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Boltzmann entropy for quantum field systems
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A way to construct Boltzmann entropy, i.e., the entropy as a function of a microscopic pure state, for quantum
field systems is proposed. Operators that shift the field in wave-vector space are used in the construction.
By employing an assumption that some terms emerging due to the shift are negligible in the thermodynamic
limit, it is shown that, for almost all states in the ensemble of pure states corresponding to a thermodynamic
state, the value of the proposed Boltzmann entropy coincides with that of the thermodynamic entropy for
the thermodynamic state. For general self-interacting fields, the Boltzmann entropy evolves with time under
Hamiltonian dynamics, so that it is capable of characterizing the thermalization of isolated quantum field
systems.
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I. INTRODUCTION

The statistical mechanics for thermal equilibrium states
in classical and quantum systems are well established in
the sense that it satisfactorily provides prescription to obtain
macroscopic thermodynamic variables, such as entropy S,
Helmholtz free energy F , and many others, from the Hamilto-
nian that determines the microscopic and dynamical nature of
the system. However, it may be said that the general consensus
on its foundations has not been reached.

Regarding the definition of thermal equilibrium in mi-
croscopic terms, there are two views, which may be called
the ensemblist view and the individualist view, where we
borrowed the terminology from Ref. [1]. In the former view,
a system is in thermal equilibrium when it is a mixed state
(or an ensemble of states) that is close to the canonical or
microcanonical mixed state (or ensemble), whereas in the
latter view, a pure state (or a point in phase space) can be in or
out of thermal equilibrium depending on the state.

The ensemblist view has traditionally prevailed, presum-
ably because of its concise formalism. Once the canonical,
microcanonical, or some other ensemble corresponding to a
thermal equilibrium state is defined from the Hamiltonian
of the system, all corresponding thermodynamic variables
can be derived through suitable statistical calculations with
respect to the ensemble. For example, in classical systems,
the entropy S is given by the form of Gibbs entropy S =
− ∫

�
dxρ(x) ln ρ(x) where � is the phase space and ρ(x)

is a probability density function on � representing the en-
semble. In the case of a canonical ensemble with inverse
temperature β := (kBT )−1, where kB is the Boltzmann con-
stant, the probability density function is given by ρcan,β (x) =
exp[−βH (x)]/Z (β ) (x ∈ �) where H (x) is the Hamiltonian
and Z (β ) is the partition function. In quantum systems, the
ensemble is represented by the density operator ρ; for ex-
ample, the canonical density operator is given by ρcan(β ) =
exp(−βH )/Z (β ) with the Hamiltonian H being an operator,
and the entropy is given by the form of von Neumann entropy
S = −tr[ρ ln ρ].

On the other hand, the individualist view has its basis
in the concept of typicality. Consider an ensemble of (pure)
states of a large classical or quantum system and a function
of state. Here, we say that the function satisfies the typicality
with respect to the ensemble if the value of the function
is almost same for almost all states in the ensemble. The
state is said to be typical when the value of the function
is very close to the ensemble average and it is said to be
atypical when the value of the function largely deviates from
the average. In the individualist view, thermodynamic vari-
ables are functions of (pure) states and they are expected to
satisfy the typicality with respect to ensembles correspond-
ing to thermal equilibrium, say microcanonical ensembles
or canonical ensembles. Then, we may identify the values
of the thermodynamic variables at typical states, which we
interpret as thermal equilibrium states, with the ensemble
average of those. In the individualist view, the physical objects
are individual (pure) states and ensembles are just working
tools for computing thermodynamic variables efficiently. It is
actually shown in Refs. [2–5] that, in a large quantum system,
physical quantities associated with a small subsystem satisfy
typicality with respect to the microcanonical ensembles of the
large system. Thus, the individualist view has been gaining
theoretical support.

As far as thermodynamic variables in thermal equilibrium
are concerned, all the outcomes are the same for the both
views and there may be little practical reason to distinguish
between them. Significant difference between the two views
emerges in the case of nonequilibrium processes, especially
in thermalization in isolated systems. Note that the Gibbs
entropy and the von Neumann entropy do not evolve with
time under the Hamiltonian dynamics of isolated systems.
Therefore, these entropies are not capable of characterizing
thermalization. In the individualist view, thermalization can
be understood as follows: When a nonequilibrium state, that
is, an atypical state, is chosen as the initial state, it would
develop with time into thermal states because they are typical
in the ensemble, and the system substantially never comes
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back to the original nonequilibrium state nor develops into
other nonequilibrium states because they are so rare.

Recently, thermalization in isolated macroscopic quantum
systems has become a quite active research topic (see, e.g.,
Ref. [6] and references cited therein). The individualist view
plays an important role in the recent studies and there is a
growing consensus that the nature of thermodynamic equi-
librium states and thermalization can be analyzed through a
single typical pure state and its time evolution [7–10]. Rigol,
Dunjko, and Olshanii [7] demonstrated that a pure state of
an isolated system of hard-core bosons with additional weak
nearest-neighbor repulsions on a two-dimensional lattice do
thermalize under Hamiltonian dynamics by monitoring relax-
ation of the central component of the marginal momentum
distribution.

From thermodynamic point of view, entropy is the function
that characterizes the thermalization processes. It generally
increases under adiabatic thermalization processes. So it is of
interest to consider the entropy in the individualist view, that
is, entropy defined for microscopic state, or (pure) state. It
should satisfy typicality and its ensemble average should coin-
cide with the entropy defined for the ensemble, i.e., the Gibbs
entropy or the von Neumann entropy. The concept of entropy
as a function of microscopic state is originated by Boltzmann
and here we call such entropy the Boltzmann entropy. (See,
e.g., Ref. [11] for a review of the Boltzmann entropy. See
also the introduction of Ref. [12] for a similar use of the
terminology of Gibbs and Boltzmann entropy). Boltzmann
introduced a decomposition of the phase space into disjoint
subregions in the construction of the Boltzmann entropy for
classical systems. For quantum systems, the pioneering work
on Boltzmann entropy was given by von Neumann [13].
(Hereinafter, Ref. [13] is referred to as VN29. See Ref. [1] for
a review of VN29 from a modern perspective). In VN29, the
Boltzmann entropy is defined by using the abstract formalism
of the decomposition of the total Hilbert space. Although the
existence of many appropriate decompositions of the total
Hilbert space is guaranteed, the prescription of the appropriate
decompositions for specific systems was not given.

