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Validity of many-mode Floquet theory with commensurate frequencies

A. N. Poertner and J. D. D. Martin
Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada N2L 3G1

(Received 12 December 2019; accepted 3 February 2020; published 25 March 2020)

Many-mode Floquet theory [T.-S. Ho, S.-I. Chu, and J. V. Tietz, Chem. Phys. Lett. 96, 464 (1983)] is a
technique for solving the time-dependent Schrödinger equation in the special case of multiple periodic fields,
but its limitations are not well understood. We show that for a Hamiltonian consisting of two time-periodic
couplings of commensurate frequencies (integer multiples of a common frequency), many-mode Floquet theory
provides a correct expression for unitary time evolution. However, caution must be taken in the interpretation
of the eigenvalues and eigenvectors of the corresponding many-mode Floquet Hamiltonian, as only part of its
spectrum is directly relevant to time evolution. We give a physical interpretation for the remainder of the spectrum
of the Hamiltonian. These results are relevant to the engineering of quantum systems using multiple controllable
periodic fields.
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I. INTRODUCTION

In quantum mechanics there is hardly a task more fun-
damental than solving the time-dependent Schrödinger equa-
tion. A particularly important case is atomic evolution in the
presence of classically prescribed electromagnetic fields, cor-
responding to Hamiltonians of the form H (t ) = H0 + V (t ),
where the time-independent H0 describes the atomic system
in the absence of the fields, and a (possibly) time-varying V (t )
accounts for the presence of the fields.

The frequent situation that the fields are periodic in time
may be deftly handled using Floquet theory: suppose that
there is a single relevant time-dependent field, periodic in
time, so that V (t ) = V (t + T ) for some period T and for all
times t . If a finite basis of dimension NA may be used to
describe the atomic system, Floquet theory tells us that there
are NA independent solutions for the state vector of the form
[1]

|ψ j (t )〉 = e−iE jt/h̄ |φ j (t )〉 , (1)

where we have labeled each of the solutions with index j. The
Ej’s are known as the quasienergies and the corresponding
|φ j (t )〉’s—so-called quasistates — have the same periodicity
as the Hamiltonian: |φ j (t )〉 = |φ j (t + T )〉. This periodicity
suggests a Fourier expansion:

|φ j (t )〉 =
∑

n

|φ̃ j (n)〉 einωt , (2)

where ω = 2π/T . Shirley [1] showed that when the time-
dependent Schrödinger equation (TDSE) is expressed in
terms of the |φ̃ j (n)〉 expansion “coefficients,” all NA’s of the
solutions—in the form of Eq. (1)—may be determined from
the eigenvalues and eigenvectors of a time-independent matrix
(the “Floquet” Hamiltonian). Once all of the solutions are
known, it is straightforward to write the unitary time evolution
operator, constituting a complete solution for the quantum-
mechanical evolution of the atomic system in the presence of
the periodic field.

In addition to having a certain aesthetic appeal, Shirley’s
formulation of Floquet theory (SFT) is often well suited for
explicit computations, as it may just involve a straightforward
generalization of a simpler time-independent problem (for an
example in Rydberg atom physics, see Ref. [2]).

Here we are concerned with a generalization of SFT to two
(or more) fields of different periodicities; for example, H (t ) =
H0 + V1(t ) + V2(t ), where V1(t ) = V1(t + T1) and V2(t ) =
V2(t + T2) for all t , and T1 �= T2. If the ratio of the correspond-
ing frequencies f1 = 1/T1 and f2 = 1/T2 may be represented
as f1/ f2 = N1/N2, where N1 and N2 are integers—so-called
commensurate frequencies, a period common to both V1(t )
and V2(t ) exists (T = N1/ f1 = N2/ f2). Thus this situation is
completely handled by SFT, albeit awkwardly—the couplings
due to each of the fields are at (different) harmonics of the
common base frequency 1/T , the details depending on N1 and
N2.

As an alternative, Ho et al. [3] extended SFT in a way that
removes explicit references to N1 and N2, thereby recovering
the elegance and simplicity of SFT for a field of a single peri-
odicity. In a manner similar to that of SFT, this formulation
involves a unitary time evolution operator written in terms
of a time-independent many-mode Floquet theory (MMFT)
Hamiltonian.

The MMFT formulation has been used for nuclear mag-
netic resonance [4], dressed potentials for cold atoms [5],
microwave dressing of Rydberg atoms [6], and superconduct-
ing qubits [7], to name but a few examples. Nonetheless,
independent groups have questioned the validity of MMFT
[8,9] and the completeness [10] of the justification of MMFT
given in Ref. [3]. Subsequent publications [11,12] by one
of the authors of the original MMFT paper [3] support the
conjecture [8] that the MMFT formulation is approximately
correct in some commensurate cases, but is entirely correct
for incommensurate cases (irrational frequency ratios), in
dissonance with the justification presented in Ref. [3] which
is based on commensurate frequencies.
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Prompted by the recent use of MMFT in a Rydberg atom
study [6], we began to consider its correctness, particularly for
two commensurate frequencies described by low N1 and N2,
which are often relatively easy to simultaneously generate in
an experiment (i.e., as low harmonics of a common frequency
source). We computed the time evolution of a simple system
in the case of commensurate frequencies numerically using
MMFT and compared our results to both SFT and direct
integration of the TDSE and were surprised to find no dif-
ferences (when adequate basis sizes, time steps, etc., were
chosen). This agreement is at apparent odds with the literature
questioning the general applicability of MMFT and our own
expectations after examination of the justification of MMFT
given in Ref. [3]. We found this situation confusing, to say the
least.

In this work, we resolve these discrepancies by showing
that MMFT may be used to correctly compute time evolution
and that this is consistent with the fact that not all of the eigen-
pairs1 of the MMFT Hamiltonian correspond to the Floquet
quasienergies and quasistates [i.e., the Ej’s and |φ j (t )〉’s of
Eq. (1)].

The case of incommensurate frequencies (see, for example,
Refs. [13] and [14]) is beyond the scope of this work.

Many readers will be familiar with the background on SFT
[1] that we review in Sec. II A, but perhaps less so with the
MMFT theory of Ho et al. [3], as reviewed in Sec. II C.
We include these sections for completeness and to establish
notation. Our results are in Sec. III, where we show how
the SFT and MMFT approaches may be considered to be
equivalent, and address the concerns with MMFT raised in
the literature [8–10]. Section IV concludes with a summary
and a discussion of the utility of MMFT in the case of
commensurate frequencies.

II. BACKGROUND

A. Floquet theory

As a foundation for discussion of the multiple-frequency
case, this section reviews Floquet theory as it applies to the
solution of the TDSE:

ih̄
d

dt
|ψ (t )〉 = Ĥ (t )|ψ (t )〉, (3)

given a Hamiltonian that is both periodic, Ĥ (t ) = Ĥ (t + T ),
and Hermitian, Ĥ†(t ) = Ĥ (t ), for all times t . To simplify—
but not restrict the results in a fundamental way—the state
vectors |ψ (t )〉 are considered as belonging to a finite-
dimensional inner-product space A of dimension NA. In what
follows this is referred to as the atomic space.

