref. [96] is unsubstantiated. The authors of this paper
have considered the first and third sets of fundamental op-
erators and have concluded that only the latter set of these
operators correctly and exhaustively describes physical phe-
nomena. However, it is clear from Ref. [1] and subsequent
publications that the use of the ten-parameter Poincaré group
leaves a room for different definitions of the position and
spin operators satisfying Eqs. (18) and (27). Of course, useful
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definitions should have appropriate substantiations. Neverthe-
less, all well-substantiated position, OAM, and spin operators
are correct. We have analyzed the three sets of fundamental
operators. Each of them is useful for a description of some
physical phenomena and dynamical equations for the spin and
momentum obtained with all the sets should agree. Further-
more, any other set of fundamental operators (even based on
a confusion) leads to correct dynamical equations. Certainly,
different sets are not equally convenient. We mentioned above
that the second and third sets of fundamental operators are not
useful for relativistic quantum chemistry and physics of heavy
atoms. The preferences of the first set are the commutative ge-
ometry, simple commutation relations, and the independence
of potentials and strengths of external fields from the mo-
mentum and spin of the particle. These preferences are seen
from the following example. When the first set is used, the
scalar potential of an electric field in the FW representation
has the simple form φ(x). For the set of projected operators,
it is given by φ(RFW + SFW×p

m(ε+m) ). While the potential φ(RFW)
incorporates the SOI with an external electric field [96], the
need for use of noncommutative geometry makes this set to
be inconvenient.

The analysis fulfilled unambiguously shows that there is
not the SOI if the terms “spin” and “OAM” denote the
conventional rest-frame spin operator s and the corresponding
OAM operator l . Since different definitions of the fundamen-
tal operators of the position, OAM, and spin are admissible,
the existence or nonexistence of the SOI for free particles
depends on these definitions. More precisely, the SOI does not
exist for the conventional fundamental operators containing
the first set but exists for the operators forming other sets.
However, it would be misleading to assert that the SOI exists
but to omit the specification that this effect takes place, e.g.,
for projected operators based on noncommutative geometry
and specific commutation relations. We also underline that
the fundamental classical variables correspond to the related
fundamental operators in the FW representation while the
Dirac representation distorts these operators.

We should also comment the statement [96] that the FW
representation “cannot be used for massless particles.” The
application of relativistic methods of the FW transformation
explicitly shows the inaccuracy of this statement. Even the
early paper by Blount [22] has been demonstrated (despite
some imperfections) the validity of the FW representation in
the massless limit m → 0. The appropriateness of the FW
representation in the massless limit is also clearly seen from
Eqs. (13)–(15), (37), (41), (43), (44), and (48) [113]. The
only important difference between the FW transformations
for massive and massless particles is the loss of classical
interpretation of the spin operator s = h̄�/2 when m = 0. It
can be added that the FW representation has been used for the
photon in Refs. [110,114].

Nevertheless, we should note that particle physics does not
support the smooth transition to the massless limit. Spin-0
and spin-1/2 particles can be considered as exceptions. For
the photon, the FW transformation significantly differs from
that for massive spin-1 particles [88]. It is well known that
massive spin-1 particles can have the helicity 0,±1 but the
photon cannot exist in a helicity zero state. The rest-frame

spin of massive spin-1 particles is described by the 3×3
matrix (45). Its use for a fixed momentum direction allows
one to obtain the three above-mentioned eigenvalues of the
helicity operator. However, this matrix cannot reproduce the
two helicity eigenvalues ±1 of the photon. While the matrix
(45) is also applied for the photon [114–116], a possibility
to connect it with the photon spin seems to be, at least,
doubtful. This simple analysis shows a deep difference be-
tween massless particles with the spins 1/2 and 1. Therefore,
results obtained for the photon cannot be directly applied to
a massless spin-1/2 particle. For the photon, the laboratory-
frame spin operator leading to the SOI can be used.

We should also note that QM cannot provide for an ex-
haustive description of massless particles. For this purpose,
the mathematical tool of quantum field theory is needed.
Nevertheless, some specific properties of massless particles
can be studied in the framework of QM. In this case, the
FW transformation can be helpful even for the photon (see
Refs. [110,114]).