The aim of this paper is to construct a Boltzmann entropy,
a function of pure states, for quantum systems on a lattice,
or systems of quantum field, and to show that it satisfies
some properties that are desirable for the entropy. We restrict
the system to quantum field in order to give the explicit
construction of the Boltzmann entropy. The present study is
inspired by the author’s previous work on the construction
of entropy as a function of state in classical field systems
[14]. Following the previous work, the construction of the
Boltzmann entropy is considered in the wave-vector space and
operators that shift the field in the wave-vector space are used.

Recently, Šafránek, Deutsch, and Aguirre [15,16] pro-
posed a decomposition of the total Hilbert space based on a
coarse-graining in position space to construct a Boltzmann
entropy for systems of many quantum particles (hereinafter,
Refs. [15,16] are referred to as ŠDA19). Our study shares
interest and aim with ŠDA19 to some extent but the two
studies developed to construct different types of Boltzmann
entropy. Comparison between the two studies is given in
Sec. VI. Very recently, there is an attempt to define not c-
number valued but an operator valued Boltzmann entropy in

Ref. [12]. However, we do not expand the scope of this paper
to include the operator valued Boltzmann entropy.

This paper is organized as follows: We start with the
general formalism of constructing the Boltzmann entropy in
Sec. II. We then introduce a normal distribution model for
ensemble of pure states in Sec. III. Next, we give the setting
of the quantum field systems in Sec. IV. After these prepa-
rations, we construct a Boltzmann entropy for the quantum
field systems and examine its properties by using the normal
distribution model for ensemble of pure states in Sec. V. We
conclude with some discussion of the results in Sec. VI.

II. GENERAL FORMALISM

We first consider the properties that the Boltzmann entropy
S(ψ ), i.e., entropy as a function of (microscopic, pure) state
ψ , should satisfy, if it is formulated, both in classical and
quantum systems. Let X be a set of thermodynamic vari-
ables that specifies a thermodynamic equilibrium state. For
example, X = (U,V, N ) or X = (β,V, N ), where U is the
internal energy, V is the volume, N is the number of particles,
and β is the inverse temperature. In conventional statistical
mechanics, a thermodynamic equilibrium state is modeled by
a probability density function (PDF) P(ψ ) on the phase space
� for classical systems and a density operator ρ for quantum
systems. In the next section, we introduce a model PDF P(ψ )
on the Hilbert space H which corresponds to a given density
operator ρ, so that a thermodynamic equilibrium state X both
in classical and quantum systems can be described by a PDF
on the state space, which will be denoted by P(X )(ψ ). Let the
average with respect to P(X )(ψ ) be denoted by

F (ψ )
(X )

:=
∫
H

dψP(X )(ψ )F (ψ ), (1)

for an arbitrary function F (ψ ) of the state ψ . The overline
without superscript (X ) will mean the average with respect to
an arbitrary PDF P(ψ ).

So that the Boltzmann entropy S(ψ ) is consistent with
the thermodynamic entropy S(X ) defined for thermodynamic
state X , the following conditions should be required:

(S1) The average of S(ψ ) with respect to P(X )(ψ ) is equal
to the thermodynamic entropy S(X ) in the thermodynamic
limit, say V → ∞, i.e.,

lim
V →∞

S(ψ )
(X )

S(X )
= 1. (2)

(S2) The deviation from the mean �S(ψ ) := S(ψ ) −
S(ψ )

(X )
is small in the thermodynamic limit in the sense that

lim
V →∞

[�S(ψ )]2
(X )

[S(X )]2
= 0. (3)

Note that the thermodynamic limits in the above should be
taken by fixing the intensive variables such as N/V , E/V , and
β. By virtue of the Chebyshev’s inequality, the conditions (S1)
and (S2) imply that S(ψ ) is typically almost equal to S(X )
when ψ is randomly chosen according to the PDF P(X )(ψ ).

In addition to being consistent with the thermodynamic
entropy, it is desirable for the Boltzmann entropy S(ψ ) to
have some properties characterizing nonequilibrium states
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and processes. Let ψ (t ) denote the time evolution of the state
with respect to the Hamiltonian H and the initial condition
ψ (t = 0) = ψ . If S(ψ ) is substantially smaller than S(X ) and
S(ψ (t )) approaches S(X ) as t → ∞, then we may interpret
that ψ is an atypical nonequilibrium state and that ψ (t ) is
a nonequilibrium processes of thermalization. So that such
ψ (t ) does exist, S(ψ ) should at least satisfy the following
condition:

(S3) dS(ψ (t ))/dt |t=0 �= 0 for some ψ with finite probabil-
ity for finite V .