Since the Hamiltonian is Hermitian, we may define a
unitary time evolution operator, Û (t2, t1), satisfying

|ψ (t2)〉 = Û (t2, t1)|ψ (t1)〉, (4)

for all t1 and t2.
Floquet theory is slightly more general than required

here—the general theory is not restricted to unitary time

1We refer to an eigenvector and its associated eigenvalue collec-
tively as an eigenpair.

evolution (see, for example, Ref. [15]). For the unitary case,
Floquet theory implies (see, for example, Ref. [16] or the
Supplemental Material [17]) that the quasistates of Eq. (1)
exist and may be combined to give

Û (t, 0) =
NA∑

j=1

|φ j (t )〉e−iE jt/h̄〈φ j (0)|. (5)

The quasienergies and corresponding quasistates may be de-
termined by direct numerical integration of the TDSE over
the duration of a single period T (see, for example, Ref. [18]).
However, there are alternatives to direct integration, namely,
SFT [1] and MMFT [3], which we shall now review.

B. Shirley’s formulation of Floquet theory

1. The SFT Hamiltonian

The use of Fourier decomposition to find Floquet-type
solutions [e.g., Eq. (2)] has a long history, originating with
Hill’s theory regarding the motion of the moon (see, for
example, Ref. [19]). Following earlier more specific work by
Autler and Townes [20], Shirley [1] applied these ideas to the
unitary time evolution of quantum mechanics, showing that
determination of the quasienergies and quasistates reduces to
a linear eigenvalue problem similar to the normal eigenvalue
problem Ĥ |ψ〉 = E |ψ〉 for time-independent Hamiltonians.
In this section, we reproduce SFT using a slightly modified
notation suitable for extension to MMFT (similar in spirit to
that of Ref. [21]).

Consider an infinite-dimensional inner-product space F for
Fourier decomposition, spanned by an orthonormal basis set:
{|n〉F | n ∈ Z}, where Z refers to the set of all integers and
〈m|n〉F = δm,n. The full time dependence of the quasistates
of Eq. (2) will be represented using a time-dependent super-
position of time-independent vectors from the tensor product
space F ⊗ A:

|φ j (t )〉A =
∞∑

n=−∞
einωt {〈n|F ⊗ ÎA}|φ j〉F⊗A, (6)

where ÎA is the identity in the atomic space A. (Hitherto all
operators and vectors were in the atomic space; henceforth
we will be explicit and for clarity avoid referring to vectors in
F ⊗ A as “states.”)

Vectors in F ⊗ A may be decomposed using the basis sets
for F and A:

|φ j〉F⊗A =
∑
m,α

Dj (m, α)|m〉F ⊗ |α〉A, (7)

where the expansion coefficients Dj (m, α) are complex num-
bers, and here and after summations over Fourier indices are
implicitly from −∞ to ∞.

We may determine the quasienergies and expansion coeffi-
cients for a specific problem by substitution of

|ψ j (t )〉A = e−iE jt
∑

n

einωt {〈n|F ⊗ ÎA}|φ j〉F⊗A (8)

into the TDSE [Eq. (3) with h̄ = 1 and hereafter] and Fourier
expanding the Hamiltonian: ĤA(t ) = ∑

m H̃A(m)eimωt . The
result [1] is a linear eigenproblem (see Supplemental Material
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[17]):

ĤF⊗A|φ j〉F⊗A = Ej |φ j〉F⊗A, (9)

where the SFT Hamiltonian ĤF⊗A is

ĤF⊗A ≡
∑

n

{nω|n〉〈n|F ⊗ ÎA}

+
∑

m

{ŜF (m) ⊗ H̃A(m)}, (10)

where the “shift operators” are defined as

ŜF (m) ≡
∑

n

|n + m〉〈n|F . (11)

The original time-dependent problem has now been formu-
lated as a familiar time-independent eigenvalue problem by
which the quasienergies Ej and the expansion coefficients
[Dj (m, α) in Eq. (7)] may be determined.

Since there are an infinite number of Fourier coefficients,
the matrix representation of ĤF⊗A is infinite, reflecting a
superfluity associated with the quasistates and quasienergies
[1]: if we shift a quasienergy by h̄ω—or equivalently by ω in
the simplified units of this section—this may be compensated
for by simultaneously shifting the corresponding expansion
coefficients, so as to describe the same solution; i.e., we may
combine Eqs. (7) and (8) to give

|ψ j (t )〉A = e−iE j,pt
∑
m,α

eimωt D j (m − p, α)|α〉A, (12)

where Ej,p ≡ Ej + pω, with p being any integer. (By con-
vention we may choose −ω/2 < Ej � ω/2 for all j.) The
corresponding shifted eigenvectors of ĤF⊗A are given by

|φ j,p〉F⊗A ≡ {ŜF (p) ⊗ ÎA}|φ j〉F⊗A. (13)

Examination of ĤF⊗A shows that if Ej and |φ j〉 are an eigen-
pair, then so are Ej,p and |φ j,p〉.

Thus, although matrix representations of ĤF⊗A are infinite
(due to the F space), there are really only NA nontrivially dis-
tinct eigenpairs, which is consistent with the finite summation
of Eq. (5). In practice, estimates of the spectrum of ĤF⊗A

may be obtained through diagonalization in a truncated, finite
basis, as is illustrated by an example in Sec. II B 3.

2. The SFT propagator

Shirley [1] showed that it is possible to express the matrix
elements of the unitary time evolution operator using the
Floquet Hamiltonian ĤF⊗A directly, without explicit reference
to the quasienergies and states:

〈β|ÛA(t, 0)|α〉A

=
∑

n

einωt {〈n|F ⊗ 〈β|A}e−iĤF⊗At {|0〉F ⊗ |α〉A}. (14)

Although α and β represent arbitrary atomic states, in a
slight abuse of terminology we refer to this expression as
a propagator. It follows from the insertion of the form for
|φ j (t )〉A given by Eq. (6) into the expression for the unitary
time evolution operator given by Eq. (5) (see Supplemental

Material [17]). Together with the definition of the SFT Hamil-
tonian [Eq. (10)], it encapsulates all of SFT and thus will serve
as a useful means by which to compare SFT and MMFT.

3. Example of the usage of SFT

To illustrate our main points regarding the correctness of
MMFT we consider computation of the time evolution of an
atomic system with a Hamiltonian consisting of two periodic,
commensurate couplings. In this section we look at a specific
example using SFT, and in Secs. II C 3 and III C we will return
to the same example using MMFT. Our particular choice
of system is simple and subfield agnostic, but otherwise is
somewhat arbitrary. (Although we are ultimately interested in
bichromatic microwave dressing of Rydberg atoms [6], that is
not relevant here. And although we choose frequencies such
that N1 = 1 and N2 = 2, other choices, such as N1 = 2 and
N2 = 3, would also illustrate our points.)