C. Zitterbewegung

Zitterbewegung is a well-known effect consisting of a su-
perfast trembling motion of a free Dirac particle first described
by Schrödinger [117]. This effect is also known for a scalar
particle [118,119]. Our preceding analysis perfectly agrees
with the conclusions about the origin and observability of this
effect made in Refs. [119–121].

As is well known, the Dirac velocity operator is given by

vD ≡ dr
dt

= i[HD, r] = α. (77)

This operator is time dependent:

dα

dt
= i[HD,α] = i{α,HD} − 2iαHD = 2i(p − αHD).

(78)
The problem is usually considered in the Heisenberg

picture:

vD(t ) = eiHDtαe−iHDt . (79)

In the Schrödinger picture, the result is the same. We suppose
that the eigenvalues of the momentum and Hamiltonian oper-
ators are p and H , respectively. In this case, Eq. (78) can be
presented in terms of the Dirac velocity operator:

dvD

dt
= 2i(p − vDH ). (80)

Its integration shows the oscillatory behavior of the Dirac
velocity:

vD(t ) =
[
vD(0) − p

H

]
e−2iHt + p

H
. (81)

The evolution of the Dirac position operator is given by

rD(t ) = rD(0) + pt

H
+ i

2H

[
vD(0) − p

H

]
(e−2iHt − 1). (82)

For a free scalar (spin-0) particle, the initial Feshbach-
Villars Hamiltonian reads [122]

HFV = ρ3m + (ρ3 + iρ2)
p2

2m
. (83)
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The velocity operator in the Feshbach-Villars representation
is equal to

vFV = (ρ3 + iρ2)
p
m

. (84)

The corresponding acceleration operator is defined by the
equation similar to Eq. (78) [119]:

dvFV

dt
= i[HFV , vFV ] = i{vFV ,HFV } − 2ivFVHFV

= 2i(p − vFVHFV ). (85)

We suppose that the eigenvalues of the momentum and Hamil-
tonian operators are p and H , respectively. As a result, the
final equations of dynamics of the free scalar particle [119]
are equivalent to the corresponding equations for the Dirac
particle:

vFV (t ) =
[
vFV (0) − p

H

]
e−2iHt + p

H
, (86)

rFV (t ) = rFV (0) + pt

H
+ i

2H

[
vFV (0) − p

H

]
(e−2iHt− 1). (87)

However, it has been pointed out [49] that the operators p
and v can be proportional for free particles with any spin. The
proportionality of these operators vanishing the acceleration
(dv/(dt ) = 0) can be achieved by the FW transformation. In
the FW representation, the Dirac Hamiltonian takes the form
(25) and the velocity operator is given by

vFW = β
p√

m2 + p2
= p

HFW
. (88)

Similar relations can be obtained for particles with any spin.
It has been shown in Ref. [119] that Zitterbewegung is

the result of the interference between positive- and negative-
energy states. It disappears for the “mean position operator”
[3], the position operator in the FW representation [119–121].
“Zitterbewegung was found to be a feature of a particular
choice of coordinate operator associated with Dirac’s formu-
lation of relativistic electron theory” [120] (p. 334). It can
be removed by carrying out the unitary transformation to the
FW representation. Experiments do not distinguish between
equally valid but different representations leading to the same
observables and the transition to the FW representation does
not change the physics [121]. It can be concluded that Zitter-
bewegung is not an observable [121].

Our analysis fully agrees with this conclusion. The deriva-
tions presented in this subsection show that Zitterbewegung is
an effect attributed to the Dirac and Feshbach-Villars position
and velocity operators but not to the corresponding FW opera-
tors. However, just the FW position and velocity operators are
the quantum-mechanical counterparts of the classical position
and velocity. In the Dirac representation, these quantum-
mechanical counterparts are defined by the operators X [see
Eq. (33)] and dX/(dt ). For the latter operators, Zitterbewe-
gung does not take place in any representation. Our analysis
shows that the Dirac and Feshbach-Villars position and ve-
locity operators are not the quantum-mechanical counterparts
of the classical position and velocity and, in accordance with
Ref. [121], Zitterbewegung cannot be observed.

