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Possible signals in differentiating the quantum radiation reaction from the classical one
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A configuration to identify the stochastic effect of the quantum radiation reaction is proposed, where electrons
are put in a standing wave of two colliding ultraintense lasers. By comparing the simulation results of the
semiclassical and quantum models, we find that if the semiclassical model is used, a particular trapping of
electrons between two electric-field nodes is induced, which, however, does not exist once the correct quantum
model is applied. This results in different features of the electron density, energy, and angular distributions, which
can be measured in experiments.
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I. INTRODUCTION

An accelerating charge emits radiation, which in turn
delivers an effective force on the radiating charge. As we
know, in a self-consistent description of the motion of a
relativistic electron in external electromagnetic fields, the
radiation reaction (RR) must be taken into account. In fact,
a detailed characterization of the RR is indispensable for a
correct description of high-field experiments using the present
multi-PW and next generation of 10-PW laser facilities, such
as the Extreme Light Infrastructure [1], Apollon [2], Vulcan
[3], and XCELS [4], with peak intensities 1022–1024 W/cm2.
Although the RR plays more and more important roles in the
dynamics of electrons and even ions within the interaction
of an ultraintense laser and matter, the general self-consistent
description of the RR is still a challenging problem in classical
and quantum electrodynamics (QED) [5].

The radiation reaction in the realm of classical electro-
dynamics, known as the classical radiation reaction, is well
described by the Landau-Lifshitz (LL) equation when the
quantum nonlinear parameter χe ≡ |e|h̄√

(Fμν pν )2/m3c4 �
1, where Fμν is the electromagnetic field tensor, pν = (ε/c, p)
is the electron four-momentum, γ is the Lorentz factor, e < 0
and m are the charge and mass of an electron, respectively,
and c is the velocity of light. When χe approaches unity, the
LL equation may no longer be assumed valid because the
discrete nature of the photon emission cannot be neglected
in the dynamics of the electron. Hence, the motion of an
electron with the RR in this regime should be described within
the framework of QED, which is known as the quantum
regime of the radiation reaction. In order to find evidence of
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the quantum RR, experiments have recently been conducted
using a high-energy electron beam generated by a laser wake-
field accelerator colliding head-on with an ultraintense laser.
The postcollisional electron spectra are computed by using
semiclassical and quantum models and compared with the
experimental results [6,7].

The semiclassical model is based on the classical LL equa-
tion which is modified by introducing a quantum correction.
As we know, the unphysical emission of a photon with an
energy higher than the initial kinetic energy of the emitting
electron is allowed in the classical theory, which leads to over-
estimation of the electron energy loss [8]. Nevertheless, this
can be settled by limiting the highest radiated frequency from
the viewpoint of quantum theory, which has been thoroughly
investigated in the literature [8–12].

The quantum RR is taken into account by calculating the
recoil of multiple incoherent single-photon emissions, which
has been shown to contribute dominantly to the RR in the so-
called moderate quantum regime [8]. This regime is defined
by (i) the classical nonlinear parameter a0 = |e|E0/mω0c �
1, where E0 is the laser electric-field amplitude and ω0 is
the central angular frequency, and (ii) the quantum nonlin-
ear parameter χe < 1. These two conditions ensure that the
nonlinear QED effects are already important in this regime,
while the electron-positron pair production is still negligible.
In such a regime, the RR may reveal stochasticity because the
emission of photons by an electron is substantially probabilis-
tic. Actually, identifying the quantum nature of the RR is the
main drive for the recent experiments mentioned above.

There have been numerous studies dedicated to identifying
the signature of the quantum RR [10,12–22]. Almost all of
these studies can be summarized in two aspects: The quantum
RR predicts a reduction in radiation power and the quantum
radiation has a stochastic nature. Most of previous works
have focused on the first signature, yet uncertainties about
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the second signature of the quantum RR still remain [23].
Furthermore, works on the stochasticity of the quantum RR
have mainly focused on the electron-beam spreading in the
all-optical laser–electron-beam collision setup. This character
of the quantum RR would narrow the radiation angle [24]
and smooth the angular distribution of radiation generated by
electrons [25]. However, it is worth noting that all of these
schemes require not only the production of a high-quality
high-energy electron beam but also its precise spatiotempo-
ral alignment with the laser, which is quite challenging in
experiments [18,26]. In addition, these findings are based on
indirect measurement of postcollisional beam spreading or
radiation distribution which are inevitably accompanied by
large uncertainties. Thus, a direct and clear method for the
identification of the quantum RR is still in need.

