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Influence of different disorder types on Aharonov-Bohm caging in the diamond chain
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The linear diamond chain with fine-tuned effective magnetic flux has a completely flat energy spectrum and
compactly localized eigenmodes, forming an Aharonov-Bohm cage. We study numerically how this localization
is affected by different types of disorder (static and time-evolving) relevant to recent realizations of Aharonov-
Bohm cages in periodically modulated optical waveguide arrays. We demonstrate robustness of localization
under static and time-periodic disorder. In contrast, nonquenched (time-dependent) disorder leads to wave-packet

spreading and delocalization.
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I. INTRODUCTION

The fundamental phenomenon of wave localization can
arise from a variety of sources. In nonlinear media, modula-
tional instability leads to localization in the form of wave self-
trapping and solitons [1,2]. In linear media, time-independent
quenched disorder (QD) induces localization via interference
effects in a process known as Anderson localization [3,4].
By contrast, randomly time-evolving nonquenched disorder
(NQD) can result in delocalization and enhanced wave trans-
port [5-7]. Linear localization even without disorder occurs
in certain periodic structures known as flatband (FB) net-
works [8—11]. In the FB networks perfectly localized compact
modes arise due to the lattice geometry enabling destructive
interference between different propagation paths [12,13]. One
of the most intriguing questions is to understand the interplay
between these different localization mechanisms [14—16].
For example, the combination of nonlinearity and disor-
der induces delocalization and subdiffusive wave spreading
via nonlinear interactions between Anderson-localized linear
modes [14].

In the case of FB networks QD transforms the com-
pact modes into Anderson-localized modes with exponential
tails [17]. Statistical properties of the localized modes are
sensitive to the location of the FBs within the lattice Bloch
wave spectrum. For example, when FBs coexist at the same
energy as other nonflat (dispersive) bands, Fano resonance-
like interaction between the bands leads to “heavy-tailed”
statistics in which the mode localization is chiefly determined
by rare realizations of the disorder [18] and the FB states
acquire a finite lifetime [19]. On the other hand, spectrally
isolated FBs typically exhibit strong localization insensitive
to the precise strength or profile of the QD, whether on-site
(local disorder) describing randomness in the site energies or
inter-site (hopping) disorder [18].

In this article we study the influence of various forms
of disorder on localization in a particular FB network: the
one-dimensional Aharonov-Bohm (AB) cage [20,21]. AB
cages are peculiar structures in which all of the spectral
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bands are perfectly flat. Originally generated by applying a
strong magnetic field to superconducting wire networks [22],
more recently AB cages were realized as photonic waveg-
uide arrays by generating an effective magnetic flux using
periodic modulation of the waveguides along the propagation
axis [23-28]. This longitudinal modulation is analogous to the
time-dependent modulation of quantum particles described
by the Schrodinger equation, and therefore we consider both
static and time-dependent sources of disorder. Disorder can
evolve periodically (forming a variant of QD) or nonperiod-
ically in time (standard meaning of the NQD). The compact
mode behavior in such cases has not been explored before.
These two cases are also intriguing because the mathematical
interpretation of localization requires consideration of the
time-dependent Hamiltonians, which is usually not the case
with respect to the Anderson localization. The main question
we are interested in is whether the time-dependent disorder
can lead to delocalization, as is the case for regular (non-FB)
lattices [5,6].

We model periodically evolving disorder by assuming an
initial QD profile has a sinusoidal time dependence [Eq. (2)].
To obtain nonperiodic disorder we randomly change the phase
of this sinusoidal modulation at regular time intervals. We find
numerically that periodic QD leads to similar strong localiza-
tion to the standard QD, which can be understood in terms of
localized Floquet eigenstates. On the other hand, nonperiodic
disorder leads to delocalization, even in this extreme limit
where all bands are perfectly flat.