The atomic system is described using an orthonormal basis
consisting of two states, lower (	) and upper (u), evolving
according to the TDSE [Eq. (3)] with the following Hamil-
tonian:2

ĤA(t ) = Eu|u〉〈u|A + E	|	〉〈	|A
+ 2V [cos(ωt ) + cos(2ωt + φ2ω )]

× (|u〉〈l|A + |l〉〈u|A), (15)

where Eu = 3/2, E	 = 0, ω = 1, V = 1, and h̄ = 1. We study
this ω, 2ω system with different values of the phase φ2ω, as
it turns out to be significant in the comparison of SFT and
MMFT.

With such a small atomic space (NA = 2), it is straightfor-
ward to directly integrate the TDSE with the Hamiltonian of
Eq. (15), using standard numerical methods, without any con-
sideration of Floquet theory. Starting with all the population
in 	 at t = 0, Fig. 1(a) illustrates the computed time evolution
for two values of the phase φ2ω.

This time evolution may also be computed using the SFT
propagator of Eq. (14), where the plotted quantity in Fig. 1(a)
is |〈u|ÛA(t )|	〉A|2. For ĤF⊗A we use Eq. (10), with

H̃A(0) = Eu|u〉〈u|A + E	|	〉〈	|A, (16a)

H̃A(±1) = V (|u〉〈l|A + |l〉〈u|A), (16b)

H̃A(±2) = Ve±iφ2ω (|u〉〈l|A + |l〉〈u|A), (16c)

and all other couplings are zero.
The F ⊗ A space of SFT is infinite-dimensional due to

the Fourier decomposition space F . To numerically evaluate
Eq. (14) we truncate the standard basis for F . Instead of
summation over all integer n, only a finite set is considered:
N = {n ∈ Z | nmin � n � nmax}, the basis for F ⊗ A being
formed from the tensor product of the vectors for F from
BF = {|n〉F | n ∈ N } and the basis vectors for the atomic
space. The size of the basis is NBF × NA, where NBF refers to
the number of elements in BF . A finite matrix version of ĤF⊗A

2The unperturbed energy level splitting Eu − E	 results in “equal
and opposite” detunings of ω and 2ω, and is inspired by Ref. [22],
but is of no special significance to our main points.
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FIG. 1. (a) Time evolution of the upper state population given
the Hamiltonian of Eq. (15), with all population initially in the
ground state. (b) Partial spectra for the same physical system as
in panel (a), computed by diagonalization of the SFT Hamilto-
nian with varying φ2ω (− lines), computed by diagonalization of
the MMFT Hamiltonian for φ2ω = 0 (× points) as described in
Sec. II C 3, and computed by diagonalization of the MMFT Hamil-
tonian using periodic boundary conditions (+ points) as described in
Sec. III C.

is considered by simply ignoring couplings between vectors
not described by this finite basis. This finite-dimensional
version of ĤF⊗A is diagonalized numerically, and in place of

e−iĤF⊗At in Eq. (14), we use
∑

j e−iE jt |φ j〉〈φ j |F⊗A, where j

indexes a complete set of eigenpairs of the finite ĤF⊗A.
If for simplicity3 we select BF ’s with nmin = −nmax, then

nmax � 10 is necessary for the finite matrix version of Eq. (14)
to compute |〈u|ÛA(t )|	〉A|2 at t = 2π to within 10−2 for φ2ω =
0. Under these conditions, the results of direct integration of
the TDSE and the computation using SFT are visually indis-
tinguishable over the full time interval 0 to 2π in Fig. 1(a).

Figure 1(b) shows a finite portion of the computed
quasienergy spectrum (the eigenvalues of the finite ĤF⊗A).
As expected based on the discussion around Eq. (12), the
quasienergies repeat vertically in the figure with a periodicity
of h̄ω (= 1 for the simplified units of this example). (This
property is approximate with a finite basis for F .)

Based on the significant difference in the time evolution
observed in Fig. 1(a), for the two values of φ2ω, we might
expect that the quasienergy spectrum depends on φ2ω. This
is confirmed in Fig. 1(b), where the quasienergy spectrum is
plotted as a function of φ2ω (by repeatedly diagonalizing the
finite ĤF⊗A as φ2ω is varied).

This example may also be treated using MMFT, as dis-
cussed in the next section.

C. Many-mode Floquet theory

1. The MMFT Hamiltonian and propagator

For concreteness and correspondence with a common ex-
perimental scenario, consider an atomic system with dipole
coupling to the electric field. With the superposition of two
sinusoidal fields,

ĤA(t ) = H̃A(0) − 	μA · 	E1 cos(ω1t + φ1)

− 	μA · 	E2 cos(ω2t + φ2). (17)

As Leasure [23] pointed out and as we have discussed in the
Introduction, if ω1/ω2 may be expressed as the ratio of two
integers N1/N2, then such a Hamiltonian has a single peri-
odicity.4 With the common “base frequency” ωB = ω1/N1 =
ω2/N2, the two time-dependent couplings in Eq. (17) are
simply couplings at different harmonics of ωB, so that we may
Fourier expand

ĤA(t ) =
∑

m

H̃A(m)eimωBt , (18)

and thus the entire approach of Shirley [1] is applicable. (The
example of Sec. II B 3 corresponds to N1 = 1 and N2 = 2.)

Ho et al. [3] take this idea as their starting point for
MMFT and then consider “relabeling” Fourier basis vectors in
Shirley’s formulation as basis vectors from the tensor product
of two Fourier spaces:

|n〉F
relabel−−−→ |n1〉F1

⊗ |n2〉F2
, (19)

3This straightforward approach is not the most efficient means
to numerically compute unitary time evolution using SFT. A more
judicious choice of BF and exploitation of the “repeated” nature of
the spectrum would improve efficiency.

4In all that follows, we assume that N1 and N2 are positive integers
with a greatest common divisor of 1.
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where nωB = n1ω1 + n2ω2, or equivalently n = n1N1 + n2N2.
We will discuss shortly whether or not this relabeling is
possible for all n and, if so, if the choice of n1 and n2 is
unique. In any case, the new basis to be used consists of all
possible integers n1 and n2 (in principle; in practice the basis
is truncated using convergence criteria).

The paper introducing MMFT [3] focused on time-
dependent Hamiltonians in the form of Eq. (17). Since then,
the MMFT terminology has come to refer to a slightly more
general situation in which the time-dependent Hamiltonians
of interest have the following form:

ĤA(t ) =
∑
p,q

H̃A(p, q)ei(pω1+qω2 )t , (20)

for which Eq. (17) may be considered a special case (see the
example of Sec. II C 3). We focus on the two-mode5 case
for concreteness (see, for example, Ref. [4] for a many-mode
generalization).