In this article we propose a configuration that uses rel-
ativistically transparent plasmas in a standing wave formed
by two counterpropagating ultraintense lasers to identify the
stochastic effect of the quantum radiation reaction on elec-
trons. We find that if the semiclassical model is used, a par-
ticular trapping of plasma electrons between two electric-field
nodes is induced, where electrons perform complex periodic
motions between adjacent electric nodes of the standing wave
and extra spikes of the electron density distribution form.
However, this phenomenon does not exist once the correct
quantum model is applied due to the stochasticity effect in
the radiation reaction. The resultant different features in the
electron density, energy, and angular distributions from two-
dimensional particle-in-cell (PIC) simulations between two
models have been analyzed in details and can be regarded as
signals in differentiating the quantum radiation reaction from
the classical one in experiments.

The paper is organized as follows. In Sec. II we briefly
introduce the semiclassical and QED models we employ to
study the dynamics of electrons in an ultraintense standing-
wave field. In Sec. III we demonstrate the special characters
of spatial, angular, and energy distributions induced by the
quantum RR. In Sec. IV we discuss the impacts of various
parameters of the laser and the target on the distribution of the
electrons. We summarize in Sec. V.

II. RADIATION REACTION MODELS: FROM CLASSICAL
THEORY TO QED

Before analyzing the dynamics of electrons in the ultrain-
tense standing-wave field, we introduce the two RR models
that will be used. The first model is a semiclassical model
which is actually a modified Landau-Lifshitz (MLL) model,
i.e., the classical LL equation with the overestimation of
energy loss compensated by a function derived from quantum
mechanics, namely, the Gaunt factor g(χe) [9,27]. The second
one is a quantum stochastic model which is now widely
included in QED PIC codes. The major difference between
these two models is that the movements of electrons in the
QED model possess the intrinsic stochastic nature induced by
the stochastic emissions of photons.

In classical electrodynamics, it is known that the earliest
attempt at a self-consistent solution for the coupled Maxwell-
Lorentz equation led to the Lorentz-Abraham-Dirac (LAD)
equation plagued by the unphysical self-acceleration solution.

Then Landau and Lifshitz derived an equation, i.e., the cel-
ebrated LL equation [28], from the LAD equation by use of
the iterative approach. This equation successfully eliminates
the unphysical solution of LAD equation and keeps all the
physical solutions, which can be written as follows:

ṗμ = e

m
Fμν pν + 2α

3

[
e

m3
(∂λFμν )pλ pν − e2

m3
FμνFλν pλ

+ e2

m5
F σν pνFσλ pλ pν

]
. (1)

Since classical electrodynamics allows unphysical emissions
of photons with energy higher than that of the radiating
electron, we have to manually reduce the radiation power by
introducing the Gaunt factor [29], which is defined as [30–32]

g(χe) =
∫ χe/2

0 F (χe, χγ )dχγ∫ ∞
0 Fcl

(
4x

3χ2
e

)
dχγ

= 3
√

3

2πχ2
e

∫ χe/2

0
F (χe, χγ )dχγ , (2)

where Fcl and F are the classical and quantum synchrotron
functions, respectively. Usually, a good approximation of the
Gaunt factor is used, which appears as [33]

g(χe) ≈ [
1 + 4.8(1 + χe) ln(1 + 1.7χe) + 2.44χ2

e

]−2/3
. (3)

