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Aharonov-Bohm effect for bound states from the interaction of the magnetic
quadrupole moment of a neutral particle with axial fields
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The behavior of a neutral particle with magnetic quadrupole moment that interacts with axial magnetic and
electric fields is analyzed. From the interaction of the magnetic quadrupole moment with the axial magnetic field,
a spectrum of energy analogous to a Coulomb potential in two dimensions is obtained. Furthermore, the presence
of an axial electric field is also considered. From the interaction of the magnetic quadrupole moment with this
electric field, an analog of the Aharonov-Bohm effect is obtained. Finally, the Aharonov-Bohm effect for bound
states is analyzed when this neutral particle system is subject to the two-dimensional harmonic oscillator.

DOI: 10.1103/PhysRevA.101.032102

I. INTRODUCTION

The interaction of an electron with a uniform magnetic
field gives rise to a discrete spectrum of energy, where this
system has become the simplest model for studying the quan-
tum Hall effect [1]. This interaction has also been taken into
account in condensed matter systems with the purpose of
studying the magnetization, for instance, in quantum rings
[2–4] and quantum dots [5,6]. In the current literature, this
discrete spectrum of energy is known as Landau levels [7].
Furthermore, this interaction has inspired works with neutral
particles. For instance, by considering the interaction between
a neutral particle with an induced electric dipole moment
and a field configuration determined by a uniform magnetic
field and a nonuniform electric field, an analog of the Landau
quantization has been dealt with in Refs. [8–11]. Moreover, an
analog of the doubly anharmonic oscillator has been obtained
in Ref. [12]. Another perspective of this neutral particle sys-
tem has been given in Ref. [13], where a geometric quantum
phase is obtained. The arising of a geometric quantum phase
in the wave function of the neutral particle corresponds to an
Aharonov-Bohm-type effect [14,15].

Furthermore, the interaction of quantum particles with
nonuniform magnetic fields has also drawn attention in recent
decades. An interesting example is the He-McKellar-Wilkens
effect [16,17]. It is the arising of a geometric quantum phase
from the interaction of the permanent electric dipole moment
of a neutral particle with a radial magnetic field proportional
to the inverse of the radial distance. Later, by considering
a radial magnetic field proportional to the radial distance,
it is shown in Refs. [18–20] that analogs of the Landau
levels can be obtained from the interaction of the perma-
nent electric dipole moment of the neutral particle with this
nonuniform magnetic field. Another point of view of working
with nonuniform magnetic fields has been given in Ref. [21].
There, a radial magnetic field produced by a nonuniform
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magnetization parallel to the symmetry axis of a long cylin-
drical wire is considered. Then, a geometric quantum phase is
obtained from the interaction of the electric dipole moment of
a neutral particle with this nonuniform magnetic field. This
idea of having a magnetic field produced by a nonuniform
magnetization has also been explored in Ref. [22]. In this
case, it is considered an axial magnetic field. Then, bound-
state solutions to the Schrödinger-Pauli equation are obtained
from the interaction between a neutral particle with permanent
magnetic dipole moment and a field configuration given by a
nonuniform electric field and the axial magnetic field. Another
neutral particle system, whose interaction with a nonuniform
magnetic field has been explored, is given by a neutral par-
ticle with electric quadrupole moment [23]. In this neutral
particle system, a geometric quantum phase has been obtained
from the interaction of the electric quadrupole moment with
a nonuniform axial magnetic field produced by an electric
current density.

Hence, neutral particle systems in the presence of nonuni-
form magnetic fields have drawn attention to the possibility
of achieving analogs of the Landau levels or analogs of the
Aharonov-Bohm effect [14,15]. In this work, we go further
in the studies of neutral particle systems in the presence
of a nonuniform magnetic field in search of analogs of the
Aharonov-Bohm effect [15]. We consider a system of a neu-
tral particle that possesses a magnetic quadrupole moment.
This particular neutral particle system has brought attention
in the context of quantum mechanics due to the work of
Chen [23], where it is shown that the interaction of the
magnetic quadrupole moment with an induced electric field
can yield the appearance of a geometric quantum phase.
Since then, quantum effects associated with the interaction
of the magnetic quadrupole moment of a neutral particle
with external fields has been investigated in the literature
[24–32]. Therefore, in the present work, we show that the
interaction of the magnetic quadrupole moment of the neutral
particle with a nonuniform axial magnetic field can give rise
to a spectrum of energy analogous to the Coulomb potential
(in two dimensions). In the following, we also consider the
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presence of an induced electric field, and thus we analyze an
analog of the Aharonov-Bohm effect for bound states [15].
Finally, we analyze the Aharonov-Bohm effect for bound
states by including the two-dimensional harmonic oscillator.