In this more general version of MMFT, the time-
independent MMFT Hamiltonian in the new F1 ⊗ F2 ⊗ A
space is (with h̄ = 1)

ĤF1⊗F2⊗A ≡
∑
n1,n2

(n1ω1 + n2ω2)|n1〉〈n1|F1

⊗|n2〉〈n2|F2
⊗ ÎA

+
∑
p,q

ŜF1 (p) ⊗ ŜF2 (q) ⊗ H̃A(p, q), (21)

with the ŜF1 and ŜF2 shift operators defined by Eq. (11).
Ho et al. [3] generalize (but do not prove) the propagator

due to Shirley [1] [our Eq. (14)] to

〈β|ÛA(t, 0)|α〉A =
∑
n1,n2

ei[n1ω1+n2ω2]t

× {〈n1|F1
⊗ 〈n2|F2

⊗ 〈β|A
}

× e−iĤF1⊗F2⊗At

× {|0〉F1
⊗ |0〉F2

⊗ |α〉A

}
. (22)

This expression appears again in the literature following Ho
et al. [3], in, for example, Refs. [7,10]. Both this propagator
and the form of the MMFT Hamiltonian appear to be plausible
generalizations of the analogous well-established results of
SFT [Eqs. (10) and (14)]. Furthermore, the MMFT Hamil-
tonian has the desirable property that no explicit references to
N1 and N2 appear, so that its structure remains unchanged if ω1

and ω2 are varied. But we are not aware of a prior resolution
of the issues that we discuss in the next section.

2. Concerns with the validity of MMFT

As mentioned in the Introduction, concerns have been
raised regarding the validity of MMFT [8,9]. One troubling
aspect of the justification of Ho et al. [3] for MMFT is
the “relabeling” process [Eq. (19)]. Specifically, given any

5Depending on the context we refer to the modes as frequencies,
fields, or couplings, having in mind typical Hamiltonians of the form
of Eq. (17). Arguably a more precise terminology for MMFT is
many-frequency Shirley Floquet theory.

integer n, are there always integers n1 and n2 satisfying
n1N1 + n2N2 = n and, if so, is the solution unique? Ho et al.
[3] discuss existence but not uniqueness. Here we note that
for a given rational ω1/ω2, the corresponding N1 and N2

can always be chosen so that their greatest common divisor
gcd(N1, N2) is 1. Thus there is always a solution (see, for
example, Ref. [24]).6 Moreover, there are an infinite number
of solutions; i.e., given one solution for integers n1 and n2

satisfying n = n1N1 + n2N2, we also have

(n1 + 	N2)︸ ︷︷ ︸
n′

1

N1 + (n2 − 	N1)︸ ︷︷ ︸
n′

2

N2 = n (23)

for all integers 	, giving an infinite number of solutions (n′
1

and n′
2) (and also all possible solutions). Thus the relabeling

process is not unique—basis states of different n1 and n2 can
correspond to the same n, raising the question of overcom-
pleteness of the standard n1, n2 MMFT basis [8,10]. We are
not able to see any straightforward way to address this specific
deficiency in the derivation of Ho et al. [3], which has been
characterized as incomplete [10].

A related issue is that for Hamiltonians like Eq. (17)
it has been pointed out that the eigenvalues of the MMFT
Hamiltonian do not depend on the relative phase of the two
fields [9] (we detail this argument later in Sec. III B). Our
example in Sec. II B 3 and Fig. 1 shows that this independence
is problematic, as the quasienergies obtained from SFT clearly
do depend on φ2ω.

Although Ho et al. [3] provided a specific numerical exam-
ple showing that MMFT reproduces the results of explicit time
integration of the TDSE, the effective N1 and N2 values were
quite large (when considered in conjunction with coupling
strengths). In this situation previous workers have described
MMFT as being approximately correct (see, for example,
Ref. [8]), as typical finite basis sets used would not contain
any “repeated states.”

However these favorable conditions are not present in our
example ω, 2ω system of Sec. II B 3. Surprisingly, the next
section empirically illustrates that MMFT works.

3. Example of the usage of MMFT

The MMFT propagator can be numerically evaluated in
a manner analogous to that of the SFT propagator, as is
described in Sect. II B 3. The difference being that we need
to truncate the basis for F1 ⊗ F2, rather than for F . Thus in
Eq. (22) we take the summations of a finite set of n1’s and n2’s.
Similarly, a finite version of ĤF1⊗F2⊗A can be diagonalized
numerically to evaluate the matrix elements of e−iĤF1⊗F2⊗At .

The time evolution of the ω, 2ω system of Sec. II B 3 may
also be determined using MMFT, with ω1 = 1, ω2 = 2,

H̃A(0, 0) = Eu|u〉〈u|A + E	|	〉〈	|A, (24a)

H̃A(±1, 0) = V (|u〉〈l|A + |l〉〈u|A), (24b)

H̃A(0,±1) = Ve±iφ2ω (|u〉〈l|A + |l〉〈u|A), (24c)

6As such, gcd(N1, N2) = 1 implies that only the p = 0 blocks of Ho
et al. [3] are necessary [see the discussion following their Eq. (10)].
For this reason, we do not make use of their “p-block” construction.
A related discussion appears in Ref. [10].
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(a) (b)

FIG. 2. Finite-basis sets for the F1 ⊗ F2 space used in MMFT calculations. Points on the integer lattice (·) represent basis vectors |n1〉F1
⊗

|n2〉F2
. In principle, basis sets for MMFT calculations should run over all integers n1 and n2; however, finite basis sets (consisting of basis

vectors marked by �) are typically used to numerically diagonalize MMFT Hamiltonians. Shown are (a) a conventional choice (e.g., Ref. [3])
and (b) a basis set suitable for maintaining the “translational invariance” of the MMFT Hamiltonian [Eq. (26)]. The basis vector selection in
panel (b) depends on N1 and N2 (N1 = 1 and N2 = 2 in this case). The lines connect basis vectors corresponding to the same n. The canonical
vectors |n1(n)〉F1

⊗ |n2(n)〉F2
for each n (see Appendix A) are indicated (⊗).

and all other couplings being zero. We construct a finite basis
for F1 ⊗ F2 with basis kets of the form |n1〉F1

⊗ |n2〉F2
for all

n1 and n2 such that n1 ∈ N and n2 ∈ N , with N = {n ∈ Z |
−nmax � n � nmax}. See Fig. 2(a) for an example of a finite
basis set with nmax = 2.

We find that nmax � 9 is necessary for the finite matrix ver-
sion of Eq. (14) to compute |〈u|ÛA(t )|	〉A|2 at t = 2π to within
10−2 for φ2ω = 0. Under these conditions, the results of direct
integration of the TDSE and the computation using MMFT
are visually indistinguishable over the full time interval 0 to
2π in Fig. 1(a).

That MMFT may accurately compute the time evolution
in this system was a surprise to us given the concerns of
the previous section and the nature of the eigenvalues of
the finite basis MMFT Hamiltonian. Specifically, Fig. 1(b)
shows the eigenvalues for the truncated MMFT Hamiltonian
with φ2ω = 0 (the × points distributed vertically at φ2ω = 0),
illustrating that the spectrum of the MMFT Hamiltonian does
not correspond to the SFT quasienergies (solid line) at φ2ω =
0. Despite this discrepancy, in numerical experimentation on
a variety of commensurate systems (e.g., 2ω, 3ω), we have
found that Eq. (22) may be used to compute unitary time
evolution.