The balance condition between the Lorentz force and the
RR force is crucial in electron dynamics, which we now try to
estimate. For simplicity, we use normalized variables t ′ = ωt ,
x′ = kx, v′ = v/c, and (E′, B′) = e(E, B)/mωc, where ω =
kc and k are the wave frequency and wave number, respec-
tively. The spatial components of the semiclassical equation
are then

f = fL + g(χe)fRR

= (E + v × B) + g(χe)ρ f (f1 + f2 + f3), (4)

where E and B are the external electric and magnetic field,
respectively, ρ f = 2rek/3 � 1, re = e2/mc2 is the classical
electron radius, and

f1 = −γ 2[(E + v × B)2 − (v · E)2]v, (5)

f2 = γ [(∂t + v · ∇)E + v × (∂t + v · ∇)B], (6)

f3 = [E × B + B × (B × v) + E(v · E)], (7)

where γ is the Lorentz factor. The second term of the RR
force f2 is the so-called Schott term, which can be neglected
provided the field changes slowly with respect to the space
and time. In the case of laser fields, the condition is a0γ � 1
[34], which is already satisfied for the case considered in this
article. At the ultrarelativistic limit γ � 1, f3 can be neglected
since f1 is proportional to γ 2.

Assuming that γ ≈ a0 and g(χe) ∼ 1 for modest quantum
effects, we find the amplitude of the first term in the RR force
f1 ∼ a4

0 [35]. Therefore, the balance condition between the
RR and Lorentz forces can be roughly estimated as

a3
0ρ f ∼ 1. (8)
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Note that it has been shown by Refs. [36,37] that at a3
0ρ ∼

1, i.e., when the radiation reaction dominates, the electron
motion in an ultraintense standing wave evolves to limit
cycles, strange attractors, Lévy flights, and random walk. For
a laser with a wavelength λ = 2π/k = 1 μm, it yields

a0 ≈
(

1

ρ f

)1/3

≈ 440. (9)

In the quantum stochastic model, we employ a by-now-
standard Monte Carlo method to calculate the emission of
photons and the corresponding recoils. The stochastic emis-
sion of high-energy photons by an electron is considered by
sampling synchrotron emission rate obtained from the strong-
field QED theory. An electron stochastically emits high-
energy photons through a sampling synchrotron emission rate
obtained by strong-field QED theory. The RR effect is then
taken into account following the conservation of momentum.
Between these emission events, the electron dynamics in the
external laser field is described by the Lorentz equation.

The rate of synchrotron emission is [27]

dNγ

dt
=

√
3α f c

λc

χe

γ

∫ χe/2

0

F (χe, χγ )

χγ

dχγ . (10)

By sampling the emission rate using a Monte Carlo
method, the electron emits a photon when the condition∫ t

0 dNγ /dt dt ′ > ln(1/P) is fulfilled, where P is chosen ran-
domly in the interval [0, 1]. Apparently, such discontinuous
emissions introduce a stochastic term into the equation of mo-
tion, which makes the electrons deviate from the deterministic
trajectories predicted by the classical theory.

III. DISCERNING THE QUANTUM STOCHASTIC
EFFECTS IN THE ELECTRON DISTRIBUTION

We begin by simulating the electron dynamics in the ul-
traintense standing wave of different amplitudes, utilizing the
semiclassical model and the quantum model given above. The
ultraintense standing wave is formed by two counterpropagat-
ing linearly polarized plane waves with the same wavelength
λ = 1 μm and the normalized intensity a0 varying from 300
to 700. A thin layer of electron cloud with density ne =
0.001nc is placed in the middle of the box. The simulations
are carried out with the QED PIC code EPOCH [38]. For the
quantum stochastic model, we employ the by-now-standard
Monte Carlo method described in the preceding section (see
Ref. [27] for details). For the semiclassical model, the com-
plete form of the LL equation is implemented [Eq. (1)] into
the particle pusher and benchmarked against Ref. [34] (see the
Appendix for details). Then the Gaunt factor (3) is introduced
to take into account the MLL model. The results obtained in
Ref. [39] could also be reproduced with our code.