The structure of this paper is as follows: In Sec. II, we
introduce the Schrödinger equation that describes the interac-
tion of the magnetic quadrupole moment of a neutral particle
with external fields. Then, we search for bound-state solutions
to the Schrödinger equation when the magnetic quadrupole
moment interacts with a nonuniform axial magnetic field. In
Sec. III, we consider the presence of an induced electric field
and the nonuniform axial magnetic field. Then, we analyze
the Aharonov-Bohm effect for bound states. In Sec. IV, we
include the two-dimensional harmonic oscillator. We search
for bound-state solutions to the Schrödinger equation and
discuss the Aharonov-Bohm effect for bound states. In Sec. V,
we present our conclusions.

II. INTERACTION WITH A NONUNIFORM
MAGNETIC FIELD

Great interest in chemical physics [33–50] and quantum
physics [24–28,30] on spinless particles (atoms or molecules)
with a magnetic quadrupole moment has been reported in
the literature. From Refs. [51,52], the potential energy of
atoms and molecules with a magnetic quadrupole moment
in their rest frame is Um = −∑

i, j Mi j ∂i B j , where �B is the
magnetic field and Mi j is the magnetic quadrupole moment
tensor. Besides, the tensor Mi j is a symmetric and traceless.
Recently, the quantum description of a spinless particle with
a magnetic quadrupole moment when it moves with velocity
v � c (c is the velocity of light) has been discussed [30–32].
The time-independent Schrödinger equation that describes the
interaction of the magnetic quadrupole moment of the spinless
particle with magnetic and electric fields is [30–32]

Eψ = 1

2m

[
p̂ − 1

c2
( �M × �E )

]2

ψ − �M · �B ψ. (1)

Observe that the components of the vector �M are determined
by Mi = ∑

j Mi j ∂ j , and the fields �B and �E are the electric and
magnetic fields in the laboratory frame, respectively.

In this section, we analyze a scalar potential proportional
to the inverse of the radial distance that stems from the
interaction of the magnetic quadrupole moment of a spinless
particle with a nonuniform magnetic field. Let us consider
a medium with a current density �J = −B0

r ϕ̂, where B0 > 0
is a constant and r is the radial coordinate [23]. By dealing
with the cylindrical symmetry, this current density produces
the magnetic field

�B = B0 ln
r

r0
ẑ, (2)

where r0 is a constant. As pointed out in Ref. [23], since the
current density �J decreases for a large r, we have that any
effect from collisions can be neglected; hence, we simplify
the system to a single-particle problem.

Henceforth, we work with the units h̄ = 1 and c = 1. Let
us assume that the non-null components of the tensor Mi j are

given by

Mr z = Mz r = M, (3)

where M is a constant (M > 0). In this way, we have that the
last term of the right-hand side of Eq. (1) yields

Veff (r) = − �M · �B = −M B0

r
. (4)

Thereby, the interaction of the magnetic quadrupole moment
given in Eq. (3) with the nonuniform magnetic field (2)
gives rise to a scalar potential proportional to the inverse
of the radial distance. Since B0 > 0 and M > 0, we have
that the effective scalar potential (4) plays the role of an
attractive scalar potential. Furthermore, the time-independent
Schrödinger equation (1) becomes (with h̄ = 1 and c = 1)

Eψ = − 1

2m

[
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2
+ ∂2

∂z2

]
ψ − M B0

r
ψ.

(5)

Let us write ψ (r, ϕ, z) = Z (z)�(ϕ) f (r); then, by substitut-
ing ψ into Eq. (5) we obtain that Z (z) = eikz and �(ϕ) = ei l ϕ ,
where −∞ < k < ∞ and l = 0,±1,±2, . . .. Besides, for
the function f (r), we have

f ′′ + 1

r
f ′ − l2

r2
f + MB0

r
f + ζ 2 f = 0, (6)

with ζ 2 = 2mE − k2. Note that the asymptotic behavior of the
radial equation when r → ∞ is determined by f ′′ ≈ −ζ 2 f .
Therefore, in search of bound-state solutions, let us consider
ζ 2 = −τ 2 and rewrite Eq. (6) in the form

f ′′ + 1

r
f ′ − l2

r2
f + MB0

r
f − τ 2 f = 0. (7)

