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Polarization-dependent high-intensity Kapitza-Dirac effect in strong laser fields
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We study the deflection of photoelectrons in intense elliptically polarized standing light waves, known as the
high-intensity Kapitza-Dirac effect. In order to compute the longitudinal momentum transfer to the photoelectron
in above-threshold ionization, we utilize a complete description of the quantum dynamics in the spatially
dependent field of the standing light wave. We propose experimental conditions under which low-energy
photoelectrons can be generated with remarkably high longitudinal momenta that can be controlled via the
polarization of the standing wave. We expect that future experimental realizations will provide additional insights
into the momentum transfer in intense laser-atom interactions.
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The Kapitza-Dirac effect (KDE) for free electrons, atoms,
and molecules has attracted much interest over the past
decades owing to its great potential to advance matter optics
[1–4]. Already in 1933, Kapitza and Dirac [5] suggested that
free electrons should be deflected by an intense standing
light wave due to an exchange of multiple photon momenta
�p = nh̄k. Later experiments on the KDE [6,7] revealed two
distinct scattering regimes [cf. Fig. 1(a)] that depend on the
ponderomotive energy Up of the standing wave and the energy
Ep = p2/2 of the electrons. In the Bragg regime, high-energy
electrons (Ep � Up) are deflected according to Bragg’s law
nλe/λ = 2 sin ϑ with the de Broglie wavelength λe = h/p,
whereas a diffraction pattern is formed behind the standing
wave in the diffraction regime (Ep � Up). In both regimes,
the momentum transfer to the electron is in the order of
one photon momentum h̄k, making technical applications a
challenge.

A (much) larger momentum transfer is achieved in the
high-intensity KDE [Fig. 1(b)], first observed by Bucksbaum
et al. [8]. Instead of a free-electron source, neutral atoms are
placed within the standing wave and photoelectrons are gener-
ated by above-threshold ionization (ATI). These electrons are
emitted narrowly around the polarization plane with distinct
energies spaced by h̄ω, and are then scattered in the contin-
uum before they reach the detector with longitudinal momenta
up to the order 1000h̄k. For photoelectrons with fixed energy,
the polar-angle distribution (PAD) therefore shows distinct
maxima away from the polarization plane [Fig. 1(d)].

The momentum transfer in the high-intensity KDE can
be understood in terms of the semiclassical photoelectron
dynamics in the effective ponderomotive potential of the
standing wave [8]. A more sophisticated quantum-mechanical
treatment should be based on the strong-field approximation
(SFA) in order to account for the laser field in the contin-
uum (Volkov) states available to the photoelectron [9–11].
However, in contrast to the ATI with traveling waves, where
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the momentum transfer to the photoelectron is small [12–14]
and it is often sufficient to use the dipole approximation,
nondipole contributions to the laser-electron interaction need
to be considered for the ATI in standing waves. This need
arises from the particular spatial dependence of a standing
wave.

In one SFA-based approach, the laser field is quantized
and transitions from the resulting QED-Volkov states to free-
electron states are included [15]. The momentum transfer
in the high-intensity KDE with circularly polarized standing
waves can then be explained, and also the free-electron KDE
can be reproduced [16,17]. In a second approach, the laser
field is treated classically. Then nondipole Volkov states exist
that account for the spatial dependence of the field in the pho-
toelectron dynamics [18,19]. Since a standing wave is formed
by two counterpropagating laser modes, the corresponding
Volkov states exhibit phase singularities due to the (multiple)
absorption of photons from one mode and reemission into the
other, known as virtual Compton scattering. In this scattering
process, the photoelectron energy remains constant, while its
momentum changes by an integer multiple of 2h̄k. This results
in the large momentum transfer in the high-intensity KDE for
linear polarization [20].