In Fig. 1 the long-term stable electron distribution is plotted
as a function of the wave amplitude. The distribution is
selected after 25 oscillations of the standing wave, when the
distribution is already stabilized. It can be clearly seen that
radiative trapping phenomena appear at electric-field nodes
(x = ±λ/4) when a0 is above 300 [36,40–45]. The radiative
trapping effect is well studied in the literature. The reason for
this effect is that the magnetic field is always perpendicular to

FIG. 1. Long-term density distribution of electrons in a standing
wave as a function of wave amplitude a0. (a) Modified Landau-
Lifshitz model. Two extra density peaks are clearly seen with a0

ranging from 460 to 560. (b) QED model. No attractors are shown.

the velocity, while the electric field has parallel components.
This leads to a higher radiation parameter χe at the maxima
of the magnetic field, i.e., electric-field nodes. Electrons lose
more energy at these locations and are consequently trapped.
It is shown that the radiative trapping effect is not so signifi-
cant for the quantum model since the trapped density is not so
high as that of the MLL model. The reason is that the electrons
are more likely to escape from the electric nodes due to the
stochastic emission of photons. Thus the radiative trapping
effect is weakened in the quantum model.

Notably, in the semiclassical model, with a0 around 500,
electrons are not only trapped at the electric nodes, but also
accumulated somewhere between two adjacent electric-field
nodes [see the white arrow in Fig. 1(a)]. Hence two extra
spikes emerge at the longitudinal electron distribution. In this
setup, the Coulomb interaction between electrons is negligible
because of the low density. The formation of such spikes is
attributed to the balance between the RR force and Lorentz
force, which indicates that a0 should be around 440 according
to the condition we obtained in Eq. (9). The estimation fits
well with the simulation results.

Illustrated in Fig. 2 are the typical electron trajectories in
the semiclassical model and the quantum model. We choose
two electrons with exactly the same initial condition in the
two models. In the semiclassical model, the electrons perform
periodic motion following some deterministic trajectories.
Actually, it was pointed out by Esirkepov and Bulanov [46]
that a strong nonlinear highly oscillatory friction such as
the RR leads to a paradoxical stabilization of the electrons
near the electric nodes. In addition, this periodic motion
is one type of limit cycle shown in Ref. [36]. Note that,
despite continuous effort to develop analytical approaches
[35,37,40,46,47], it is extremely difficult to obtain the exact
analytical form of the trajectories due to the high degree of
nonlinearity in the ultraintense standing wave. In the quantum
model, however, as shown by the orange line in Fig. 2,
electrons cannot sit on the periodic trajectories. Black circles
in Fig. 2(a) denote the locations of photon emissions. It can be
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FIG. 2. Sampled electron trajectories: (a) x versus time, (b) y
versus time, (c) px versus time, and (d) pz versus time. We selected
two electrons with the same initial condition. Solid blue lines rep-
resent the result from the MLL model, while dashed orange lines
correspond to the result from the QED model. Black circles in
(a) denote the location of photon emissions. In the MLL model,
electrons perform periodic motion in an ultraintense standing wave,
whereas in the QED model, electrons are trapped in the electric-field
nodes.

seen that discontinuous photon emissions make the electron
deviate from the periodic orbits and then fall into the electric
nodes, which explains the absence of two extra spikes in the
density distribution [see Fig. 1(b)].

To show that these findings can still hold in an actual ex-
periment, we carry out a realistic setup by using the methods
described above. Two counterpropagating linearly polarized
ultraintense laser pulses, with the same wavelength λ = 1 μm
and amplitude a0 = 500, are incident on an aluminum foil.
Both lasers have the same spatiotemporal profile with dura-
tion τ = 10T0 and a focal radius of 2.5 μm. The temporal
and spatial profiles are both fourth-order super-Gaussian. In
the simulations, the simulation box is [−5λ, 5λ] × [−5λ, 5λ]
discretized by 1000 cells along each axis. A fully ionized
aluminum foil with electron density ne = 50nc, where nc is the
critical density 1.1 × 1021 cm−3 and the thickness l0 = 0.2λ,
is placed at the middle of the simulation box. Each foil cell
is filled with 500 macroelectrons and 64 macroions. A probe
plane is placed at x = 3λ, which records the electrons that
traverse it. In this setup, the density of the aluminum target is
lower than that of solids which may be realized, for instance,
by using the metal foams or the sputtering techniques [44]. In
addition, it is found that the result is insensitive to ion species.