The outline of the paper is as follows. In Sec. I we make a
brief overview of the studied phenomena and establish corre-
sponding mathematical model and the methods of numerical
analysis. We then study the time evolution of a compact
mode excitation in the presence of different disorder types.
Section III reviews the case of static disorder, which does not
disrupt the strong localization of the eigenstates. We find the
chain is more sensitive to hopping disorder than the on-site
disorder. Section I'V analyzes the case of periodically evolving
disorder, and Sec. V discusses the NQD. The concluding
Sec. VI summarizes our main findings.
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FIG. 1. (a) Schematic of optical waveguide array with effective
magnetic flux implemented via periodic modulation of the waveg-
uide depths (shown in red and blue) combined with transverse
acceleration of the waveguide positions. (b) Band structure of the
array in the Aharonov-Bohm (AB) cage limit I' = 7. (c,d) Schematic
of the compactly localized flat band modes: (c) Geometry-induced
Brg = 0 flat band, and (d) Brg = %2 flat bands emerging due to the
AB caging.

II. MODEL AND METHODS

AB caging was first studied by the authors of Ref. [21] for
tight-binding electrons in certain two-dimensional lattices and
quasi-one-dimensional lattices, including the diamond chain.
The perfectly flat spectrum arises from destructive interfer-
ence among different hopping paths at a critical value of the
magnetic flux. AB caging was experimentally demonstrated
in superconducting wire networks [22], mesoscopic semicon-
ductor lattices [29], arrays of Josephson junctions [30], and
properly designed waveguide arrays [27,28].

To investigate phenomenon of the wave mode spreading
in the systems with AB cage, we study the light propaga-
tion through the periodic diamond chain of coupled optical
waveguides in the presence of an artificial gauge field in-
duced by periodically modulating the waveguides, Fig. 1(a).
The waveguide arrays are a common playground for sim-
ulation of diverse phenomena in condensed matter physics
due to easy manipulation with their parameters in the experi-
ments [23-28].

Following the procedure presented in Ref. [23], we model
the evolution of slowly varying optical field amplitudes in the
waveguides (a,, by, ¢,) as

da,

[ = K(bn e*iF;,,,/Z + bn—l + cn + Cn-1 e*iFEn/Z)
Z

+Eanan7
db ;
i dzn — K(an etFm/Z +an+1) + Ebnbns
dc i
i =kl + ane 1) 4 €nc, (1)
where n=1,...,N indexes the cells, T, is the effective

magnetic flux in each plaquette, and « is the coupling co-
efficient [15,23], which we normalize to 1 without loss of
generality. These equations are obtained by averaging over
high-frequency modulation in z and can thus host both QDs
and NQDs.

The €;, terms in Eq. (1) describe the on-site disorder
potential, which we model as [31]

€ =€ + (@) = {1+ Asin[woz + ¢, (D1}, ()

Qb _ ()
jn = Ejn

describes the on-site static disorder, while e?nD(z) describes

where j = a, b, c is the sublattice index. The term €

the on-site evolving disorder. We take 6(2) to be uncorrelated
random numbers from the interval [—W/2, W/2], where the
parameter W is the disorder strength. The time-evolving dis-
order term is characterized by amplitude A, frequency wy =
27 /Zy, and the phase terms ¢, (z).

Meanwhile, we model hopping disorder as fluctuations in
the hopping phase determining the effective magnetic flux

The last term 6I";,(z) takes a similar form to €;,(z), be-
ing separated into static and z-dependent terms. The small
fluctuations of the magnetic flux resemble the experimental
uncertainties in preparing the external artificial magnetic field.

We further distinguish the evolving part of the disorder
into two different classes: whether it evolves periodically or
nonperiodically in z. The latter models NQD, which can be
interpreted as an uncorrelated thermally induced disorder in
the context of electronic systems. To create NQD with control-
lable rate of change in z, we follow the approach of the authors
of Ref. [32] and consider noise in the modulation phase ¢;,(z).
After a fixed step length, named the dephasing length Az,
we randomly reassign the modulation phases ¢;,(z), drawn
uniformly from the interval [—, 7].