However, there exists an effect which is more or less
similar to Zitterbewegung. Feshbach and Villars [122] have

obtained the eigenfunctions of the mean position operator X
and have proven that they are not localized in the configuration
space but are extended over a radius of the order of the
Compton wavelength. These eigenstates are the narrowest
possible free wave packets composed only of positive en-
ergy states whose behavior agrees with the nonrelativistic
(Schrödinger) pattern. The nonlocality of the particle position
takes also place for spinning particles [120,123]. It has been
emphasized by Sakurai [123] that “the nonlocality of X is the
price we must pay” for the absence of Zitterbewegung. This
indirect connection between the nonlocality of the particle
position and Zitterbewegung has also been considered in other
works (see, e.g., Refs. [124–126]). The nonlocality of the
particle position manifests in the Darwin interaction defined
by Eq. (14).

VII. DISCUSSION AND SUMMARY

The goal of the present study is a change of the paradoxical
contemporary situation in the relativistic QM when the forms
of the position and spin operators securely established sixty
years ago are “forgotten” while incorrect and unsubstantiated
definitions of these operators are widely used. The Dirac
representation distorts the connection among the energy, mo-
mentum, and velocity operators. Therefore, it is too optimistic
to believe that the Dirac operators of the position and spin,
r and sD, are relativistic extensions of the corresponding
Schrödinger-Pauli operators and quantum-mechanical coun-
terparts of the classical position and spin. Indeed, there are
not any serious arguments in favor of this point of view which
has been proclaimed in Refs. [9,10,28,29,104–106] and has
been explicitly or implicitly presented in almost all papers
devoted to twisted electrons. Some exceptions, in particular,
Refs. [7,8,109,110], are not numerous. Paradoxically, the
correct results obtained for the position and spin operators
sixty years ago were widely discussed [3,4,31–35,39,46–57].
Nevertheless, the researchers holding the opposite point of
view never carefully considered the arguments obtained in the
above-mentioned publications in favor of a definition of the
fundamental operators in the FW representation. The proof
of this definition carried out in Refs. [3,4,31–35,39,46–57] is
straightforward (see Sec. III).

More recent achievements allowing one to perform the FW
transformation for relativistic scalar and spinning particles in
external fields (see Sec. II) have allowed us to give important
arguments in support of this definition. We have shown in
Sec. IV that the position and spin operators corresponding to
the conventional classical variables (the radius vector R and
the rest-frame spin S) are the FW operators x and s = h̄�/2
and their transforms to other representations, including the
Dirac representation. This property remains valid in the pres-
ence of external fields. Our analysis unambiguously shows
that the fundamental spin operator is defined in the particle
rest frame but not in the instantaneously accompanying one.

The main result of the present study is the comparative
analysis of alternative definitions of the position and spin
operators. Certainly, the use of the Dirac position operator r
as a quantum-mechanical counterpart of the classical position
variable brings confusion. A determination of the probabil-
ity density with Dirac eigenfunctions [9,10,104] distorts the
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electron charge distribution in a free space and atoms. In
relativistic quantum chemistry, a calculation of expectation
values with FW eigenfunctions but with FW transforms of
Dirac operators [28,29,105,106] leads to incorrect results due
to unnecessary corrections for the picture change errors.

A calculation of expectation values of the spin with
the Dirac spin operator sD [95,96,107] has similar conse-
quences. As a result, the illusory effect of the SOI ap-
pears. The SOI does not exist for a free particle if the
terms “spin” and “OAM” define the conventional spin and
OAM operators which, in particular, satisfy the commutation
relations [si, s j] = iei jksk, [li, l j] = iei jk lk, [li, s j] = 0. Other
definitions of these operators are possible, but all of them
do not satisfy these commutation relations and are based
on noncommutative geometry. For such definitions, the spin-
orbit interaction can exist. The Dirac spin operator has the
same expectation values as the projected spin operator. Both
of them substantially differ from the two covariant spin
operators given by the spatial parts of the four-component
spin vector and the antisymmetric spin tensor, a and ζ,

respectively. Unfortunately, Refs. [95,96,107] present the mis-
leading conclusion about the SOI. The problem of the SOI
is a matter of a definition of the spin. The conventional QM
based on commutative geometry leads to the nonexistence of
the SOI.

We can conclude that the basic representation in relativistic
QM is the FW one because it provides for a direct similarity
between the relativistic quantum-mechanical operators and
the classical variables.
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