The resulting electron density distribution is shown in
Figs. 3(a) and 3(b). Even though we are using realistic param-
eters, the differences between the semiclassical model and the
quantum model are still pronounced. The semiclassical theory
predicts several density peaks resulting from the balance be-
tween the Lorentz force and RR force shown above, whereas
the quantum model predicts no density peaks at all. This can
be easily seen from the longitudinal density distributions of
electrons which are displayed by the white lines. However,
this feature does not exist in the quantum model. This exclu-
sive feature of the classical radiation reaction could provide
a method to distinguish a different radiation reaction model

FIG. 3. (a) Electron density map at 15T0 in the realistic case in
the MLL model. The white line depicts the longitudinal electron
density distribution normalized by 100nc at the same time. (b) Same
as (a) but in the QED model. (c) Electron energy spectra recorded
on a probe plane at x = 3λ. The solid blue line depicts results from
the MLL model and the dashed orange line the QED model. (d) Cor-
responding electron energy angular distribution dE/dθ , where θ =
arctan(py/px ), recorded on the same probe plane.

in a definitive way, rather than some quantitative differences
such as average beam energy. Experimentally, the density dis-
tribution could be measured in principle by the interferometer
and/or x-ray backlighting photography.

Moreover, the electron energy spectrum recorded on the
probe plane is plotted in Fig. 3(c). Since electrons sitting on
the periodic orbits are accelerated to very high energies [see
Figs. 2(c) and 2(d)], the MLL model predicts a spectral peak
in the electron energy spectrum at E ≈ 500 MeV, whereas
the QED model predicts no such peaks. Note that the cutoff
energy of the QED model is higher than that of the MLL
model, which is attributed to the straggling effect [48,49],
indicating the broadening of the phase-space distribution
[13,15]. Consequently, it is anticipated that the cutoff energy
of the photon spectrum is also higher in the QED model
than that in the MLL model. Meanwhile, Fig. 3(d) shows the
angular energy distribution of electrons traversing the probe
plane, where an evident peak is found at approximately −20◦
in the MLL model. In the experiment, the energy distribution
can be obtained by placing a spectrometer on either side of
the target, while the angular distribution can be measured
by distributing detector arrays similar to that presented in
Ref. [21].

The standing-wave structure is well formed at 10T0,
as can be seen Figs. 4(a) and 4(b), where the left- and
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FIG. 4. (a) Spatiotemporal distribution of the left-propagating
laser. (b) Same as (a) but for the right-propagating laser. (c) Longitu-
dinal electron density evolution versus time for the MLL model. The
density distribution is sampled at y = 0. (d) Same as (c) but for the
QED model. (e) Poincaré section map showing 40 000 trajectories
from 10T0 to 50T0 for the MLL model. Color denotes the electron
kinetic energy. (f) Same as (e) but for the QED model with 30 000
trajectories.

right-propagating components of the standing wave versus
time are shown. These components are defined as F = (Ey ±
Bz )/2, where + denotes the right-propagating laser and −
denotes the left. It can be seen that lasers propagate through
the plasma and remain unperturbed. The corresponding lon-
gitudinal electron density evolutions versus time are also
plotted in the MLL model [Fig. 4(c)] and the QED model
[Fig. 4(d)]. Also, a large number of electrons perform periodic
oscillations near the electric nodes following the trajectories
shown in Fig. 2. Such electrons form a density peak with a
density 50 times higher than the critical density. However,
the QED model reveals that no such additional density peaks
would appear except those caused by the normal radiative
trapping effect.

Figures 4(c) and 4(d) illustrate Poincaré section plots in the
MLL model and the QED model, respectively. The longitudi-
nal coordinate x and momentum px of an electron are recorded
each time it traverses the y = 0 plane. The corresponding
kinetic energies are denoted by colors. It can be seen that
there are three attractors in 0 < x < 0.5λ, corresponding to
the three density peaks in Fig. 3. However, no such attractors
are shown in the QED model and the electrons spread widely
in the phase space due to the stochasticity effect.

To demonstrate that periodic orbits predicted by the MLL
model do cause the energy peak at 500 MeV, the electron
energy spectra recorded on a virtual detector for different
laser amplitude a0 are illustrated in Fig. 5. For parameters

FIG. 5. Recorded electron energy spectra dN/dE on the virtual
detector for different laser amplitude a0 for (a) the modified LL
model and (b) the QED model. The other parameters are the same
as in Fig. 3.

not satisfying Eq. (9), i.e., a0 = 300 or 700, there are no
periodic orbits in the MLL model, as seen in Fig. 1. Hence,
no signatures of any energy spikes are found in the energy
spectra in the two cases [see the blue line and the green line in
Fig. 5(a)].