Until now, most studies of the high-intensity KDE have
focused on high-energy (Ep > Up) photoelectrons, similar to
the Bragg regime in the free-electron KDE. Moreover, while
elliptically polarized standing waves have been studied in the
free-electron KDE [21,22], only linear and circular polariza-
tions were considered in the high-intensity KDE. However,
standing light waves with elliptical polarization [23] and also
high intensities [24] can nowadays be routinely generated,
which allow the observation of low-energy photoelectrons
with Ep < Up.

In this Rapid Communication, we theoretically study the
high-intensity KDE in elliptically polarized standing waves
[Fig. 1(c)] and analyze the momentum transfer to low- and
high-energy photoelectrons. Based on the SFA and the use
of nondipole Volkov states, we here demonstrate that low-
energy photoelectrons exhibit markedly different PADs when
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FIG. 1. Deflection of electrons in an intense standing light wave. (a) In the free-electron KDE, electrons with fixed kinetic energy Ep =
p2/2 are deflected by a standing light wave (red) and detected at D under an angle ϑ . In the Bragg regime (Up � Ep) electrons are deflected
according to Bragg’s law (green solid line in the upper inset), while a diffraction pattern is formed for Up � Ep (blue dashed line and displayed
with exaggerated angles), if the electrons enter perpendicularly to the standing wave. The lower inset shows the experimental PAD from
Ref. [6] in the diffraction regime. (b) High-intensity KDE as considered in the present work: Neutral atoms are placed in a standing light wave
of ellipticity ε at z = z0 and ATI photoelectrons are emitted with momentum p = (p, ϑ, ϕ). The inset shows typical ATI spectra for two values
of ϑ (black solid and red dashed curves), if the detector D measures photoelectrons with energy Ep = p2/2 under given polar and azimuthal
angles ϑ and ϕ. The electron count for a given ATI peak as a function of ϑ yields the PADs [see (d)]. (c) Standing light waves of different
ellipticities ε and relative orientations �; shown are electric (red) and magnetic (blue) fields as functions of z and for two different times
(solid: t = 0; dashed: t = Tcycle/8). (d) PADs of high-energy (green solid curves) and low-energy (blue dashed curves) photoelectrons in the
high-intensity KDE. The maxima in the PADs correspond to much larger longitudinal momenta than in (a). The blue dashed curve illustrates
our main finding: Low-energy photoelectrons have a significant probability to be emitted with very large longitudinal momenta, leading to a
second set of maxima in their PAD.

compared to the high-energy photoelectrons considered in
previous studies. It will be shown, in particular, that the
momentum transfer to low-energy photoelectrons can be sig-
nificantly enhanced [blue dashed curve in Fig. 1(d)] and
controlled via the polarization of the standing wave. If not
stated otherwise, we use atomic units throughout (me = e =
h̄ = 4πε0 = 1).

To explore the PADs of photoelectrons from the ATI of
atoms in a standing light wave, we describe the latter in
terms of its vector potential A�(r, t ). Using a Coulomb gauge,
we write this vector potential as sum of two counterprop-
agating modes A(1)(r, t ) = Ã0[cos(kz − ωt )ex − ε sin(kz −
ωt )ey] and A(2)(r, t ) = Ã0[− cos(kz + ωt )ex + �ε sin(kz +
ωt )ey] with the amplitude Ã0 = A0/

√
1 + ε2, the frequency

ω = 2πc/λ, the wave number k = ω/c, the ellipticity −1 �
ε � 1, as well as the relative orientation � = ±1 of the two

modes (counter-rotating for � = −1, corotating for � = +1).
The intensity and ponderomotive energy of each individual
mode are given by I = A2

0ω
2c/(8π ) and Up = A2

0/4, respec-
tively. With these definitions, the vector potential A�(r, t ) for
the two possible orientations � = ±1 can be written in the
compact form,

A+1(r, t ) = 2Ã0 sin(ωt )[sin(kz)ex + ε cos(kz)ey], (1a)

A−1(r, t ) = 2Ã0 sin(kz)[sin(ωt )ex − ε cos(ωt )ey]. (1b)