III. THE RELATIONSHIP OF MMFT TO SFT

A. Equivalence of the MMFT and SFT propagators

We will now show why calculations using the MMFT
propagator given in Eq. (22) with the MMFT Hamiltonian of
Eq. (21) are correct for commensurate frequencies, despite the
concerns discussed in Sec. II C 2 and the discrepancy between
the SFT and MMFT spectra noted in the previous section. We
avoid the problematic relabeling procedure of Ho et al. [3] and
take a rather different approach.

Specifically, we exploit a symmetry of the MMFT Hamil-
tonian to help show the correctness of the MMFT propagator
(i.e., its equivalence to SFT).

Consider a unitary operator that produces a “translated”
version of a vector |n1〉F1

⊗ |n2〉F2
corresponding to the same

n (≡ n1N1 + n2N2):

T̂F1⊗F2 ≡ ŜF1 (N2) ⊗ ŜF2 (−N1), (25)

where the Ŝ operators are of the same form as Eq. (11).
Defining T̂F1⊗F2⊗A ≡ T̂F1⊗F2 ⊗ ÎA, we can verify that the
MMFT Hamiltonian given by Eq. (21) is invariant under this
translation:

T̂ −1
F1⊗F2⊗AĤF1⊗F2⊗AT̂F1⊗F2⊗A = ĤF1⊗F2⊗A. (26)

This symmetry suggests an analogy with the tight-binding
Hamiltonians used for solid-state crystals, in which every
lattice site has equivalent couplings to its neighbors (see, for
example, Ref. [25]). In the case of MMFT with commensurate
frequencies, the implications of this symmetry do not appear
to have been fully explored (see, for example, the pedagogical
treatment of MMFT in Ref. [26]).7

In particular, since T̂F1⊗F2⊗A commutes with ĤF1⊗F2⊗A, if
|ψ〉F1⊗F2⊗A is an eigenvector of T̂F1⊗F2⊗A with eigenvalue e−ik ,
with k being real, then ĤF1⊗F2⊗A|ψ〉F1⊗F2⊗A is also an eigen-
vector of T̂F1⊗F2⊗A with the same eigenvalue—the MMFT
Hamiltonian does not “connect” eigenvectors of T̂F1⊗F2⊗A

corresponding to different eigenvalues. This suggests that we
partially diagonalize ĤF1⊗F2⊗A by replacing the n1, n2 basis for
the F1 ⊗ F2 space with one in which T̂F1⊗F2 is diagonal. We
refer to this new basis for the F1 ⊗ F2 space as the n, k basis.

The n, k basis vectors may be understood as the super-
position of vectors of different n1 and n2, but the same n
(≡ n1N1 + n2N2) forming eigenvectors of T̂F1⊗F2 (with eigen-
values e−ik):

|n, k〉F1⊗F2
= 1√

N

∑
p

eipkT̂ p
F1⊗F2

|n1(n)〉F1
⊗ |n2(n)〉F2

, (27)

where for each n we define a canonical vector, |n1(n)〉F1
⊗

|n2(n)〉F2
, satisfying n = n1(n)N1 + n2(n)N2. One approach

7Both Refs. [13] and [14] consider this analogy, but with quite
different and more sophisticated objectives, focusing on incommen-
surate frequencies and topological aspects.
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to making a specific choice for n1(n) and n2(n) is given in
Appendix A. The summation may be considered as a limit
taken as N , the number of terms in the summation over p,
goes to infinity. We do not belabor taking this limit, as it
may be avoided, as shown in Appendix B. Imagining the
summation as finite is helpful for obtaining an intuitive un-
derstanding of the MMFT and SFT equivalence. Furthermore,
in Sec. III C we show that satisfactory numerical implementa-
tions of MMFT can be obtained using finite summations over
p while preserving the symmetry of the MMFT Hamiltonian
given by Eq. (26).

In the n, k basis, the final bras in the MMFT propagator of
Eq. (22) correspond to k = 0:

∑
n1,n2

ei(n1ω1+n2ω2 )t 〈n1|F1
⊗ 〈n2|F2

=
√

N
∑

n

eiωBnt 〈n, k = 0|F1⊗F2
. (28)

The F1 ⊗ F2 part of the initial ket may be written as a super-
position of different k vectors:8

|0〉F1
⊗ |0〉F2

= 1√
N

∑

k

|n = 0, k〉F1⊗F2
. (29)

But since ĤF1⊗F2⊗A does not couple vectors of different k, the
final bras dictate that only the k = 0 term in the initial ket
superposition is relevant, allowing us to write Eq. (22) as

〈β|ÛA(t )|α〉A =
∑

n

einωBt
{〈n, k = 0|F1⊗F2

⊗ 〈β|A
}

× e−iĤF1⊗F2⊗At
{|n = 0, k = 0〉F1⊗F2

⊗ |α〉A

}
.

(30)

Thus we see that the part of the spectrum of ĤF1⊗F2⊗A corre-
sponding to k �= 0 is irrelevant to the propagator. In essence
this is the origin of the controversy over MMFT: although
the spectrum of ĤF1⊗F2⊗A contains the appropriate Floquet
quasienergies and states (k = 0), it also contains extraneous
eigenpairs (corresponding to k �= 0). However, the propagator
“selects” the relevant eigenvectors, i.e., those corresponding
to k = 0.

To complete the argument for the correctness of Eq. (22),
it must be shown that Eq. (30)—which is the same as Eq. (22)
but rewritten using the n, k basis—reproduces Shirley’s propa-
gator, Eq. (14). For this purpose it is sufficient to show that for
all possible atomic states specified by γ and ν, and all integers
n′ and n′′, the following equality between matrix elements
holds:

{〈n′, k = 0|F1⊗F2
⊗ 〈γ |A

}
ĤF1⊗F2⊗A

× {|n′′, k = 0〉F1⊗F2
⊗ |ν〉A

}

= {〈n′|F ⊗ 〈γ |A}ĤF⊗A{|n′′〉F ⊗ |ν〉A}. (31)

8Again we are making use of the convenient fiction that N is
finite—in principle, the superposition of Eq. (29) should be ex-
pressed as an integral with k ranging continuously from −π to π .

The preceding equality follows from rewriting the k = 0 bra
and ket of the left-hand side in the n1, n2 basis using Eq. (27)
and then substituting ĤF1⊗F2⊗A from Eq. (21). We also use

H̃A(r) =
∑
p,q

δr,pN1+qN2 H̃A(p, q) (32)

within ĤF⊗A [from Eq. (10)] on the right-hand side of
Eq. (31).

As the correctness of SFT is well established, and we have
just shown that for commensurate frequencies the MMFT and
SFT propagators are equivalent (see also Appendix B), we
conclude that usage of the MMFT propagator [Eq. (22)] is
correct for commensurate frequencies.

B. The significance of the k �= 0 eigenvectors
of the MMFT Hamiltonian

Now let us address an objection to the use of MMFT for
commensurate frequencies raised by Potvliege and Smith [9],
who pointed out that a change in the relative phase of two
commensurate fields can be written as a unitary transforma-
tion of the MMFT Hamiltonian, and thus its eigenvalues are
independent of relative phase (shown below).