The eigenvalue spectrum of the diamond chain with artifi-
cial flux I' in the absence of disorder consists of three bands:

Brs = 0, B+ = £2k\/1+ cos(T'/2) cos(k).  (4)

One band is always independent of the normalized wave
number k, forming a dispersionless FB, while the other k-
dependent bands are dispersive (DBs). The FB is a conse-
quence of diamond chain geometry. Depending on the value of
I" three different cases are possible: one FB touching two DBs
(' =0, 2m), one gapped FB (I" ## 0, w, 2m), three distinct
FBs (I = m), the last forming an AB cage, with completely
flat spectrum shown in Fig. 1(b).

In a chain with N unit cells each FB has an N-fold
degeneracy in the absence of disorder. The propagation dy-
namics of localized excitations in this case can be intuitively
understood in terms of a basis of N compact, and in general,
nonorthgonoal localized states (CLSs). These states can be
expressed as a superposition of the more familiar delocalized
Bloch wave eigenmodes. The CLSs for the diamond chain
are illustrated schematically in Figs. 1(c) and 1(d). These
CLS field amplitudes are obtained by seeking propagation-
invariant solutions of Eq. (1) that only excite a finite number
of lattice sites. One can verify that diffraction to neighboring
unoccupied lattice sites is completely inhibited by destructive
interference between the upper and lower legs of the chain.
This is the mechanism responsible for the flatband localiza-
tion. In the AB cage limit an arbitrary excitation of the lattice
can be expressed as a superposition of CLS from the three
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flatbands with energies B = 0, £2, such that the propagation
dynamics will be strictly periodic.

In this work we focus on the investigation of the disorder
impact on the diamond chain with fulfilled conditions for
AB caging. Therefore, we will consider the dynamics of
isolated compact modes from the different flatbands: CLS
from Brg = 0 and CLS from Brg = £2. We will also briefly
comment in Sec. VI on the behavior of single site excita-
tions, where a site a or site b from the central lattice cell is
initially excited.

To characterize the dynamics of a wave packet and their
localization, it is useful to consider the following quantities:
the total intensity in each unit cell I, the second moment m;,
the participation ratio PR, and the imbalance 1. Assuming
all wave packets are normalized such that Zn I, = 1, these
quantities are defined as

1,(2) = la,(2)* + 1ba(2)* + lea(2)I%,

miz) = {nwn(zn2 + (n + %)nbn(znz + |cn(z>|2]},

n

myz) =y {(n — mi () lay(2)

n

1 2
+ (n +5- m1(z)> [1bu@)P + |cn(z)|2]},

-1
PR(z) = (Z Lf) ,

@) =Y lan@)* = @) = lea(@)].

n

where ¥,(z) = [a,(2), by(2), c(2)]" and my(z) is the first
moment or center of mass. The distribution of I, over the
lattice cells shows the efficiency of certain disorder which
is expected mostly to affect the tails of the initially excited
compact modes. m;, gives information about the CLS or
wave-packet density spreading, PR about the number of sites
significantly populated by the field, while the imbalance 7,
about how energy is distributed between corresponding sub-
lattices. Although the second moment and the participation
ratio are linked, and broader wave packets are expected to
occupy a greater number of sites, there are some particular
situations in which this is not so. For example, in the case
with self-trapping (nonlinear networks) the second moment
typically increases in time (due to unbounded spreading of
linear dispersive waves), but the participation number stays
more or less constant. It is related to a frozen bulk that does
not evolve with certain sites remaining highly occupied. When
the noise is added to such a system the interplay between
the self-trapping and (de)localization from disorder includes
interesting features [33].

III. STATIC DISORDER

We begin by briefly reviewing the effect of static disorder
on the diamond chain, which was previously investigated
by the authors of Refs. [18,21,34]. In one-dimensional dis-
crete lattices static uncorrelated disorder typically induces

On-site disorder Hopping disorder
@ @
p p
0 0 il |
2 0 £ -2 2 0 p -2
(b) (d)
0 0
n n
-1 -1
2 0 B -2 2 0 B -2

FIG. 2. The (a) eigenstate density spectrum p and (b) corre-
sponding imbalance 7 for diamond chain with I' = 7 (AB cage limit)
in the presence of on-site static disorder of strength W = 1. (c,d) The
corresponding quantities in the presence of static hopping disorder
are plotted.