IV. IMPACT OF LASER AND TARGET PARAMETERS

Now we investigate how the parameters of the laser and the
target influence the electron distribution. We will address first
the effect of the laser duration, then the importance of different
target thickness, and finally the influence of the initial target
density.

The results of an electron distribution with different values
of the laser duration τ are shown in Figs. 6(a) and 6(d). When
τ increases from 5T0 to 15T0, the spikes in the longitudinal
density distribution of electrons are always there, indicating
that the periodic motion of the electrons is maintained. One
may be prompted to ask what the characteristic time is of these
periodic orbital motions. In fact, the electrons fall rapidly
into the periodic orbits in about three cycles of the laser, as
shown in Fig. 2. The attraction timescale can be estimated
as T ∼ (ρ f a2γ )−1 in units of the laser period T0. Thus, the
periodic orbital motions exist in the MLL model for various
laser durations. On the contrary, only the normal attractors
are present at the electric nodes when the QED model is
employed to describe the motion of electrons, and no further
density spikes emerge because the emission of photons is
totally stochastic.

The effects of the target thickness on the spatial distribution
of electrons are described in Figs. 6(b) and 6(e). As we know,
the thickness of the target mainly affects the electrostatic pres-
sure. If the target becomes thick enough, the charge separation
field comes into play and disrupts the periodic trajectories
of the electrons. Notice that the necessary condition for the
formation of a stable standing wave is that the electrostatic
pressure should be lower than the laser radiation pressure, i.e.,
2πn2

0e2l2
0 < I0/c, which means that the target should be as

thin as possible. Otherwise, the hole-boring stage exists [45],
hence distorting the standing wave. In the case considered
here with a0 = 500 and ne = 50nc, the thickness of the target
should be thinner than 2λ0 to facilitate the formation of
periodic orbits of electrons. However, when the QED model
is applied, there are still no spikes in the distribution of
electrons except the normal ones, no matter how thin the
target is.
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FIG. 6. Impacts of (a) and (d) laser duration, (b) and (e) target thickness, and (c) and (f) initial target density on the longitudinal electron
density distribution at 15T0 for results obtained via (a)–(c) the MLL model and (d)–(f) the QED model. In (a) and (d) the solid blue (top), dashed
orange (middle), and dotted green (bottom) curves represent the laser duration τ = 5T0, 10T0, and 15T0, respectively. In (b) and (e) the solid
blue (top), dashed orange (middle), and dotted green (bottom) curves represent the target thickness d = 0.2λ0, 1.0λ0, and 4λ0, respectively. In
(c) and (f) the solid blue (top), dashed orange (middle), and dotted green (bottom) curves represent the target initial density n0 = 50nc, 200nc,
and 700nc, respectively. The other laser and target parameters are the same as in Fig. 3.

Finally, the influence of the initial target density on the
electron distribution is studied, as shown in Figs. 6(c) and
6(f). The ratio of the electron density ne at 15T0 with respect
to the initial density n0 is plotted in different cases. Three
values of the initial target density 50nc, 200nc, and 700nc

are considered here. We find that the periodic orbits and
the particular trapping phenomenon apparently exist in the
first two cases and disappear when n0 = 700nc. This can
be explained from the following two aspects. On the one
hand, in the case of n0 = 700nc, which is larger than the
relativistic critical density γ nc ≈ 500nc, the target is initially
opaque to the laser. As a result, the standing wave forms at a
much later time when the plasma temperature is significantly
increased and the target becomes transparent due to thermal
expansion, which suppresses the particular trapping effect in
the MLL model above. On the other hand, similar to the case
mentioned in Ref. [42], the maximum number of particles
N inside this trapping is limited by their mutual Coulomb
interaction, which can be estimated by equating the magnitude
of the Lorentz force FL = eE to that of the Coulomb force
at the edge of the trapping state FC = e2N/4πε0r2, with r =
0.05 μm, as shown in Figs. 6(c) and 6(f). For the considered
case here, eEmax/mωc = 2eEL/mωc = 1000, we obtain that
N = 3.0 × 109, which corresponds to the maximum density
at the trapping center of nmax ≈ 400nc, even smaller than
the initial target density n0 = 700nc. This means that in the
case of n0 = 700nc the Lorentz force of the standing wave
is not strong enough to overcome the Coulomb force and
therefore the particular trapping phenomenon cannot occur
even if the standing wave forms at a later time. Also note that
the phase space in Fig. 4 shows significant heating and tem-
perature increases, which may further inhibit the occurrence
of the particular trapping between the standing-wave nodes
due to an additional thermal pressure.