This independence seems at odds with experimental obser-
vations that the behavior of quantum systems in the presence
of external perturbing fields of ω and 2ω depends on the
relative phase of the two fields (see, for example, Ref. [27]
and the references in Ref. [28]). Our ω, 2ω example certainly
exhibits this dependence (Fig. 1): the time evolution depends
strongly on φ2ω, as do the quasienergies computed using SFT.

We resolve this apparent paradox by observing that the
unitary transformation corresponding to changing the relative
phase of the fields is essentially a translation in “k-space,”
so that a different portion of the spectrum of ĤF1⊗F2⊗A is
“moved” into k = 0 (recall that the propagator only makes
use of the k = 0 part of the spectrum). Diagonalization of
ĤF1⊗F2⊗A may be viewed as a computation of the quasi-energy
spectra for all phases of the two fields. (In a finite basis this
is only approximately realized—a numerical example will be
provided in Sec. III C.)

To justify the preceding claim, let us consider time-
dependent Hamiltonians written in terms of two phases, φ1

and φ2:

ĤA(t ) =
∑
p,q

H̃A(p, q)eip(ω1t+φ1 )+iq(ω2t+φ2 ), (33)

which incorporates Eq. (17) as a special case. The correspond-
ing MMFT Hamiltonian is

ĤF1⊗F2⊗A(φ1, φ2)

=
∑
n1,n2

(n1ω1 + n2ω2)|n1〉〈n1|F1
⊗ |n2〉〈n2|F2

⊗ ÎA

+
∑
p,q

ei(pφ1+qφ2 )ŜF1 (p) ⊗ ŜF2 (q) ⊗ H̃A(p, q), (34)

where we have explicitly indicated the phase dependence for
comparison with the original MMFT Hamiltonian with no
phase shifts: ĤF1⊗F2⊗A(0, 0).
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Defining

ÛF (φ) ≡
∑

n

e−inφ |n〉〈n|F , (35)

we may make use of the identity eipφ ŜF (p) = ÛF (φ)−1

ŜF (p)ÛF (φ) for F1 and F2 in the last term of Eq. (34) to write

ĤF1⊗F2⊗A(φ1, φ2)

= {
ÛF1 (φ1)−1 ⊗ ÛF2 (φ2)−1 ⊗ ÎA

}

× ĤF1⊗F2⊗A(0, 0)
{
ÛF1 (φ1) ⊗ ÛF2 (φ2) ⊗ ÎA

}
, (36)

justifying the claim [9] that a change in the phases of the fields
corresponds to a unitary transformation of the MMFT Hamil-
tonian. As a consequence, given an eigenvector |ψ〉F1⊗F2⊗A of
ĤF1⊗F2⊗A(0, 0), it is also true that ÛF1 (φ1)−1 ⊗ ÛF2 (φ2)−1 ⊗
ÎA|ψ〉F1⊗F2⊗A is an eigenvector of ĤF1⊗F2⊗A(φ1, φ2) with the
same eigenvalue.

Using the n, k basis vectors given by Eq. (27), together
with the convention of Appendix A, we may determine how
ÛF1 (φ1)−1 ⊗ ÛF2 (φ2)−1 effects a shift in k-space:

ÛF1 (φ1)−1 ⊗ ÛF2 (φ2)−1|n, k〉F1⊗F2

= ei(n1(n)φ1+n2(n)φ2 )|n, k + N2φ1 − N1φ2〉F1⊗F2

= ein(n1(1)φ1+n2(1)φ2 )|n, k + N2φ1 − N1φ2〉F1⊗F2
. (37)

Thus, the quasienergies for nonzero φ1 and φ2 are the eigen-
values of ĤF1⊗F2⊗A(0, 0) corresponding to9

k = N1φ2 − N2φ1, (38)

as these k �= 0 eigenvalues of ĤF1⊗F2⊗A(0, 0) correspond to the
k = 0 eigenvalues of ĤF1⊗F2⊗A(φ1, φ2). We show an example
of this correspondence in Sec. III C.

Pivotal to the preceding argument has been the point that
not all eigenvalues of the MMFT Hamiltonian correspond
to quasienergies (for a fixed set of field phases). Thus the
suggestion [8] that for commensurate frequencies the eigen-
values of the MMFT Hamiltonian represent “phase-averaged”
quasienergies is not generally correct. Of course, if the eigen-
values are phase independent, then they will be phase aver-
ages. The analogous situation for the tight-binding Hamil-
tonian is that at high-interatomic spacings and low overlap
the energies simply become the atomic energies—different
k’s are energy degenerate. For MMFT with commensurate
frequencies, large N1 and N2 values and weak couplings will
have a similar effect.

C. Example of the usage of MMFT with retention
of translational symmetry (periodic boundary conditions)

Although the F1 ⊗ F2 space used to write two-mode
MMFT Hamiltonians is infinite, the example of Sec. II C 3
illustrated that satisfactory numerical solutions for time evo-
lution may be obtained using a truncated basis set for this

9The case of φ1 �= 0 and φ2 �= 0 but yet N2φ1 − N1φ2 = 0 corre-
sponds to an identical time-translation for both fields—the quasiener-
gies are unchanged and the quasistates are time-shifted. Equation
(38) defines what we mean by relative phase.

space—provided it is sufficiently large. However, in a trun-
cated basis set the MMFT Hamiltonian will not typically
exhibit the translational symmetry of Eq. (26) exactly. As
such, k may no longer be considered to be a good quantum
number of the quasistates computed by diagonalization of this
Hamiltonian.

In this section we show that a judicious selection of a
finite set of n1, n2 basis vectors, together with the application
of periodic boundary conditions—analogous to those used
in models of solid-state crystals—preserves the translational
symmetry of the MMFT Hamiltonian exactly in a finite n1, n2

basis. Transforming from this basis to one in which k is
a good quantum number, in effect, block diagonalizes the
MMFT Hamiltonian and allows us to illustrate the connection
between the k �= 0 eigenpairs and the relative phase of the
fields, as discussed in the previous section.

Recall that each n1, n2 basis vector has a single associated
n (≡ n1N1 + n2N2), but that for a given n there are an infi-
nite number of associated n1, n2 vectors [see the discussion
surrounding Eq. (23)]. Selection of an appropriate finite basis
amounts to deciding which n’s will be represented in the basis
and then choosing a finite number of n1, n2 vectors for each of
these n’s [Fig. 2(b) provides an example]. More specifically,
an algorithm for the selection of a finite basis set for F1 ⊗ F2

is as follows.
(i) Choose a finite set of integers N specifying the n’s that

will be represented by the basis. This will typically be the
same set as would be used for an equivalent SFT calculation
(see Sec. II B 3). For example, N = {n ∈ Z | nmin � n �
nmax}, and in Fig. 2(b), N = {−2,−1, 0, 1, 2}, corresponding
to each diagonal line.

(ii) For each n ∈ N decide on a canonical n1, n2 basis
vector, denoted as |n1(n)〉F1

⊗ |n2(n)〉F2
. One way to make this

choice is given in Appendix A and an example is shown in
Fig. 2(b) (using ⊗ markers).