Now we proceed to introduce the general formalism of
the Boltzmann entropy S(ψ ) for both classical and quantum
systems. We start with the formalism for classical systems.
Let � be the phase space of a classical systems. For every
state ψ ∈ �, we assign a function f (φ; ψ ) of the state φ ∈ �,
which satisfies the properties of a probability density function
with respect to φ, i.e.,∫

�

dφ f (φ; ψ ) = 1, f (φ; ψ ) � 0. (4)

We call the function f (φ; ψ ) the density function associated
with the microscopic state ψ . This function f (φ; ψ ) should
be distinguished from the PDF P(X )(φ)(φ ∈ �) associated
with macroscopic thermodynamic state X . Hereinafter, we
use the symbol “ f ” for the density function associated with
an individual microscopic state in order to avoid confusion.
A Boltzmann entropy S(ψ ), i.e., entropy as a function of
microscopic state, can be introduced as

S(ψ ) = −
∫

�

dφ f (φ; ψ ) ln f (φ; ψ ). (5)

The Boltzmann entropy S(ψ ) is completely determined by
the choice of the function f (φ; ψ ). The function f (φ; ψ )
should be determined so as the corresponding Boltzmann
entropy S(ψ ) to satisfy the desirable conditions (S1)–(S3).
A conceptual guideline to determine f (φ; ψ ) may be given
by introducing a notion of “macroscopic similarity.” For a
fixed state ψ , assign a value of f (φ; ψ ) for every state φ

according to the degree of macroscopic similarity between φ

and ψ . That is, let f (φ; ψ ) > f (φ′; ψ ) if φ is macroscopically
more similar to ψ in comparison with φ′. Conversely, if
f (φ; ψ ) is already defined, we may estimate the degree of the
macroscopic similarity of φ to ψ by the value of f (φ; ψ ).

When a decomposition of the phase space � = ⋃
ν �ν into

mutually disjoint subregions �ν is given and states in a same
subregion may be regarded to be macroscopically similar to
each other, one can define the function f (φ; ψ ) as

f (φ; ψ ) = |�ν(ψ )|−1δν(φ)ν(ψ ), (6)

where |�ν | is the volume of �ν , ν(ψ ) and ν(φ) are such
that ψ ∈ �ν(ψ ), and φ ∈ �ν(φ), respectively, and δνν ′ is the
Kronecker delta. Equation (5) reduces to

S(ψ ) = ln |�ν(ψ )|. (7)

A decomposition of the phase space is obtained by specifying
a sequence of the energy values U (ν) (ν = 0, 1, 2, . . . ) satis-
fying U (0) < U (1) < U (2) < · · · with U (0) being the ground
energy and letting �ν = {ψ |U (ν−1) < H (ψ ) � U (ν)} (ν =
1, 2, . . . ) where H (ψ ) is the Hamiltonian. Then S(ψ ) in

Eq. (7) is consistent with the Gibbs entropy for the micro-
canonical ensemble Smc(U ) with U = H (ψ ). Another exam-
ple of decomposition is given by introducing a set of real func-
tions {M}(ψ ) = {M1(ψ ), . . . , Mn(ψ )} which corresponds
to macroscopic quantities. Let the sequences M (νm )

m (νm =
0, 1, 2, . . . ; m = 1, 2, . . . , n) satisfy M (0)

m < M (2)
m < · · · , and

the subregion is defined by �ν = {ψ |M (νm−1)
m < Mm(ψ ) �

M (νm )
m , m = 1, . . . , n} for ν = {ν1, . . . , νm}. Then S(ψ ) in

Eq. (7) is nothing but the Boltzmann entropy SB({M}(ψ ))
given in Ref. [11].

The equivalent formalism for quantum systems is given
as follows: Let H be the Hilbert space and we assign an
operator f (ψ ) to every pure state |ψ〉 ∈ H which satisfies
the properties of density operator, i.e., self-adjoint, positive
semidefinite, and of trace one. Again, we will use the symbol
f for the density operator associated with individual pure state
to distinguish it from the density operator ρ(X ) associated
with macroscopic thermodynamic state X . A Boltzmann en-
tropy S(ψ ) is given by

S(ψ ) = −tr[ f (ψ ) ln f (ψ )]. (8)

The operator f (ψ ) can be expressed as

f (ψ ) =
∫

dφ w(φ; ψ )U (φ; ψ )|ψ〉〈ψ |U †(φ; ψ ), (9)

where φ is a parameter which may have many compo-
nents, U (φ; ψ ) is a unitary operator labeled by φ and
ψ , and w(φ; ψ ) � 0 is a weighting function satisfying∫

dφ w(φ; ψ ) = 1. The unitary operator U (φ; ψ ) maps the
state |ψ〉 to U (φ; ψ )|ψ〉 and the value of w(φ; ψ ) gives
the degree of macroscopic similarity of U (φ; ψ )|ψ〉 to |ψ〉.
The Boltzmann entropy is completely determined by U (φ; ψ )
and w(φ; ψ ) so that the problem is the choice of them.

For example, let us consider the case when a decompo-
sition of the Hilbert space H into mutually orthogonal n sub-
spaces Hν (ν = 1, . . . , n), i.e., H = ⊕n

ν=1 Hν , where n can be
infinite, is given according to VN29. Let U (Hν ) be the set of
unitary operators acting on Hν and μν be the Haar measure
on U (Hν ) normalized as

∫
Uν∈U (Hν ) dμν (Uν )1 = 1. Let Uν ∈

U (Hν ) and let the parameter φ be {Uν} = {U1,U2, . . . ,Un}.
We put U (φ = {Uν}; ψ ) = ∏n

ν=1 Uν and dφ w(φ; ψ ) =∏n
ν=1 dμν (Uν ). Note that U (φ; ψ ) and w(φ; ψ ) are now in-

dependent of ψ . By noting that

∫
U (Hν )

dμν (Uν )UνAU †
ν = tr[PνAPν]

tr[Pν]
Pν +(I − Pν )A(I − Pν ),

(10)

where Pν is the projection operator on Hν and I is the identity
operator on H, one obtains

f (ψ ) =
∑

ν

tr[Pν |ψ〉〈ψ |Pν]

tr[Pν]
Pν, (11)

S(ψ ) = −
∑

ν

tr[Pν |ψ〉〈ψ |Pν] ln
tr[Pν |ψ〉〈ψ |Pν]

tr[Pν]
. (12)
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III. NORMAL DISTRIBUTION MODEL FOR THE
ENSEMBLE OF PURE STATES

As mentioned in Sec. II, we need an ensemble of pure
states, or PDF P(X )(ψ ) on the Hilbert space H, which cor-
responds to a given thermodynamic equilibrium state X in
the case of quantum systems. The density operator ρ(X ) that
corresponds to a thermodynamic equilibrium state X can be
obtained through the standard method of microcanonical en-
semble, canonical ensemble, or some other variant ensembles.
In this section, we introduce a method to construct the PDF
P(X )

N (ψ ) from ρ(X ), where the subscript N stands for the
normal distribution.