By defining x = 2τ r, the radial equation (7) becomes

f ′′ + 1

x
f ′ − l2

x2
f + δ

x
f − 1

4
f = 0, (8)

where we have defined the parameter δ = MB0
2τ

. Thereby,
by imposing that f (x) → 0 when x → ∞ and x → 0, the
solution to Eq. (8) is given by

f (x) = e− x
2 x|l| F (x), (9)

where F (x) is an unknown function. By substituting Eq. (9)
into Eq. (8), we obtain the following equation for the function
F (x):

xF ′′ + [2|l| + 1 − x]F ′ + [
δ − |l| − 1

2

]
F = 0. (10)

Hence, Eq. (10) corresponds to the Kummer equation or
the confluent hypergeometric equation [53], and thus F (x) =
1F1 (|l| + 1

2 − δ, 2|l| + 1, x) is the confluent hypergeometric
function. Its behavior for large values of its argument is given
by [53]

1F
1

(a, b ; x) ≈ 	(b)

	(a)
ex xa−b[1 + O(|x|−1)]; (11)

therefore, it diverges when x → ∞. With the aim of having
f (x) → 0 when x → ∞, we must impose that a = −n (n =
0, 1, 2, 3, . . .), i.e., |l| + 1

2 − δ = −n. With this condition,
the confluent hypergeometric function becomes well behaved
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when x → ∞. In this way, with (−τ 2) = 2mE − k2 and from
the condition |l| + 1

2 − δ = −n, we obtain

En, l = − 1

8m

M2B2
0

[n + |l| + 1/2]2 + k2

2m
. (12)

Hence, the interaction of the magnetic quadrupole mo-
mentum (3) with the magnetic field (2) yields a discrete
spectrum of energy analogous to the Coulomb potential. This
occurs due to the presence of the effective scalar potential
(4) that stems from this interaction and plays the role of an
attractive Coulomb-type potential. Observe that this discrete
set of energy levels is achieved for large values of the radial
distance r. This occurs due to the effects of the electric current
density �J that disturbs the system. Since �J vanishes for large
values of r, the bound states can only be achieved in this
particular case when the value of r is large enough in such a
way that we can neglect �J . This agrees with Ref. [23], where it
is shown that a geometric quantum phase is obtained through
a path that possesses a large contour.

It is worth noting that this behavior of achieving the
discrete set of energy levels for large values of the radial
distance r has already been reported in the literature. Ref-
erence [54] pointed out an analogous behavior with respect
to an electron that interacts with a uniform magnetic field in
the presence of an antidot potential. In the Tan-Inkson model
[54], the antidot potential is proportional to r−2; then it is
shown that the Landau levels [7] are disturbed by the antidot
potential for small values of the radial distance. Therefore, the
(unperturbed) Landau levels are obtained for large values of
the radial distance r.

III. AHARONOV-BOHM EFFECT FOR BOUND STATES

Recently, a linear electric field parallel to a uniform mag-
netic field was considered in Ref. [55]. There, it was shown
that the presence of this axial electric field modifies the degen-
eracy of the Landau levels. In this section, we bring another
perspective. We consider an electric field parallel to the axial
magnetic field (2). By contrast, the electric field is produced
by a time-dependent magnetic field. Then, we show that an
analogous effect of the Aharonov-Bohm effect for bound
states [15,30] can occur in the magnetic quadrupole system
analyzed in the previous section. Let us discuss the case where
the components of the magnetic quadrupole moment are
given by

Mr z = Mz r = M,

Mr r = Mϕϕ = M, (13)

Mzz = −2M,

where M is a constant (M > 0). This magnetic quadrupole
moment of the neutral particle interacts with the axial mag-
netic field (2) and also with the electric field [23]:

�E = E0 ln
r

r0
ẑ. (14)

This electric field is produced by a time-dependent magnetic
field �B = E0 t

r ϕ̂, where E0 is a constant (E0 > 0). As shown in
Ref. [23], the interaction of the induced electric field (14) with
the magnetic quadrupole moment given in Eq. (13) yields the

geometric quantum phase:

φ1 =
∮

�Aeff · d�r =
∮

( �M × �E ) · d�r = −2π M E0. (15)