The corresponding electric [E(r, t ) = −∂A�/∂t] and mag-
netic B(r, t ) = ∇ × A� fields are illustrated in Fig. 1(c). For
A+1(r, t ) the fields oscillate in time, while the field vectors
have constant magnitude and rotate around the beam axis for
A−1(r, t ).
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For the sake of simplicity, let us consider an atomic target
in a hydrogenlike 1s initial state |�0〉 = |�0〉 eiIpt , placed on
the beam axis at position z0 �= nλ/2 within the standing wave
[Fig. 1(b)]. The role of the target position is discussed in
Appendix B. In order to compute PADs, we derive the tran-
sition amplitude Tp of an electron from the initial state |�0〉
to continuum nondipole Volkov states |χp(t )〉. These Volkov
states are approximate solutions to the Schrödinger equation
for the photoelectron in the fields generated by the vector
potential A�(r, t ) and are characterized by the asymptotic
photoelectron momentum p = (p, ϑ, ϕ) at the detector. A
general expression for |χp(t )〉 was derived by us in Ref. [19],
including v/c corrections to the dipole approximation. For the
standing wave (1), the nondipole Volkov states can be written
in terms of plane waves as (cf. Appendix A)

χp(r, t ) = 1

(2π )3/2

∞∑
N1,N2,N12=−∞

CN (p)e−i(EN t−pN r), (2)

where N = (N1, N2, N12) and CN (p) are expansion coeffi-
cients that depend on p as well as the parameters I , ε, �, and
ω that define the vector potential. In expression (2), the energy
and momentum of the individual plane waves are given by

EN = Ep + 2Ũp − (N1 + N2)ω, (3a)

pN = p + 2Ũp pz

cω
k − (N1 − N2)k − 2N12k, (3b)

respectively, with the photoelectron energy Ep = p2/2 at the
detector and Ũp = Up/[1 − (pz/c)2].

The individual plane-wave contributions in Eq. (2) arise
from the interaction of the photoelectron with the standing
wave: The absorption of N1 and N2 photons from the laser
modes A(1) and A(2) changes the photoelectron energy by
(N1 + N2)ω and its momentum by (N1 − N2)k, respectively.
Moreover, the photoelectron may absorb N12 photons from
one mode and emit the same number into the other, leaving
its energy constant while changing its momentum by 2N12 h̄k.
This virtual Compton scattering leads to a momentum transfer
�pz along the beam axis to a photoelectron emitted within a
certain ATI peak and hence to the characteristic deflection of
electrons in the high-intensity KDE.

The angle- and energy-differential ionization probability
P (p) = p|Tp|2 is then readily given in terms of the direct SFA
transition amplitude [19],

Tp = − i
∫ ∞

−∞
dt 〈χp(t )|V̂le(r, t )|�0(t )〉

= − 2π i
∞∑

N1,N2,N12=−∞
CN (p)V (pN )δ(EN + Ip), (4)

where V̂le(r, t ) = A(r, t ) p̂ + 1/2A2(r, t ) is the laser-electron
interaction potential. Note that we neglected any rescattering
between the photoelectron and parent ion in Eq. (4). This
approximation is justified, since rescattering contributions are
suppressed beyond the dipole regime [25,26]. In the above
expression, the Dirac δ function defines the positions of the
ATI peaks, which have relative amplitudes given by the co-
efficients CN (p) and the matrix element V (p) = 〈p|V (r)|�0〉
of the Coulomb potential V (r). In the following, we restrict

our analysis to photoelectrons emitted in the px-pz plane,
i.e., the azimuthal angle ϕ = 0. Then, the PADs are given by
the differential ionization probability P (p) as a function of
the polar angle ϑ for a fixed energy Ep = p2/2. Below, the
PADs will exhibit several maxima at ϑ = ϑmax �= π/2. We
use these maxima to define the momentum transfer �pz =√

2Ep cos ϑmax to the photoelectron. When the photoelec-
tron is emitted from the target atom, it interacts with the
electromagnetic field of the standing wave and performs an
oscillating motion in the longitudinal z direction [8] before it
reaches the detector where the calculated PADs are measured.