Anderson localization with eigenstate profiles becoming ex-
ponentially localized ~e~ /%, where £ is the localization
length [4]. The £ is also the characteristic length an initially
localized excitation of the lattice can spread [14]. It scales
as £ « vf,/W2 in the limit of weak disorder strength W,
where v, 1s the wave-group velocity in the absence of disorder.

The characteristic scaling of £ does not occur in flatbands
because v, = 0. Instead, the eigenmode spreading becomes
sensitive to gap A separating the FB from other DBs [18].
When W < A there is strong mixing between the states within
the FB, which hybridize and lift their degeneracy. In addition,
mixing between the FB and evanescent modes derived
from the other dispersive bands results in a localization length
determined by band gap A rather than the disorder strength W'.
Thus, for small W the degree of localization becomes
independent of W. Once W 2 A, strong mixing between the
flat and dispersive bands dominates over the details of the
lattice band structure and conventional Anderson localization
(sensitive to W) is expected to emerge [18]. On the other
hand, if the disorder potential has some local symmetry
that inhibits mixing with FB states they will preserve their
compact localization.

In the following we consider two types of static disorder
(A =0):

(1) On-site disorder (¢, # 0, 6I";, = 0);

(2) Hopping disorder (¢, = 0, 6T";, # 0).

To demonstrate the differing effects of these two disorder
types we solve the eigenvalue problem numerically to obtain
the eigenstate spectra shown in Fig. 2, using a lattice with
N = 101 cells and disorder strength W = 1. Without disorder
the three isolated FBs are N-fold degenerate. Introducing
quenched disorder lifts the degeneracy. The on-site disor-
der fully removes the degeneracy, i.e., all FBs are affected
[Fig. 2(a)], and the sublattice symmetry of the eigenstates is
broken, leading to n # 0, —1 [Fig. 2(b)]. On the other hand,
the hopping disorder only partially lifts the degeneracy of the
FBs: The degeneracy of the two periphery FBs (Bpg = £2)
is removed, but the central FB remains degenerate and its
eigenstates preserve their sublattice symmetry [Figs. 2(c)
and 2(d)]. This is because the central FB is protected by
the lattice’s bipartite symmetry, which is preserved under the
hopping disorder.
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FIG. 3. (a,b) Dynamics of the disorder-averaged participation
ratio (PR) and second moment (m,) obtained for excitations of the
(a) Brs = 0 and (b) Brg = 2 CLS. (c,d) Disorder-averaged intensity
profiles (I,) at z = 10* for (c) Brs = 0 and (d) Bps = 2 CLS excita-
tions. Averages are obtained over 50 disorder realizations.

Next we study the impact of the disorder on the prop-
agation dynamics in the AB cage by numerically solving
Eq. (1), taking the normalized compact modes of Figs. 1(c)
and 1(d) as initial conditions. We fix the disorder strength
W =1 and consider an ensemble of 50 disorder realizations.
Figures 3(a) and 3(b) illustrate the dynamics of the disorder-
averages (PR) and (mj), which saturate to finite values,
indicating the onset of Anderson localization. Figures 3(c)
and 3(d) show the ensemble-averaged beam intensity profile
(I,) after a propagation distance of z = 10*. Consistently with
the numerically calculated eigenvalue spectra, we observe that
the compact localization present in the ideal (nondisordered)
system is destroyed, and replaced by exponential Anderson
localization. The Bgg = 0 CLS is much less sensitive to the
hopping disorder, which does not spread at all and essentially
preserves its initial beam profile.