For a given density operator ρ, the way to decompose it
into an ensemble, i.e., a weighted sum, of pure states ρ =∑

α P(α)|α〉〈α|, is not unique. The spectral decomposition
is an evident example, but there are many other choices.
Here, we introduce a decomposition which yields a multi-
variate complex normal distribution PN(ψ ) on the Hilbert
space H, i.e.,

ρ =
∫
H

dψPN(ψ )|ψ〉〈ψ |, (13)

PN(ψ ) = 1

πD det ρ
exp[−〈ψ |ρ−1|ψ〉], (14)

where dψ = ∏D
α=1 dReψαdImψα , ψα = 〈α|ψ〉, |α〉 (α =

1, . . . , D) is an arbitrary orthonormal basis, det ρ is the de-
terminant of a matrix expression of ρ, and D is the dimension
of the Hilbert space H. Equation (14) implies that the compo-
nents ψα obey the multivariate complex normal distribution
with the means ψα = 0 and the covariances ψαψ∗

β = 〈α|ρ|β〉.
Then, it is easily checked that Eq. (13) holds by computing
the matrix elements 〈α| • |β〉 of the both sides. When ρ has
0 eigenvalue for an eigenvector |α〉, P(ψ ) in Eq. (14) is not
well defined. In such a case, we may put ρ|α〉 = εα|α〉 with
εα > 0 in Eq. (14) and the right-hand-side of Eq. (13) is safely
obtained by taking the limit εα → +0. For the case of D = ∞,
we can first restrict the Hilbert space to be a finite-dimensional
subspace H′ ⊂ H and consider the projection of |ψ〉 onto H′
and then increase the dimension of H′ to infinity. Equation
(13) implies that ρ is equivalent to the ensemble of pure states
|ψ〉 with the probability density function (14).

Although we have 〈ψ |ψ〉 = 1, individual states |ψ〉 in
the ensemble are not normalized: 〈ψ |ψ〉 �= 1, in general.

However, if (�〈ψ |ψ〉)2 := (〈ψ |ψ〉 − 〈ψ |ψ〉)2 is small
enough, then |ψ〉 is normalized as 〈ψ |ψ〉 = 1 with
a sufficiently small deviation with probability almost
1. Let us consider the case for the canonical density
operator ρcan(β,V, N ) := exp[−βH (V, N )]/Z (β,V, N )
where H (V, N ) is the Hamiltonian and Z (β,V, N ) :=
tr{exp[−βH (V, N )]} is the partition function. It can be
shown that (�〈ψ |ψ〉)2 = Z (2β,V, N )/[Z (β,V, N )]2 =
exp{−2β[F (2β,V, N ) − F (β,V, N )]}, where F (β,V, N ) =
−β−1 ln Z (β,V, N ) is the Helmholtz free energy. For
thermodynamically sound systems, we have F (β,V, N ) =
O(V ) for V → ∞, ∂F (β,V, N )/∂β = β−2S(β,V, N ),
and the entropy S(β,V, N ) can be chosen to be positive for
0 � β < ∞. Therefore, we have (�〈ψ |ψ〉)2 ∼ exp[− f (β )V ]
with a function f (β ) of β satisfying f (β ) � 0, which

implies that 〈ψ |ψ〉 = 1 is satisfied with probability 1 in the
thermodynamic limit V → ∞ for 0 � β < ∞.

When ρ can be written in the form ρ = |J|−1 ∑
j∈J | j〉〈 j|

where J is a set with the size |J| < ∞ and 〈 j| j′〉 = δ j j′ ,
there is another choice of PDF on the Hilbert space. The
PDF is given by the uniform distribution on the surface of
hypersphere 〈ψ |ψ〉 = 1 in the subspace HJ which is spanned
by | j〉 ( j ∈ J ). When all the thermodynamic variables in X
are extensive variables such as the internal energy U , the
microcanonical density operator ρmc(X ) may be written in the
above form with HJ being the subspace spanned by the en-
ergy eigenvectors with the eigenvalues lying in ((1 − δ)U,U ]
where 0 < δ � 1 and thermodynamic variables in X other
than U (such as volume V or particle number N) are fixed. We
denote the PDF by P(X )

sp (ψ ) where the subscript “sp” stands for
“hypersphere.” This type of PDF is often used in the context
of typicality (see, e.g., Refs. [2–4]).

In the present study, we consider the case such that inverse
temperature β rather than internal energy U is used to specify
the thermodynamic state and the corresponding density oper-
ator is the canonical density operator, for which the model
PDF that is uniformly distributed on a hypersphere cannot
be applied straightforwardly (but, see Refs. [8,9] for some
attempts to define an ensemble of pure states corresponding to
canonical ensembles). Therefore, we use a normal distribution
model PDF in the present study. Although it has the disadvan-
tage that each pure state is not normalized in the strict sense, it
has the advantage that some properties of normal distribution
enable us to push forward the computation in Sec. V.