V. CONCLUSION

We have shown that the standing-wave configuration with
a transparent plasma in two counterpropagating ultraintense
lasers can be used to identify the stochastic effect of the
quantum radiation reaction on electrons. We found that if the
semiclassical model is used, a particular trapping of plasma
electrons between two electric-field nodes is induced, where
electrons perform complex periodic motions between adjacent
electric nodes of the standing wave, and extra spikes of the
electron density distribution form. However, this phenomenon
does not exist once the correct quantum model is applied due
to the stochasticity effect in the radiation reaction. This results
in different features in the electron density, energy, and angu-
lar distributions between two models, which can be regarded
as possible signals in verifying the QED model in experiments
on current multi-PW or forthcoming 10-PW laser facilities.
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APPENDIX: IMPLEMENTATION OF CLASSICAL
RADIATION REACTION

The implementation of the classical RR is done by replac-
ing the Lorentz equation of the particle pusher with the LL
equation. The exact form (in SI units) that we used in our code
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FIG. 7. (a) Spatial distribution of the electric field Ex . The red
star denotes the initial location of the positron. (b) Lorentz factor
γ versus time for the positron. (c) Difference of γ compared to the
result without the RR, i.e., the positron follows the Lorentz equation.
The solid blue line denotes the whole LL equation. The dashed
orange line denotes the reduced LL equation, i.e., the derivative term
is neglected.

is as follows:

d p
dt

= e(E + v × B)+ 2e4

3m2c44πε0

{
γ

mc

e

(
d

dt
E + v × d

dt
B

)

+ [cE × B + cB × (B × v) + E(β · E )]

− γ 2β[(E + v × B)2 − (E · β)2]

}
. (A1)

To benchmark our implementation, we let a positron with
γ = 10 propagate along the x axis in a static external parallel
electric field with a large gradient. The electric field is given
by the expression

E = E0

2

(
ex/a − e−x/a

ex/a + e−x/a
+ e(L−x)/a − e−(L−x)/a

e(L−x)/a + e−(L−x)/a

)
ex, (A2)

where E0 = 1 ≈ 0.2Ecr , a = 4c/ωn, L = 30c/ωn, Ecr =
1.32 × 1018 V/m is the Schwinger limit, and ωn ≈ 4.78 ×
1021. The spatial distribution of the electric field Ex is shown
in Fig. 7(a). The positron is initially positioned at x =
−15c/ωn (red star) and moves along the x axis with γ = 10.
The parameters chosen here are the same as in Ref. [34].

In such a configuration with E ‖ p and B = 0, the LL
equation reduces to

d p
dt

= eE + 1

4πε0

2e3

3mc3
v
∂E
∂x

. (A3)

If we omit the second term of (A1), which is so-called
reduced LL (RLL) equation, then the second term of (A3) is
eliminated. Thus the RLL equation coincides with the Lorentz
equation.

Figure 7(b) shows the evolution of the Lorentz factor of
the positron obtained by the LL and RLL equations. As we
can see from this figure, although the electric-field gradient
here is very high, the difference between these two equations
is negligible. The deviation from these two equations to the
Lorentz equation is plotted in Fig. 7(c). It is obvious that the
RLL equation coincides with the Lorentz equation. The LL
equation, however, differs slightly from the Lorentz equation,
as described by Eq. (A3). The results shown here fit well with
Fig. 3 in Ref. [34]. Note that we have adopted the complete
form (A1) throughout this paper.
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