As shown in Fig. 2(a), for a linearly polarized standing
wave (ε = 0) of intensity I = 5 × 1013 W/cm2 photoelec-
trons are preferably emitted with a particular momentum
transfer �pz ≈ 560h̄k, yielding four maxima in the PAD
symmetric to the polarization plane (ϑ = 90◦). This splitting
in four maxima is the high-intensity KDE [8]. The PADs have
a similar shape for all photoelectron energies Ep and the angle
ϑmax of maximum emission probability decreases with Ep.
This results in a momentum transfer �pz = √

2Ep cos ϑmax

that is independent of Ep and an angle ϑmax that follows the
inverse square-root law cos ϑmax ∼ E−1/2 as obtained within
the QED-Volkov approach [15].

The four maxima in the PAD of high-energy photoelec-
trons are also clearly discernible at higher laser intensities [red
dashed curve in Fig. 2(b)], and correspond to a momentum
transfer �pz ≈ 850h̄k. However, low-energy photoelectrons
(Ep < Up) exhibit a markedly different PAD [black solid curve
in Fig. 2(b)], since now a second set of maxima appears that
corresponds to �pz ≈ 1250h̄k. The emergence of additional
maxima in the PADs was related to nondipole effects in the
ionization with ultrashort pulses [27]. In the high-intensity
KDE, however, this different behavior of low- and high-
energy photoelectrons is one of the main findings of this
work. We can understand the different PADs in terms of the
ponderomotive force Fp(z) = Upk sin(2kz)ez. On a photoelec-
tron emitted along the polarization direction, Fp induces an
oscillating motion along the beam axis. For Ep > Up, the
motion of the photoelectron is not bound by the potential and
can thus be described classically, leading to a distinct value of
longitudinal momentum pz at the detector [8]. For Ep < Up,
on the other hand, the electron cannot classically move over
the potential crests and the plane-wave contributions with
different pz in expression (2) interfere, giving rise to another
maximum in the PADs. In order to analyze this interference
mechanism more closely, it might be instructive to perform
quantum-trajectory Monte Carlo simulations in a future work.
The above results show that in the high-intensity KDE, two
distinct regimes exist for the PADs of low-energy photoelec-
trons with Ep < Up and of high-energy photoelectrons with
Ep > Up, quite analogous to the Bragg and diffraction regimes
in the free-electron KDE [1]. In both regimes, the momentum
transfer is determined by the magnitude Upk ∼ I of the pon-
deromotive force. This is in line with our computations, which
show a linear dependence of �pz on the intensity I [Fig. 2(c)].

To observe low-energy photoelectrons with Ep < Up, ex-
perimental parameters can be estimated, since the pondero-
motive potential has to be in the order of a few photon
energies, Up = Iλ2/(2πc3) � nω. For example, if PADs of
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FIG. 2. Momentum transfer in the high-intensity KDE with linearly polarized standing light waves (ε = 0). PADs of photoelectrons with
Ep ≈ 3ω (black solid) and Ep ≈ 10ω (red dashed) are shown in the left two panels for two intensities: (a) I = 5 × 1013 W/cm2 and (b) I =
15 × 1013 W/cm2. At low intensity (Up ≈ ω), both PADs refer to high-energy photoelectrons (Ep > Up) and have one set of maxima, with a
momentum transfer �pz ≈ 560h̄k. At high intensity, in contrast, the red dashed curve represents high-energy photoelectrons and has one set
of maxima (�pz ≈ 850h̄k), while the black solid curve represents low-energy photoelectrons (Ep < Up) and has an additional set of maxima
(�pz ≈ 1240h̄k). (c) Momentum transfer to photoelectrons with Ep ≈ 3ω, corresponding to the maxima in their PADs, as a function of the
intensity. For I � 10 × 1013 W/cm2, Ep < Up and the second set of maxima appears. The PADs in (a) and (b) are normalized to their respective
maxima and the absolute magnitudes of the red dashed curves differ by a factor of (a) 0.93 and (b) 0.71, respectively, from the black solid
curves. Parameters used: λ = 1200 nm (ω = 1.03 eV), Ip = 14 eV (krypton).