IV. QUANTUM FIELD SYSTEMS

Let the spatial domain of the system be a d-dimensional
cube with sides of length L applied with periodic boundary
conditions. The volume of domain is V = Ld . Let the spatial
coordinate be discretized with unit length �x in each direction
and let K be the set of correspondingly discretized wave
vectors, k = (n1, . . . , nd )�k where �k = 2π/L and n j =
−L/2�x,−L/2�x + 1, . . . , L/2�x − 1 ( j = 1, . . . , d ). The
number of elements of K, which is same as the number
of lattice points in the spatial domain, is V (�x)−d . In the
following, the thermodynamic limit will be taken by V → ∞
with fixed �x or, equivalently, �k → 0 with fixed kmax :=√

dπ/�x.
We consider a bosonic or fermionic field in this domain.

Annihilation and creation operators, ak and a†
k, respectively,

associated with the wave vector k satisfy the commutation
relation [ak, a†

k′] = δk,k′ for bosonic fields, and the anticom-

mutation relation {ak, a†
k′ } = δk,k′ for fermionic fields, where

δk,k′ is the Kronecker delta in the vector space, i.e., δk,k′ = 1
for k = k′ and δk,k′ = 0 otherwise. Let {n} be a list of numbers
nk(k ∈ K) and |{n}〉 be the Fock state,

|{n}〉 :=
∏

k

′ (a†
k)nk

√
nk!

|0〉, (15)

where |0〉 is the vacuum specified by ak|0〉 = 0(k ∈ K), 0 �
nk < ∞ for bosonic fields and nk = 0, 1 for fermionic fields,
and

∏′
k denotes an ordered multiplication according to an

arbitrary rule. Note that the rule is required to eliminate the
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ambiguity of the sign for the case of fermionic fields. The
Fock states |{n}〉 with 0 � ∑

k nk < ∞ form an orthonormal
basis of the Hilbert space H of the field system.

We assume that the Hamiltonian H of the field is invariant
under the global phase translation ak → akeiθ for arbitrary
θ ∈ R and the spatial translation ak → ake−ik·δx for arbitrary
δx ∈ Rd . These imply that the Hamiltonian H commutes with
the particle number N̂ := ∑

k a†
kak and the momentum p :=∑

k ka†
kak. The explicit form of the Hamiltonian up to fourth

order in the field operators is given by

H =
∑

k

ωka†
kak + 1

2

∑
kqrs

gkqrsδk+q,r+sa
†
ka†

qaras, (16)

where ωk � 0 and gkqrs ∈ C. In general, H may contain
higher-order terms in ak and a†

k. We assume that ωk and gkqrs

and higher-order coefficients are prescribed in the domain of
continuous-wave vector space and that they are continuous
functions of the wave vectors. Let | j〉 ( j = 0, 1, 2, . . . ) be
simultaneous eigenstates of the particle numbers N̂ , momen-
tum p, and the Hamiltonian H with the eigenvalues Nj , p j ,
and Ej , respectively. When some of the energy eigenstates are
degenerate, i.e., Nj = Nj′ , p j = p j′ , and Ej = Ej′ for j �= j′,
we choose | j〉 and | j′〉 to be orthogonal so that all | j〉 s form
an orthonormal basis of the Hilbert space H of the field
system. The Fock states |{n}〉 may be used as an orthonormal
basis | j〉 for free-field systems, i.e., H = ∑

k ωka†
kak, but the

orthonormal basis | j〉 does not coincide with the Fock states
|{n}〉 for general (self-)interacting field systems.

Hereafter, we consider the thermodynamic state (β,V, N ).
Let HN be the subspace of H spanned by the eigenstates of N̂
with the eigenvalue N . We restrict the Hilbert space to HN

for the thermodynamic equilibrium state (β,V, N ) and the
thermodynamic limit V → ∞ will be taken with fixed N/V .

V. BOLTZMANN ENTROPY FOR QUANTUM
FIELD SYSTEMS

Let the unitary operator U� parametrized by � =
(θ0, θ1, θ2, . . . ) (0 � θ j < 2π ) be given by

U�| j〉 =
∑

j

eiθ j | j〉. (17)

Let Uκ be the unitary operator which shifts the field in the
wave-vector space by a wave vector κ ∈ K′, i.e.,

UκakU †
κ = ak+κ, (18)

where K′ is a set of wave vectors κ satisfying κ =
(n1, . . . , nd )�k with n j = −�ζL/2�x�,−�ζL/2�x� +
1, . . . , �ζL/2�x�, and ζ is a positive small parameter.
Hereafter, we identify the wave vector k + (2π/�x)�
(� ∈ Zd ) with k so that all wave vectors under consideration
belong to K. Note that U †

κ = U−κ. Provided that the vacuum
|0〉 is invariant under the operation of Uκ for κ ∈ K′, the
operator Uκ transfers a Fock state |{n}〉 to another Fock state
Uκ|{n}〉 = ∏

k
′(a†

k+κ
)nk/

√
nk!|0〉. In the thermodynamic

limit, we put ζ = ζ0(L/�x)−α = ζ0V −α/d (�x)α with
0 < α < 1 and a positive small constant ζ0. Note that
κmax := √

d�ζL/2�x��k scales as κmax = O(V −α/d ) and the
size of the set K′ scales as |K′| ∝ V 1−α .

Let the operator f (ψ ) associated with a state |ψ〉 be
given by

f (ψ ) =
⎛
⎝∏

j

∫ 2π

0

dθ j

2π

⎞
⎠ 1

|K′|
∑

κ

U�Uκ|ψ〉〈ψ |U †
κ U †

�

= 1

|K′|
∑

j

∑
κ

P jUκ|ψ〉〈ψ |U †
κ P j, (19)

where P j := | j〉〈 j| is the projection operator and we used
Eq. (10) in the second equality. We propose to define the
Boltzmann entropy S(ψ ) for quantum field systems as Eq. (8)
with Eq. (19). We will see that, under an assumption specified
later, the proposed Boltzmann entropy S(ψ ) satisfies the prop-
erties (S1)–(S3) with respect to the ensemble of pure states
given by the PDF P(β,V,N )

N (ψ ), that is, the normal distribution
model for the canonical density operator ρcan(β,V, N ) asso-
ciated with the thermodynamic state (β,V, N ). In the rest of
this section, (β,V, N ) is denoted by γ for convenience.