Discussions about the topological nature of the geometric
quantum phase φ1 can be found in Refs. [16,17,23,56–63].
In this way, we can write the effective vector potential given
in wave equation (1) in the form

�Aeff = �M × �E = − φ1

2π ρ
ϕ̂. (16)

Before analyzing the time-independent Schrödinger
equation (1), it is worth noting that the time-dependent
magnetic field does not interact with the magnetic quadrupole
moment (13); therefore, only the magnetic field (2) does
interact with the magnetic quadruple moment (13). Thereby,
the time-independent Schrödinger equation (1) becomes (with
h̄ = 1 and c = 1)

Eψ = − 1

2m

[
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2
+ ∂2

∂z2

]
ψ

− i

m

φ1

2π r2

∂ψ

∂ϕ
+ 1

2m

(
φ1

2π r

)2

ψ − M B0

r
ψ. (17)

By following the steps from Eq. (5) to Eq. (12), we must
replace l with l + φ1

2π
from Eq. (6) to Eq. (10), and thus we

obtain the energy levels:

En, l = − 1

8m

M2B2
0[

n + ∣∣l + φ1

2π

∣∣ + 1/2
]2 + k2

2m
. (18)

Observe that the energy levels (18) depend on the geo-
metric quantum phase φ1. As we have seen in Eq. (15), this
geometric quantum phase arises from the interaction of the
magnetic quadrupole moment of the neutral particle (13) with
the axial electric field (14). This dependence of the energy
levels on the geometric quantum phases is an analog of the
Aharonov-Bohm effect for bound states [15,30]. As discussed
in the previous section, the spectrum of energy (18) is valid for
large values of r since the electric current density �J disturbs
the system, but it can be neglected for large values of r.

IV. INTERACTION WITH THE TWO-DIMENSIONAL
HARMONIC OSCILLATOR

Let us consider the magnetic field (2), the electric field
(14), and the magnetic quadrupole moment (13). Thus, let
us include the two-dimensional harmonic oscillator potential
V (r) = 1

2 mω r2. By following the steps from Eq. (5) to
Eq. (6), the radial equation becomes (with h̄ = 1 and c = 1)

f ′′+ 1

r
f ′ −

(
l+ φ1

2π

)2

r2
f + M B0

r
f − m2ω2 r2 f + ζ 2 f = 0.

(19)

Next, let us perform the change of variables y = √
mω r; thus,

we have in Eq. (19):

f ′′ + 1

y
R′ −

(
l + φ1

2π

)2

y2
f + α

y
f − y2 f + ζ 2

mω
f = 0, (20)
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where we have defined the following parameter:

α = M B0√
mω

. (21)

Let us also impose that f (y) → 0 when y → 0 and y →
∞. Thereby, the solution to Eq. (21) can be written in terms
of an unknown function H (y) as

f (y) = e− y2

2 y|l+ φ1
2π

| H (y). (22)

By substituting Eq. (22) into Eq. (20), we have that the
function H (y) is the solution to the biconfluent Heun equation
[32,64]:

H ′′ +
[

2
∣∣l + φ1

2π

∣∣ + 1

y
− 2y

]
H ′ +

[
ν + α

y

]
H = 0, (23)

where ν = ζ 2

mω
− 2 − 2|l + φ1

2π
|. Thereby, H (y) =

H (2|l + φ1

2π
|, 0,

ζ 2

mω
, 2α, −y) is the biconfluent Heun

function.
Henceforth, we focus on the search for polynomial solu-

tions to Eq. (23). For this purpose, let us write the solution to
Eq. (23) as power-series expansion around the origin: H (y) =∑∞

j=0 a j y j [7,65,66]. Then, by substituting it into Eq. (23),
we obtain the relation

a1 = − M B0√
mω(2|l + φ1

2π
| + 1)

a0, (24)

and also the recurrence relation

a j+2 = − α

( j + 2)
(

j + 2 + 2
∣∣l + φ1

2π

∣∣) a j+1

− (ν − 2 j)

( j + 2)
(

j + 2 + 2
∣∣l + φ1

2π

∣∣) a j . (25)

From the recurrence relation (25), we have that a polyno-
mial of degree n is built when we impose that

an+1 = 0, (26)

and

ν = 2n, (27)

where n = 1, 2, 3, 4, . . .. Besides, n corresponds to the quan-
tum number associated with the radial modes. In search of
bound-state solutions, let us construct a polynomial of first
degree to the function H (y). For n = 1, we have that the
condition (26) yields an+1 = a2 = 0. By using Eqs. (24) and
(25) we can calculate the coefficient a2 and thus obtain the
relation