Figure 4 quantifies the dependence of the long time lo-
calization measures (PR) and (m;) on the disorder strength
W. For very weak disorder (W < 0.01) (PR) and (m,) of
initially injected CLS from Spg = 0 are saturated to the corre-
sponding values in the absence of disorder. This is the case
for both on-site and hopping disorder. While this tendency
continues for the hopping disorder for stronger W, the on-
site disorder starts to affect the CLS from Brg = 0, which
is slightly smeared over the neighboring cells, corresponding
to saturation of (PR) and (m,) at higher values. For strong
disorder W 2 2 we observe an increase in the spreading due
to a transition from AB cage-induced localization to regular
Anderson localization.

IV. PERIODIC DISORDER

The evolution of periodically driven systems can be under-
stood using the Floquet formalism, in which one considers

Prz=0
(@) Hopping (b)

Beg =2

Hopping

&
v 10
0 On-site
60
%N’jo Hopping /éN4O Hopping
V15 v 20 On-site

On-site

FIG. 4. Disorder-averaged (PR) (upper plot) and (m,) (lower
plot) after propagation length z = 10 for different stationary QD
realizations vs. disorder strength W. (a) CLS from central FB
(Brs = 0) and (b) CLS from the periphery FB are initially excited
in the lattice (from Bgg = 2). Error bars illustrate the standard
deviations of corresponding quantities.

the field profile at integer multiples of the driving period
Zy [35,36]. This is described by the unitary evolution operator
U(Zy) =expl fOZ * H(z)dz], where H(z) is the time-dependent
Hamiltonian governing the dynamics. Using the bra-ket nota-
tion the field evolves as

a,(z)
b,(z) ). (5)
cn(2)

Wz +Zo) > =UlY(2) >, |¥a(z) >=

The stroboscopic dynamics can be understood via projection
of any initial state onto the eigenmodes of this Floquet evolu-
tion operator. In particular, the eigenstates of U correspond
to the eigenstates of a static effective Floquet Hamiltonian
Her = ilog(U)/Zy. This allows interpretation of the period-
ically disordered system dynamics in a similar manner to that
of the static disorder case. We obtain the Floquet eigenmodes
by computing the individual matrix elements of U using
numerical beam propagation over one driving period, and then
numerically diagonalizing the resulting N x N unitary matrix
(see Refs. [35,36] for details).

For periodically evolving disorder an important new energy
scale emerges: the ratio of the characteristic frequency of the
disorder wy = 21 /Z; to the gap size A. When wy is resonant
with one of the gap sizes there can be strong mixing between
the eigenstates of the static system to form qualitatively differ-
ent Floquet eigenstates. To explore the influence of w( on the
wave-packet spreading in the disordered system we consider
three different classes of periodic disorder (taking A = 1):

(1) driving resonant with the band gap (wy = 2);

(2) off-resonant driving (wy = 0.1);

(3) doubly resonant driving (wg = 4).

In particular, the resonant and doubly resonant driving
cases can induce strong mixing between different elementary
CLSs to create new Floquet eigenstates. We will consider both
on-site and hopping disorders in the following.

First, we calculated the Floquet eigenmode spectrum under
these different classes of periodic disorder. Regardless of Zj,
we obtain localized eigenmodes, indicating the persistence of
the Anderson localization under periodic driving. Similar to
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FIG. 5. Dynamics of the disorder-averaged participation ratio
(PR) and second moment (m,) obtained for excitations of the
(a) Brs = 0 and (b) Brg = 2 CLS. (c,d) Intensity profiles (I,) at z =
10000 for (a) Brg = 0 and (b) Brs = 2 CLS excitations. Averages
are obtained over 50 realizations of on-site disorders.

the eigenvalues of the static case shown in Fig. 2, the on-site
disorder affects all FBs, while hopping disorder preserves the
degeneracy of the zero energy FB.

Figures 5(a) and 5(b) shows the long time dynamics of the
disorder-averaged participation number (PR) and the second
moment (m;) for the on-site periodic disorder. Both (PR) and
(my) saturate after an initial transient spreading, regardless of
the type of disorder frequency or the initial CLS. Localization
after that persists. When there are resonances, additional
rapid oscillations in (PR) and (m,) appear due to interband
coupling; this occurs for the resonant driving when the central
FB is initially excited, and for both resonant and doubly
resonant driving when one of the peripheral FBs is excited.
The averaged intensity profiles in Figs. 5(c) and 5(d) show
similar exponential tails in all cases.