From Eq. (19), we have

〈 j| f (ψ )| j′〉 = f j (ψ )δ j j′ , (20)

f j (ψ ) = 1

|K′|
∑
κ∈K′

|〈 j|Uκ|ψ〉|2. (21)

Let Hκ := UκHU †
κ and δκH := Hκ − H . The general expres-

sion of Hκ up to fourth order in the field operators is
given by

Hκ =
∑

k

ωk−κa†
kak+1

2

∑
kpqr

gk−κ,p−κ,q−κ,r−κδk+p,q+ra
†
ka†

paqar.

(22)

Let ρcan
κ (γ ) := Uκρ

can(γ )U †
κ = exp[−β(H + δκH )]/Z (γ )

and define an operator Aκ(γ ) by

ρcan
κ (γ ) = ρcan(γ )[I + λAκ(γ )], (23)

where I is the identity operator and λ = 1 is a bookkeeping
parameter. Since ωk, gkqrs, and the higher-order coefficients
in H are continuous in the wave vectors k, we have Aκ(γ ) =
O(κ ) for κ → 0 where κ := |κ|.

Since we use the normal distribution model P(γ )
N (ψ ),

the coefficients ψ j = 〈 j|ψ〉 obey the multivariate com-

plex normal distribution with the means ψ j
(γ ) = 0 and

the covariances ψ jψ
∗
j′

(γ ) = ρcan
j (γ )δ j j′ where ρcan

j (γ ) :=
〈 j|ρcan(γ )| j〉 = exp[−βEj]/Z (γ ). From Eqs. (21) and (23),
we have

f j (ψ )
(γ ) = ρcan

j (γ )

(
1 + λ

|K′|
∑
κ∈K′

〈 j|Aκ(γ )| j〉
)

. (24)

Let � f j (ψ ) := f j (ψ ) − f j (ψ )
(γ )

be the fluctuation and

Cj1 j2··· jm (γ ) := � f j1 (ψ )� f j2 (ψ ) · · ·� f jm (ψ )
(γ )

be the asso-
ciated m th order moments. In virtue of the multivari-
ate complex normal distribution of ψ j , Cj1 j2··· jm (γ ) can be
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expressed as

Cj1 j2··· jm (γ ) = 1

|K′|m
∑
σ∈P

⎛
⎝ m∏

m′=1

∑
κm′ ∈K′

⎞
⎠

×
(

m∏
m′=1

〈 jm′ |ρcan
κm′ (γ )Uκm′−κσ (m′ )

| jσ (m′ )〉
)

, (25)

where P is the set of permutations of {1, 2, . . . , m} with-
out fixed points. Note that 〈 j|ρcan

κ (γ )Uκ−κ′ | j′〉 �= 0 only if
p j − Nκ = p j′ − Nκ′. For fixed j, j′, and κ there is at most
one κ′ that satisfies the above condition. There are |K′|m =
O(V m(1−α) ) terms in the summation

∏m
m′=1

∑
κm′ ∈K′ , but at

most O(|K′|m/2) = O(V m(1−α)/2) terms are not 0. The fact is
essential in the following estimates.

The Boltzmann entropy S(ψ ) depends on ψ only through
f (ψ ) as S(ψ ) = ∑

j S1( f j (ψ )) where S1(x) := −x ln x. Let

us introduce bounding functions S(u)
1 (x, y) := −y ln y − (1 +

ln y)(x − y) and S(�)
1 (x, y) := S(u)

1 (x, y) − y−1(x − y)2, which
are polynomial in x and satisfy S(�)

1 (x, y) � S1(x) � S(u)
1 (x, y)

for x, y > 0. By substituting x = f j (ψ ) and y = f j (ψ )
(γ )

into the inequalities, taking the average with respect to the

thermodynamic state γ and summing over j yields∑
j

[S1( f j (ψ )
(γ )

) − ( f j (ψ )
(γ )

)−1Cj j (γ )] � S(ψ )
(γ )

�
∑

j

S1( f j (ψ )
(γ )

). (26)

The upper and lower bounds in the inequalities (26) can be
expanded in a power series of λ by using Eqs. (23)–(25). Each
O(λ) term contains Aκ(γ ) whose components 〈 j|Aκ(γ )| j′〉 are
O(κ ) for fixed V . Here we employ the following assumption:

(A1) O(λ) terms appearing in the estimate of S(ψ )
(γ )

and

[�S(ψ )]2
(γ )

can be neglected in the thermodynamic limit
V → ∞ with κmax = O(V −α/d ).

Under assumption (A1), f j (ψ )
(γ )

and Cj j (γ ) in Eq. (26)
can be replaced by ρcan

j (γ ) and |K′|−1[ρcan
j (γ )]2, respectively.

Thus, we arrive at

S(ψ )
(γ ) = S(γ ) + O(V −(1−α) ), (27)

which implies that (S1) is satisfied.