ω1, l = M2B2
0

2m
(
2
∣∣l + φ1

2π

∣∣ + 1
) . (28)

Relation (28) yields the allowed values of the angular fre-
quency of the two-dimensional harmonic oscillator that permit
us to obtain a polynomial of first degree to H (y). The label
ωn, l used in Eq. (28) means that each radial mode n yields
a different set of allowed values for the angular frequency.
Therefore, not all values of the angular frequency are allowed
for a polynomial of first degree, just those determined by
relation (28).

Next, by taking n = 1 in condition (27), we obtain

E1, l, k = ω1, l

[∣∣∣∣l + φ1

2π

∣∣∣∣ + 2

]
+ k2

2m
. (29)

Then, by using Eq. (28), we have

E1, l, k = M2B2
0

2m
(
2
∣∣l + φ1

2π

∣∣ + 1
)[∣∣∣∣l + φ1

2π

∣∣∣∣ + 2

]
+ k2

2m
. (30)

Hence, when the magnetic quadrupole moment (13) inter-
acts with the magnetic field (2) and the electric field (14) in the
presence of the two-dimensional harmonic oscillator, we ob-
tain the allowed energies (30) associated with the radial mode
n = 1. These allowed energies are achieved by searching for
a polynomial of first degree to the function H (y). For other
values of the radial mode n, other expressions for the allowed
energies can be obtained. Furthermore, we can see that the
allowed energies (30) depend on the geometric quantum phase
φ1, which gives rise to an analog of the Aharonov-Bohm effect
for bound states [15,30]. We also need to observe that the
allowed energies (30) are achieved for large values of the
radial distance r because of the electric current density �J that
disturbs the system.

V. CONCLUSIONS

We have obtained bound-state solutions to the Schrödinger
equation that describe the interaction of the magnetic
quadrupole moment of a neutral particle with axial magnetic
and electric fields. We have started by analyzing the interac-
tion of the magnetic quadrupole momentum (3) with an axial
magnetic field (2), where this axial magnetic field is produced
by a nonuniform electric current density. We have seen that
a spectrum of energy analogous to the Coulomb potential in
two dimensions can be achieved.

We have gone further by considering the presence of
an axial electric field and a different magnetic quadrupole
moment tensor. This axial electric field is produced by a
time-dependent magnetic field. First of all, we have seen
that this magnetic quadrupole moment does not interact with
the time-dependent magnetic field. On the other hand, there
was the interaction of the magnetic quadrupole moment with
the induced electric field. From this interaction with the axial
electric field, we have observed the appearance of a geometric
quantum phase. Therefore, by solving the Schrödinger equa-
tion for the interaction of the magnetic quadrupole moment
of the neutral particle (13) with the axial electric field (14)
and the axial magnetic field (2), we have also obtained a
spectrum of energy analogous to the Coulomb potential in
two dimensions. Besides, these energy levels depend on the
geometric quantum phase, which corresponds to an analog of
the Aharonov-Bohm effect for bound states [15,30].

Finally, we have analyzed the interaction of the magnetic
quadrupole moment (13) with the magnetic field (2) and the
electric field (14) subject to the harmonic oscillator potential.
Then, by searching for polynomial solutions to the biconfluent
Heun equation, we have obtained the allowed energies asso-
ciated with the radial mode n = 1. We have seen that these
allowed energies depend on the geometric quantum phase;
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hence, there is an analog effect of the Aharonov-Bohm effect
for bound states [15,30].

We need to observe that in all cases discussed in this work,
the bound states can only be achieved for large values of the
radial distance r. Since the axial magnetic field (2) is produced
by an electric current density proportional to r−1, then this
electric current density can disturb the system. Therefore, the
bound states can only be achieved for large values of the radial
distance r, where the electric current density can be neglected.

It is worth noting the possibility of examining quantum
effects on the interaction of the magnetic quadrupole moment

of a neutral particle with these axial magnetic and electric
fields in an elastic medium that possesses disclinations or
dislocations [67,68]. In recent decades, it has been shown
that the topology of disclinations and dislocations can modify
the electronic properties of the elastic medium and raises
discussion about the Aharonov-Bohm effect [69–82].
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