We can understand the effect of the periodic disorder
on the wave-packet spreading following the approach in
Refs. [31,32]. Based on perturbation theory for linear systems
in the presence of time-dependent perturbations, we expect
to see transitions between different static eigenstates. The
strength of these transitions is determined by the spatial
overlap between the states, and whether the frequency of the
perturbation is resonant with the energy difference between
the states. Due to the strong localization induced by the AB
caging, there can only be appreciable overlap with directly
neighboring CLS, which have random energies due to the
static part of the disorder. Consequently, while resonances
between neighboring states can, in principle, lead to slight
expansion of the wavepacket, this occurs with low probability.
Therefore the wave packets remain bounded and strongly
localized. The described findings are clearly seen in Fig. 6
where the effect of periodic QDs of different strength on
the CLS spreading is presented. In general, slowly increasing
slopes of the curves (PR) versus W and (m;) versus W are

Brg =0 Brs =2
20 (a) —=-Resonant 20 (b)

A -=-Off-resonant é\ﬁ
a7 Doubly-resonant , . sy
VORI e

o} 0
/\NZO /\NZO
= =
V10 V10 j

103 102 10" 10010t 1020 102 10t 100 10!

FIG. 6. The averaged value of (PR) (upper plot) and (m,) (lower
plot) over the propagation length z = 1000 for different stationary
QD realizations vs. disorder strength W. (a) CLS from central FB
(Brs = 0) and (b) CLS from the periphery FB (Bpp = 2) are initially
excited in the lattice.

consequences of the time dynamics caused by the periodic
modulation of on-site disorder.

The corresponding results for time-periodic hopping dis-
order are shown in Fig. 7, which illustrates the evolution of
the disorder-averaged PR, my;, and intensity profiles I, for
both types of the compact localized modes. In this case the
dynamics of the Bpg = 0 FB shows a clear difference between
the resonant driving and the off-resonant and doubly resonant
drivings: The resonant driving induces exponential tails in the
localized mode, the others preserve the strong localization of
the Bpg = 0 CLS, which remains almost compact. This is a
straightforward consequence of the wave packets’ relaxation
via the bottleneck path through the a sublattice in the res-
onant resonant case. Regarding the CLS initiated from the
Brs = 2, all types of modulated hopping disorder induced the
fast growth and saturation of (PR) and (m,) to finite values

BFB = 0 BFB = 2
—Resonant (R) b
a

15} ( )*Off—resonant (OR) 15(b) DR
é\ﬁ 10 Doubly-resonant (DR) Q/é 10
[a B [a B
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FIG. 7. Dynamics of the disorder-averaged participation ratio
(PR) and second moment (m;) obtained for excitations of the
(a) Brs =0 and (b) Brs = 2 CLS. (c,d) Intensity profiles (I,) at
(c) z=10000 for Bgg = 0 and (d) Brg = 2 CLS excitations. Aver-
ages are obtained over 50 realizations of hopping disorders.
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FIG. 8. The on-site NQD power spectra obtained after averaging
over ten different realizations of the set of random numbers for
(a) resonant NQD and (b) off-resonant NQD.

[Fig. 7(b)] and the exponential localization [Fig. 7(d)]. Again
the observed dynamical properties can be associated with the
active role of the a sublattice, which is in this case generically
whole time “populated” and thus “introduced” in the mode
relaxation.

V. NONQUENCHED DISORDER

Finally, we study the nonquenched disorder (NQD), which
introduces an additional characteristic scale: the dephasing
length Az. The monochromatic perturbations studied in the
previous section are now broadened to have a finite band-
width, enabling coupling between successive CLS and wave-
packet spreading. The efficiency of the spreading is dictated
by the NQD power spectrum, shown in Fig. 8 for the two
different types of NQD we will consider (with amplitude
A=1)

(1) Resonant NQD wy =2, Az =5;

(2) Off-resonant NQD wy = 0.1, Az = 10.