For the estimate of [�S(ψ )]2
(γ )

, we introduce a
function �S1(x, y) := S1(x) − S1(y) and a bounding func-
tion �S2(u)

1 (x, y) := [(1 − 2 ln y)/2y]2(x2 − y2)2 such that
[�S1(x, y)]2 � �S2(u)

1 (x, y) for x, y > 0. We have

[�S(ψ )]2
(γ ) =

∑
j j′

�S1( f j (ψ ), f j (ψ )
(γ )

)�S1( f j′ (ψ ), f j′ (ψ )
(γ )

)
(γ )

−
⎡
⎣∑

j

�S1( f j (ψ ), f j (ψ )
(γ )

)

⎤
⎦

2

�

⎧⎨
⎩

∑
j

[
�S2(u)

1 ( f j (ψ ), f j (ψ )
(γ )

)
(γ )]1/2

⎫⎬
⎭

2

, (28)

where we used the Cauchy-Schwarz inequality and the bound-
ing inequality regarding �S2(u)

1 (x, y) in the last inequality. The
right-hand side of inequality (28) can be written in terms of
the moments Cj1 j2··· jm (γ ) in Eq. (25). By applying assumption
(A1) to inequality (28), we can show that

[�S(ψ )]2
(γ )

S(γ )2
= O(V −(1−α) ), (29)

which implies that (S2) is satisfied.
Regarding the dynamics, we have

f j (ψ (t )) = 1

|K′|
∑
κ∈K′

∣∣∣∣∣∣
∑

j′
〈 j|Uκ| j′〉ψ j′ (0)e−iE j′ t

∣∣∣∣∣∣
2

. (30)

In the case of free field systems, | j〉 and | j′〉 are Fock states
and U †

κ | j〉 = U−κ| j〉 is also a Fock state. Since the Fock
states form an orthonormal basis, 〈 j|Uκ| j′〉 �= 0 is satisfied
for at most one j′ for arbitrary fixed j and κ. This implies
that f j (ψ (t )) is independent of t for free field systems. For
general (self-)interacting field systems, we have [H, H−κ] �= 0
for κ �= 0. Note that U−κ| j〉( j = 1, 2, . . . ) are eigenstates of
H−κ, and that there are some j such that 〈 j|Uκ| j′〉 �= 0 for two

or more j′s. The element f j (ψ ) depends on t when ψ j′ (0) �= 0
for those j′s. Furthermore, the t dependence of f j (ψ (t )) leads
to the t dependence of S(ψ (t )). Thus, (S3) is satisfied for
(self-)interacting field systems.

VI. DISCUSSIONS

A different and simpler definition of the Boltzmann en-
tropy can be given by substituting

fd(ψ ) =
⎛
⎝ D∏

j=1

∫ 2π

0

dθ j

2π

⎞
⎠U�|ψ〉〈ψ |U †

�,

=
∑

j

P j |ψ〉〈ψ |P j, (31)

into f (ψ ) of Eq. (8). This type of entropy, denoted Sd(ψ ),
is often called the diagonal entropy (see, e.g., Ref. [17]).
It can be shown that Sd(ψ ) satisfies (S1) and (S2) but fails
to satisfy (S3), i.e., Sd(ψ (t )) do not depend on t under the
Hamiltonian dynamics. In order that f (ψ (t )) and S(ψ (t ))
depend on time, a parametrized set of unitary operators which
do not commute with the Hamiltonian H is necessary. The
situation is conceptually akin to selecting a decomposition
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of the Hilbert space H whose projection operators Pν do not
commute with H in VN29. Furthermore, the introduction
of the set of unitary operators should not violate (S1) and
(S2). Following the preceding study on the Boltzmann
entropy for classical field systems [14], we introduced
the set of operators Uκ(κ ∈ K′) that shifts the field in the
wave-vector space to fulfill the above requirements. The
underlying idea of the operator Uκ may be given as follows:
When the Hamiltonian H is invariant under the spatial
translation and global phase translation, the correlation in the
wave-vector space takes the form tr[a†

kak′ρcan(β,V, N )] =
Gkδk,k′ , tr[akak′ρcan(β,V, N )] = tr[a†

ka†
k′ρ

can(β,V, N )] = 0.
This implies that the different wave-vector modes are
uncorrelated at the level of the second-order moments. When
Gk is a smooth function of k, which may be expected when
ωk and higher-order coefficients in the Hamiltonian H are
smooth, the neighboring wave-vector modes k and k + κ

(κ ∈ K′) may be interpreted as statistically quasi-independent
replicas of each other. The interacting wave-vector modes
ak1 , . . . , akm , a†

k′
1
, . . . , a†

k′
m

satisfy the momentum-preserving

condition
∑m

m′=1 km′ − ∑m
m′=1 k′

m′ = 0 and the condition is
not violated by a shift in the wave-vector space, k → k + κ.
Based on these considerations, it may be appropriate to regard
that the states |ψ〉 and Uκ|ψ〉 (κ ∈ K′) “resemble” each other.

In the present study, we chose the set of thermodynamic
variables (β,V, N ) to specify a thermodynamic state and
the corresponding canonical density operator ρcan(β,V, N )
is interpreted as an ensemble of unnormalized pure states
P(β,V,N )

N (ψ ) using the normal distribution model. Exploiting
this setting of the ensemble of pure states, we showed,
with an additional assumption (A1), that (S1)–(S3) hold.
When the set of thermodynamic variables (U,V, N ), where
U is the internal energy, is chosen, the density operator
may be given by that of the microcanonical ensemble
ρmc(U,V, N ) = |JU |−1 ∑

j∈JU
| j〉〈 j|, where JU is the set of

indices j satisfying (1 − δ)U < Ej � U with H | j〉 = Ej | j〉
and 0 < δ � 1, and |JU | is the size of the set JU . As
mentioned in Sec. III, the model PDF P(U,V,N )

sp which is
distributed uniformly on the surface of a hypersphere may
be used in this case. The PDF P(β,V,N )

N (ψ ) approximates
P(U (β,V,N ),V,N )

sp (ψ ) in the sense that (�〈ψ |ψ〉) → 0 for V →
∞ and that �U (β,V, N )/U (β,V, N ) = O(V −1/2), where
�U (β,V, N ) := (tr{ρcan(β,V, N )[H − U (β,V, N )]2})1/2,
holds for thermodynamically sound systems. Taking into
account the resemblance of the two PDFs P(β,V,N )

N (ψ ) and
P(U (β,V,N ),V,N )

sp (ψ ), it is probable that the properties (S1)–(S3)
hold not only for P(β,V,N )

N (ψ ) but also for P(U,V,N )
sp (ψ ). If

(S1)–(S3) hold for P(U,V,N )
sp (ψ ), �S(ψ ) := S(ψ ) − S(U =

〈ψ |H |ψ〉,V, N ) would be almost 0 for almost all states |ψ〉
with respect to the PDF P(U,V,N )

sp (ψ ). We interpret these states
as thermodynamic equilibrium states. Then, �S(ψ ) gives a
measure of departure from the thermodynamic equilibrium.
States with large |�S(ψ )| correspond to nonequilibrium
states. We hope that �S(ψ ) < 0 for most nonequilibrium
states and that the thermalization process corresponds to
limt→∞ �S(ψ (t )) = 0 with dS(ψ (t ))/dt > 0.