photoelectrons with Ep ≈ 3ω can be measured reliably, the
minimum intensity of the standing wave with wavelength λ

must be

Imin

(
W

cm2

)
= 2.16 × 1023 × [λ(nm)]−3, (5)

in order to resolve the second set of maxima in the PADs. By
the same argument, photoelectrons with Ep < Up could not be
observed in the experiment [8] because of the small Up ≈ ω.

The momentum transfer to low-energy photoelectrons also
depends on the ellipticity of the standing wave, as shown in

Fig. 3. For � = −1, the momentum transfer decreases when
the ellipticity is increased and only one set of maxima remains
for ε > 0. This is in contrast to high-energy photoelectrons,
where the momentum transfer is larger for circular than for
linear polarization [8]. For � = +1, no longitudinal momen-
tum is transferred for circular polarization, since angular mo-
mentum conservation forbids the virtual Compton scattering.
However, the momentum transfer is enhanced for elliptically
polarized light with ε = 0.5 and � = +1: Low-energy pho-
toelectrons are emitted with a high probability with large
longitudinal momenta (�pz ≈ 1150h̄k). This is our second

FIG. 3. PADs of low-energy photoelectrons (Ep = 2.8 eV ≈ 0.7Up) for (a) linear, (b) elliptical, and (c) circular polarizations of the standing
wave. Results are shown for standing waves with I = 15 × 1013 W/cm2 and for both orientations � = +1 (black solid curves) and � = −1
(red dashed curves). All PADs are normalized to their respective maxima and the absolute magnitudes of the red dashed curves differ by a
factor of (a) 1.0, (b) 0.33, and (c) 0.16, respectively, from the black solid curves. All other parameters are the same as in Fig. 2.
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main result: The momentum transfer to low-energy photoelec-
trons can be controlled by a change of the ellipticity when all
other laser parameters remain fixed. This is a consequence
of the ellipticity dependence of the expansion coefficients
CN (p) in the Volkov state (2) (cf. Appendix A). Physically,
the ponderomotive force field acting on the photoelectron is
strongly ellipticity dependent [28]. In future studies, it will
be interesting to see how the momentum transfer, based on a
semiclassical dynamics of the photoelectron in this force field,
depends in detail on the polarization properties of the standing
wave.

In summary, we have shown for the high-intensity KDE
that low-energy photoelectrons can gain large longitudinal
momenta and that these momenta can be controlled by the
ellipticity of the standing wave. This large momentum transfer
can be observed if the intensity of the standing wave exceeds
a certain threshold Imin that depends on the wavelength. Our
results demonstrate that the high-intensity KDE provides a
means to create low-energy photoelectrons with large and
controllable longitudinal momentum. In the future, it will
be an important task to include the Coulomb potential in
the continuum in order to correctly describe the behavior of
low-energy photoelectrons. It is known that the SFA used
in the present work underestimates the yield of low-energy
photoelectrons [29] and we therefore expect that the inclusion
of the Coulomb potential may enhance the effect reported
here. Furthermore, the standing wave may be modeled in a
more realistic way using a Gaussian beam profile and a finite
pulse duration. Within the formalism used here, this will yield
more complex nondipole Volkov states and it is an interesting
question how the theoretical results are then modified.

B.B. and W.P. acknowledge support from the Helmholtz
Institute Jena and the Research School of Advanced Photon
Science of Germany.