The NQD is characterized by abrupt changes of
the disorder realization along the propagation directions
which occur at regular distances. This results in momen-
tum “kicks” which can induce spreading of the wave
packet. For example, in regular (non-FB) lattices the
evolving disorder results in superdiffusive wave-packet
spreading [5-7].

Figure 9 illustrates the wave-packet spreading under rep-
resentative examples of the NQD, measured via the averaged
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FIG. 9. Averaged values of participation ratio (PR) and second
moment (m,) over 50 propagation windows, which are obtained for
CLS from (a) Brg = 0 excitation and (b) the CLS from Bgg =2
excitation and different types of NQDs are shown in log-scale. The
mentioned propagation windows are obtained by dividing the total
propagation length into 50 parts of equal length.

participation number (PR) and the second moment (m,). Both
quantities grow with z, regardless of the type of NQD or CLS
excitation. This indicates that NQD breaks localization and
causes wave-packet spreading in all cases, similar to regular
lattices. Comparing (PR) and (m,), we find faster spreading
for off-resonant hopping disorder than in the cases with on-
site disorder. This difference is stronger for CLS from fgg = 2
than CLS from Bpg = 0 excitation. Additionally, the rate of
spreading measured by (m,) for the on-site disorders tends to
slow after an initial transient, but not in the case of hopping
disorder. Furthermore, for the CLS from fgg = 0 excitation
faster spreading occurs for off-resonant disorder compared to
the resonant case, which we attribute to the stronger overlap of
the disorder spectrum with the static modes. We quantify the
destruction of localization via NQD by estimating the slopes
(o) of curves log({m,(z))) versus log(z) for each of CLSs in
Fig. 9. The most effective hopping NQD is characterized by
power-law spreading o & 1.5 for CLS0O and o =~ 1 for CLS2,
corresponding to superdiffusion and regular diffusion, respec-
tively. The lack of dispersive waves with rapid spreading to
media means that the spreading exponents are significantly
lower than o & 2.4 for the case of regular (non-FB) photonic
lattices [5-7].

VI. CONCLUSION

The purpose of this study was to reveal the effect of
different types of quenched and nonquenched disorders on
the dynamics of compact localized excitations (CLSs) in
the diamond chain threaded by an effective magnetic flux,
which forms an Aharonov-Bohm cage with a completely
flat spectrum. These classes of disorder are particularly rel-
evant to recent experimental realizations of AB cages in
photonic waveguide arrays [27,28]. We found that the CLS
become exponentially localized under quenched and peri-
odic disorders. Notably, strong localization under periodic
disorder persists even if the periodic modulation resonantly
couples different bands. Abrupt changes of the disorder re-
alization forming nonquenched disorder destroys localization
and induces wave-packet spreading for both on-site and hop-
ping disorders, with the last term resulting in more rapid
spreading.

We focused on the dynamics of the CLS hosted by the
flatbands of the diamond chain. Such CLS are obtained via
excitation of multiple waveguides. We found qualitatively
similar localization behavior for single waveguide excita-
tions since they can be expressed as superpositions of the
CLS. Namely, an a waveguide excitation is a superposition
of CLS from the gy = +2 bands, while a b waveguide
excitation involves CLS from all the FBs. In both cases
the localization or spreading dynamics are accompanied by
rapid oscillations due to interference between the different
bands.

In the future, it would be interesting to generalize this
study to two- and three-dimensional Aharonov-Bohm cage
lattices [21], where the dynamics are expected to be more
sensitive to the disorder strength. We considered idealized
tight-binding models of quenched and nonquenched disorder,
which we believe are representative of a variety of disordered
systems including waveguide arrays and optical lattices for
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cold atoms. To determine the conditions under which the
delocalization or saturation of wave-packet spreading may be
observable in experiment, it will be necessary to conduct more
rigorous simulations taking into account the rapid periodic
modulation [27] or auxiliary sites [28] used to create the
synthetic magnetic field.
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