(iii) For each n, generate a set of n1, n2 basis vectors by
repeated application of T̂F1⊗F2 [see Eq. (25)] and/or its inverse
(both of which preserve n) to the canonical basis vector
for this n, giving the basis set BF1⊗F2 = {T̂ 	

F1⊗F2
|n1(n)〉F1

⊗
|n2(n)〉F2

| n ∈ N ∧ 	 ∈ L}, where L ≡ {	 ∈ Z | 	min � 	 �
	max}. In Fig. 2(b), L = {−2,−1, 0, 1, 2}, with each element
corresponding to a different location along the diagonals.

The finite basis BF1⊗F2 generated by the preceding proce-
dure has the following property: given any n1, n2 basis vector
with corresponding n ∈ N , there always exists one unique
integer q such that (T̂ NL

F1⊗F2
)q|n1〉F1

⊗ |n2〉F2
is an element of

BF1⊗F2 , where NL is the number of elements in the set L. (If the
n1, n2 vector is already contained within BF1⊗F2 , then q = 0.)
Each vector within BF1⊗F2 may be considered as defining
an equivalence class containing elements that are not within
BF1⊗F2 (in addition to the vector within BF1⊗F2 ).

These equivalences allow periodic boundary conditions to
be implemented: if a term in the MMFT Hamiltonian couples
a vector n1, n2 from BF1⊗F2 to n′

1, n′
2, and this vector n′

1, n′
2 may

be “translated”—as described in the previous paragraph—to
n′′

1, n′′
2 within BF1⊗F2 (always possible if n′

1N1 + n′
2N2 ∈ N ),

then this coupling is counted as a contribution towards the ma-
trix element between n1, n2 and n′′

1, n′′
2; otherwise it is ignored.

Stated in another way: we implement periodic boundary con-
ditions by taking matrix elements of (ĈF1⊗F2 ⊗ ÎA)ĤF1⊗F2⊗A
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and (ĈF1⊗F2 ⊗ ÎA)T̂F1⊗F2⊗A, where ĈF1⊗F2 ≡ ∑
q∈Z(T̂ NL

F1⊗F2
)q.

When the finite matrix representations are constructed in this
manner, they exhibit the symmetry of Eq. (26). In the rest
of this section we refer to TF1⊗F2⊗A, TF1⊗F2 , and HF1⊗F2⊗A

(note no hats) as the finite matrix versions of their operator
counterparts with periodic boundary conditions applied.

After HF1⊗F2⊗A has been written in the finite basis formed
by combining BF1⊗F2 with the atomic basis, we may rewrite it
in a new basis in which k is a good quantum number. Since
HF1⊗F2⊗A does not connect basis vectors of differing k, the
Hamiltonian will be block diagonal in this new basis—with
each block and its eigenpairs corresponding to a specific k.
The new basis may be derived from BF1⊗F2 using Eq. (27),
which we can make precise by specifying that the summation
is over all p ∈ L, N is replaced by NL, and T̂F1⊗F2 is replaced
by its periodic version. Equation (27) then takes the form
of a discrete Fourier transform and TF1⊗F2 has eigenvalues
uniformly spaced around the unit circle in the complex plane.
Following convention, these eigenvalues may be written as
e−ik with k = 2π j/NL, where j an integer ranging from
−NL/2 to NL/2 − 1 if NL is even, or −(NL − 1)/2 to
(NL − 1)/2 if NL is odd. We have implemented the preceding
procedure for the ω, 2ω example discussed in Secs. II B 3 and
II C 3. In Fig. 1(b), the + points represent the eigenvalues of
HF1⊗F2⊗A, where we have used the correspondence φ2ω = k
from Eq. (38) with N1 = 1, N2 = 2, and φ1 = 0 suitable for
the Hamiltonian of Eq. (15). The finite basis used for F1 ⊗
F2 has NL = 12 and N = {−8,−7, . . . , 8}. Recall that the
solid lines of Fig. 1(b) correspond to SFT computations with
varying φ2ω (where the SFT Hamiltonian is constructed and
diagonalized for each φ2ω). By comparison with the + points,
we see that diagonalization of a single MMFT Hamiltonian
samples quasienergies for a discrete set of relative phases. The
spectrum calls to mind the analogy with solid-state crystals: as
NL → ∞ the spectrum of the MMFT Hamiltonian ceases to
have isolated eigenvalues, but rather becomes bandlike. (This
property has been previously noted by Potvliege and Smith
[9].)

We do not advocate use of the procedure of this section
(a special basis set and periodic boundary conditions) for
any practical computations, as each k block of the MMFT
Hamiltonian is essentially an SFT Hamiltonian corresponding
to a certain relative phase. Our purpose in this section was to
illustrate with a specific example the connection between the
k labeling of eigenpairs of the MMFT Hamiltonian and the
phases of the fields.

IV. SUMMARY AND DISCUSSION

For commensurate frequencies, the MMFT Hamiltonian
has a “translational” symmetry [Eq. (26)] analogous to that
found in tight-binding models of solid-state crystals. Using
this symmetry, we have established that when applied to time-
dependent periodic Hamiltonians involving two commensu-
rate frequencies [of the form given by Eq. (20)]10

10Although we have focused on the two-mode case for concrete-
ness, similar conclusions apply to MMFT in cases of more than two
modes.

(i) the MMFT propagator for unitary time evolution
[Eq. (22)] as originally given by Ho et al. [3] using the MMFT
Hamiltonian [in the modern form of Eq. (21)] is correct,
but

(ii) not all of the eigenpairs of the MMFT Hamilto-
nian correspond to the Floquet quasienergies and quasistates,
and

(iii) “invalid” eigenpairs of the MMFT Hamiltonian corre-
spond to the quasienergies and quasistates for different time-
dependent Hamiltonians. These different Hamiltonians corre-
spond to those arising from relative phase shifts of the fields
contributing to the Hamiltonian (as detailed in Sec. III B and
illustrated by the example of the ω, 2ω system in Sec. III C).

Although point (i) appears to be a confirmation of Ref. [3],
one of the authors of Ref. [3]—following Refs. [8] and [9]—
later restricted the application of MMFT to incommensurate
frequencies, treating the commensurate case using SFT [11]
(as we have done in Sec. II B 3 for the ω, 2ω example). It
appears that authors who reference the original MMFT paper
are not always aware of this restriction [partially erroneous
because of point (i) and partially correct because of point (ii)]
and the concerns with the validity of MMFT that have been
raised in the literature [8–10].

Point (ii) is important since it is normal (and correct) to
take the eigenvalues and eigenstates of the SFT Hamiltonian
[Eq. (10)] as corresponding to the Floquet quasienergies and
quasistates, whereas this is not necessarily correct for MMFT.
Although one must be slightly cautious when diagonalizing
the SFT Hamiltonian within a finite basis, the problematic
eigenpairs appear at the extremes of the spectrum. By contrast,
as the ω, 2ω example of Fig. 1(b) shows (the × points), erro-
neous eigenpairs of the MMFT Hamiltonian can appear in the
center of the spectrum. Some eigenpairs (those in the “bands”)
correspond (approximately) to quasipairs for different phases
of the fields, whereas others (those in the “gaps”) are artifacts
of basis set truncation.