APPENDIX A: NONDIPOLE VOLKOV STATES

The nondipole Volkov states for a photoelectron in the laser
fields (1) can be written in position space as [19]

χp(r, t ) = 1

(2π )3/2
e−i(Ept−pr)e−i�(r,t ), (A1)

with the photoelectron energy Ep = p2/2 and the modified
Volkov phase �(r, t ) that depends on the explicit form of
the vector potential. Evaluation of �(r, t ) according to the
procedure outlined in Ref. [19] and successive application of
the Jacobi-Anger transform [30] yields

χp(r, t ) = 1

(2π )3/2

∞∑
n1,...,n6=−∞

Cn1,...,n6 (p)

× e−i(En1 ,...,n6 t−pn1,...,n6
r), (A2)

with the expansion coefficients

Cn1,...,n6 (p) = Jn1 (ρ1)Jn2 (ρ2)Jn3 (α+
1 )Jn4 (α+

2 )Jn5 (2α+
12)

× Jn6 (2α−
12)e−in1θ1 e−in2θ2 , (A3)

where Jm(x) are Bessel functions of the first kind, and the
respective energies and momenta are given by

En1,...,n6 = Ep − α−
1 ω1 − α−

2 ω2 − (n1 + 2n3 + n5 + n6)ω1

− (n2 + 2n4 + n5 − n6)ω2 (A4)

and

pn1,...,n6
= p − α−

1 k1 − α−
2 k2 − (n1 + 2n3 + n5 + n6)k1

− (n2 + 2n4 + n5 − n6)k2. (A5)

In order to better distinguish the two counterpropagating laser
modes A(1) and A(2) forming the standing wave, we denoted
their frequencies and wave vectors as ω1 and ω2, and k1 = kez

and k2 = −kez, respectively. The constants appearing in the
above expressions depend on the details of the vector potential
and have the explicit form

α−
1/2 = ± Up

ω1,2

1

pz/c ∓ 1
, (A6a)

α+
1/2 = α−

1,2

2

1 − ε2

1 + ε2
, (A6b)

ρ1/2 = ± 4Up

ω1,2

√
1 + ε2

√
p2

x + ε2 p2
y

pz/c ∓ 1
, (A6c)

θ1 = −�θ2 = arctan

(
ε

py

px

)
, (A6d)

α+
12 = 1 + �ε2

1 + ε2

4U 2
p

pz/c(ω1 − ω2) − (ω1 + ω2)
, (A6e)

α−
12 = 1 − �ε2

1 + ε2

4U 2
p

pz/c(ω1 + ω2) − (ω1 − ω2)
. (A6f)

In short, we can write N1 = n1 + 2n3 + n5, N2 = n2 +
2n4 + n5, and N12 = n6, and use that ω1 = ω2 = ω for the
standing wave considered in the present work in order to
obtain Eq. (2).

APPENDIX B: INFLUENCE OF THE TARGET POSITION

In our calculations, we consider a single atomic target that
is placed on the beam axis at position z = z0. A realistic
experimental target, however, consists of a cloud of atoms
distributed over some range z1 � z � z2 that also extends
in the polarization plane. As a nonlinear process, the ATI
depends strongly on the intensity of the laser field at the target
position.

Since we model the counterpropagating laser modes form-
ing the standing wave as plane-wave fields, the intensity does
not depend on the x and y coordinates. Therefore, we consider
a target placed on the beam axis. If the target is not placed
at a node of the laser field (z0 = nλ/2) for ε = 0, the PADs
always exhibit the same qualitative behavior. Therefore, in
our calculations, we always set z0 = λ/8. This underestimates
the momentum transfer for linearly polarized standing waves
as measured in an experiment but will not change our main
conclusions. For circular polarization, the results match the
average distributions expected for a realistic cloud of atoms.
In the discussion in the present work, it is therefore sufficient
to make this approximation.
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