The eigenstate thermalization hypothesis (ETH) [18,19]
states that a single energy eigenstate can behave as a thermal

state. In the present context, the ETH is given as �S(ψ ) ≈ 0
for almost all energy eigenstates |ψ〉 = | j〉. One can see from
Eqs. (8) and (19)–(21) that the expression of the operators Uκ

(κ ∈ K′) in the energy eigenstate basis | j〉, that is 〈 j′|Uk| j〉,
is required to compute S( j) := S(ψ )||ψ〉=| j〉. In the case of a
free field system, there is only one j′ such that 〈 j′|Uk| j〉 �=
0 for every fixed j and we have S( j) = − ln |K′| ∝ −(1 −
α) ln V = o(V ) and S( j) �= S(U = Ej,V, N ) = O(V ), which
implies that the ETH is not valid for free fields. For general
fields with interactions, there can be more than one j′ such
that 〈 j′|Uk| j〉 �= 0 for every fixed j. If there are sufficiently
many such j′s, then there is a possibility that the ETH is
valid for some fields with interactions. When the ETH is
valid, nonequilibrium states |ψ〉, if they exist, are linear
superpositions of energy eigenstates that are thermodynamic
equilibrium states. Let us fix an initial state as |ψ (0)〉 =∑

j ψ j (0)| j〉. Only when ψ j′ (0) for various j′ are in some
special coherent relations between each other, f j (ψ (t )) in
Eq. (30) with t = 0 would take an atypical value. And when
f j (ψ (0)) takes an atypical value for sufficiently many js,
�S(ψ (0)) would deviate significantly from 0, i.e., |ψ (0)〉 is a
nonequilibrium state. Even when |ψ (0)〉 is a nonequilibrium
state, the factors e−iE ′

j t in Eq. (30) destroy the coherence
for t > ε with some small ε (>0) and �S(ψ (t )) ≈ 0 would
be achieved, which implies the thermalization. The present
dynamical description of thermalization is consistent with that
depicted in Fig. 2 of Ref. [7].

In ŠDA19, a coarse-graining in position space is intro-
duced to construct a Boltzmann entropy for systems of many
quantum particles. Let the spatial domain of the system
D be divided into disjoint subdomains D� (� = 1, 2, . . . )
corresponding to the coarse-graining. Let n̂� be the number
operator of the particles in the subdomain D� and Hν be
the subspace of the Hilbert space H that is spanned by the
simultaneous eigenstates of {n̂1, n̂2, . . . } with the eigenval-
ues ν = {n1, n2, . . . }. Let Qν be the projection operator on
Hν and P j = | j〉〈 j| where | j〉 ( j = 0, 1, 2, . . . ) are energy
eigenstates. The observational entropy SxE (ψ ) with coarse-
graining in position space and fine-graining in energy in the
terminology of ŠDA19 is formulated by

SxE (ψ ) = −
∑
ν, j

tr[P jQν |ψ〉〈ψ |QνP j]

× ln
tr[P jQν |ψ〉〈ψ |QνP j]

tr[P jQνP j]
, (32)

in analogy with Eq. (12). Note that SxE in ŠDA19 is defined
for the general density matrix ρ but here we restrict it to
be a function of a pure state ρ = |ψ〉〈ψ |. Since P j and
Qν do not commute in general, the density operator fxE (ψ )
associated with the pure state ψ which satisfies SxE (ψ ) =
−tr[ fxE (ψ ) ln fxE (ψ )] cannot be formulated in general. Thus,
SxE (ψ ) does not fit into the formalism given in Sec. II in a
strict sense. However, we may discuss conceptional similarity
and difference between the Boltzmann entropy S(ψ ), Eq. (8)
with Eq. (19), proposed in the present paper and SxE (ψ )
in ŠDA19. They are similar in the sense that they both
use U�, P j , or the fine-graining in energy in the terminol-
ogy of ŠDA19. The difference between the two Boltzmann
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entropies is that the shift in wave-vector space is used in S(ψ )
while the coarse-graining in position space is used in SxE (ψ ).
The coarse-graining method is supposed to work well when
the interaction between the particles is collisional or short
ranged, so that SxE (ψ ) would not be appropriate when the
interaction is long-ranged beyond the coarse-graining scale.
The Boltzmann entropy S(ψ ) in the present study has no
limitation in the interacting scale range. On the other hand,
the method of shift in the wave-vector space requires the
invariance of the Hamiltonian under the spatial translation,
so that SxE (ψ ) may be more suitable in the cases such that
an external potential field depending on position is present.
Many other definitions of Boltzmann entropy satisfying (S1)–
(S3) would be possible. Actually, the examples of Boltzmann
entropy other than SxE (ψ ) are given in ŠDA19. Among many

definitions, an appropriate one should be used depending on
the situation.

The main purpose of this paper is to propose the Boltzmann
entropy S(ψ ) for quantum field systems given by Eq. (8)
with Eq. (19) and to show its potential for characterizing
nonequilibrium dynamical processes, including thermaliza-
tion. Validation of the assumption (A1) and detailed analysis
of 〈 j′|Uk| j〉 and ETH for some specific field systems are
beyond the scope of the present study. They may be left for
future studies.
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