That some MMFT eigenpairs correspond to the quasiener-
gies for different relative phases of the fields may be an
interesting observation [point (iii)], but not necessarily useful.
In a finite basis, extra eigenpairs corresponding to differing
phases of the fields imply a larger matrix representation of the
MMFT Hamiltonian than necessary. If one emulates the trans-
lational symmetry of the MMFT Hamiltonian [Eq. (26)] in a
finite basis using periodic boundary conditions to allow block
diagonalization (as we have done for illustrative purposes in
Sec. III C), the result is simply equivalent to application of
SFT repeatedly for a discrete set of relative phases.

Just as a tight-binding Hamiltonian with negligible cou-
plings between lattice sites will produce a set of degenerate
atomic energies (the bands collapsing to isolated energies), it
is also the case that, depending on N1 and N2 and the cou-
plings, the approximate diagonalization of MMFT Hamiltoni-
ans using finite basis sets may give the correct quasienergies.
In fact, we have not been able to find any examples in the
literature where MMFT has given incorrect quasienergies—
presumably because those studies, like the original MMFT
paper [3], have concentrated on large N1 and N2 values and
weak couplings. We are not yet aware of how to state these
criteria precisely.
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Finally, let us consider MMFT and our results from a
modern perspective. Two periodic “dressing” fields can be
used to engineer a quantum system, optimizing properties
such as low sensitivity to decohering fields [6]. For numeri-
cal optimization, the MMFT Hamiltonian has the seemingly
attractive property that its structure does not explicitly de-
pend on the precise ratio of the two field frequencies. By
contrast, Shirley’s formalism is more cumbersome, as the
SFT Hamiltonian structure depends on the exact rational
representation of the frequency ratio (i.e., N1 and N2). If the
dressing frequencies are to be varied as part of an optimiza-
tion process, then the simplicity of MMFT is appealing, but
ultimately problematic—optimization may lead to frequency
ratios corresponding to low N1 and N2. In this context, our
ω, 2ω example sounds a warning: naive interpretation of the
MMFT Hamiltonian eigenenergies as quasienergies may be
incorrect.11 This warning is despite the correctness of the
MMFT propagator [Eq. (22)] using the same Hamiltonian.
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APPENDIX A: CHOICE OF CANONICAL n1 AND n2

In the main text, we have referred at points [e.g., Eq. (27)]
to vectors, |n1(n)〉F1

⊗ |n2(n)〉F2
, specific to each n, satisfying

n1(n)N1 + n2(n)N2 = n. Here we describe a method to select
these vectors, i.e., how to choose n1 and n2 for a given n.
(The functional dependence on N1 and N2 is left implicit in
our notation.)

The extended Euclidean algorithm (EEA) (see, for exam-
ple, Ref. [24]) simultaneously determines both the greatest
common divisor (gcd) of two positive integers a and b and
a specific integer solution for x and y satisfying ax + by =
gcd(a, b). Since for any given rational frequency ratio we may
always choose N1 and N2 so that gcd(N1, N2) = 1, we use the
EEA to solve for n1(1) and n2(1) satisfying

n1(1)N1 + n2(1)N2 = 1 (A1)

(and also verify that gcd(N1, N2) = 1). Multiplying both sides
of Eq. (A1) by n suggests that we define n1(n) ≡ n1(1)n and
n2(n) ≡ n2(1)n. This choice is used in Fig. 2(b) and in the
numerical example of Sec. III C.

Reference [29] points out that the EEA produces an integer
solution for x and y to ax + by = gcd(a, b) having minimal
x2 + y2, which is desirable for the aesthetics of Fig. 2(b), but
by no means necessary.

11To apply SFT to commensurate multiple-frequency problems, the
choice of efficient basis sets may still be inspired by MMFT: select
some of the harmonics of the base frequency using n = n1N1 + n2N2,
where n1 and n2 are small integers, checking for and eliminating any
repeated n’s.

APPENDIX B: JUSTIFICATION OF THE MMFT
PROPAGATOR WITHOUT BASIS SET TRUNCATION

In the main text, the equivalence of the MMFT propagator
[Eq. (22)] to Shirley’s Floquet propagator [Eq. (14)] for
commensurate frequencies is demonstrated using physically
suggestive summations over a finite number of n1, n2 basis
vectors to produce n, k vectors. Here we justify the equiva-
lence of the propagators in a more rigorous manner.

The MMFT propagator [Eq. (22)] can be written in a form
resembling the SFT propagator through the introduction of
two linear maps: (i) a “promotion” map P from F ⊗ A to
F1 ⊗ F2 ⊗ A, and (ii) a “demotion” map D from F1 ⊗ F2 ⊗ A
to F ⊗ A:

〈β|ÛA(t )|α〉A =
∑

n

einωBt 〈n|F ⊗ 〈β|A D e−iĤF1⊗F2⊗At

× P|0〉F ⊗ |α〉A, (B1)

with

D ≡
∑
n1,n2

|n1N1 + n2N2〉F 〈n1|F1
⊗ 〈n2|F2

⊗ ÎA (B2)

and

P ≡
∑

n

|n1(n)〉F1
⊗ |n2(n)〉F2

〈n|F ⊗ ÎA, (B3)

where n1(n)N1 + n2(n)N2 = n (see Appendix A; the choice of
P is not unique, nor is it required to be). Note that although

DP = ÎF⊗A, (B4)

we have

PD �= ÎF1⊗F2⊗A, (B5)

since mapping from F1 ⊗ F2 → F “loses” information; i.e., it
is possible that D|n1〉F1

⊗ |n2〉F2
= D|n′

1〉F1
⊗ |n′

2〉F2
with n1 �=

n′
1 or n2 �= n′

2. Applying P to map back into F1 ⊗ F2 does not
restore this information.

Comparison of the MMFT propagator written using D and
P [Eq. (B1)] to the SFT propagator ([Eq. (14)] shows that their
equivalence will follow if

Ĥ j
F⊗A = DĤ j

F1⊗F2⊗AP (B6)

for all non-negative integers j. The j = 0 case follows from
Eq. (B4). For j > 0, it is sufficient that

ĤF⊗AD = DĤF1⊗F2⊗A, (B7)

since by acting with P from the right on both sides [and using
Eq. (B4)], we have

ĤF⊗A = DĤF1⊗F2⊗AP, (B8)

and subsequently acting from the left of both sides with
HF⊗A and using Eq. (B7) to simplify the right-hand side gives
Eq. (B6) for j = 2. This process may be continued to establish
Eq. (B6) for any positive integer j.

To show Eq. (B7), we take ĤF1⊗F1⊗A from Eq. (21), and
ĤF⊗A as given by Eq. (10), making use of Eq. (32) to ensure
that both SFT and MMFT Hamiltonians refer to the same
time-dependent Hamiltonian in the atomic space. This estab-
lishes the equivalence of the MMFT propagator [Eq. (22)] to
Shirley’s Floquet propagator [Eq. (14)].
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