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Conversion and manipulation of radial quantum modes in second-harmonic-generation processes
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The second-harmonic generation of Laguerre-Gaussian (LG) beams is investigated in this paper with a coupled
equation set deduced from the nonlinear paraxial equations. Under the guidance of this coupled equation set, the
conversion and propagation characteristics for individual LG modes in the second-harmonic (SH) generation
process are studied quantitatively. Furthermore, we show that a periodic quasi-phase-matching crystal can
be used as an integrated device to produce a controllable multimode SH source. By controlling the length
or temperature of crystal each LG mode of the SH wave can be manipulated separately, instead of treating
the SH wave as a whole. This method might be useful in mode division multiplexing system to expand the
communication capacity, and thus has potential applications in optical communication.
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I. INTRODUCTION

In 1992, Allen and his coworkers revealed that the phase
term exp(ilϕ) in a vortex beam denoted orbital angular mo-
mentum (OAM) [1]. From then on, optical vortices have
drawn more and more attention. Due to its unique and at-
tractive optical property, the optical vortex is applied to many
fields, such as optical manipulation [2,3], optical communi-
cations [4], and quantum information [5,6]. In recent years,
some properties of vortex beams, such as dichroism [7,8] and
self-torque [9] have been reported. The Laguerre-Gaussian
(LG) beam is one of the most common and well-studied
vortex beams. It is characterized by two quantum numbers
l and p · l is the azimuthal quantum number representing
the number of azimuthal cycles in phase profile and also
regarded as the topological charge. p is the radial quantum
number representing the number of intensity rings of a LG
beam and also regarded as the hyperbolic momentum charge
[10]. Because of the association with OAM, the azimuthal
quantum number l has attracted the majority of attention.
The radial quantum number p is also an important quantum
number but is much less investigated. LG modes with different
p are orthogonal, which has potential applications in opti-
cal communications [11]. Recently, researchers developed p
mode sorters of LG beams successfully with fractional Fourier
transformation modules. These mode sorters can be applied
in high-dimensional and multiphotonic quantum optical pro-
cesses [12,13].

It is well known that the nonlinear optical process is a
common way to realize frequency conversion. The phase
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mismatch affects the nonlinear conversion efficiency signif-
icantly. Birefringent phase matching [14,15] and quasiphase
matching (QPM) [16,17] are the two widely used techniques
to compensate for the phase mismatch. In recent years, non-
linear optical generation of vortex beams has attracted much
attention [18,19]. Nonlinear process can be utilized to obtain
a high frequency vortex beam source. Besides frequency
and wave vector, in nonlinear processes of LG beams, con-
servation of two quantum numbers l and p is worthy of
study. Azimuthal quantum number l has been demonstrated
conservative in nonlinear optical process [20,21], and the
radial quantum number p is found to be not conservative [20].
The output nonlinear beam is known to be a superposition
mode, and the radial quantum number p of each component
mode should be limited in a number range [22,23]. However,
the propagation and conversion characteristics for individual
component modes in the second-harmonic generation (SHG)
process are still unclear.

In this paper, deducing from the three-dimensional (3D)
nonlinear paraxial equations, we have developed a nonlinear
coupled equation set for the LG beam, which is able to
describe the SHG process of LG beams more precisely, and
the finite difference method is used to verify our results
numerically. Furthermore, according to the coupled equation
set, we can design a QPM crystal to manipulate the radial
index of SH waves and obtain a LG beam with specific modes
distribution.

II. RESULTS AND DISCUSSION

A. Analytic derivation of the selection rule

In this section, we deduce the nonlinear coupled equations
of LG beam, with the similar method used to deduce the
coupled equations of Gaussian beam [24,25].
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A pure linearly polarized LG beam propagating along the
z axis is used as the input fundamental wave (FW). In general,
we can use the nonlinear paraxial equation in a cylindrical
coordinate system to describe the SHG process in a 1D optical
superlattice (OSL):
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where K1 is the coupling coefficient. f(z) is the structure
function of the 1D OSL. k1,k2,E1,E2 are the wave vectors and
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the Rayleigh range and k means the wave number. L|l|

p is the
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z is the radius of curvature
of the wave front. ξ = z
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is reducible propagation distance.

We choose p = a mode as FW (hereafter we use p mode to
refer to the LG mode with radial index p). ω01 is the beam

waist of FW and Rayleigh range zR = k1ω
2
01

2 . We still use l
to present the azimuthal index of FW, because the value of
azimuthal index has been demonstrated to be conservative
[20,21] and our derivation is universally valid for arbitrary
value of azimuthal index. The expression of the fundamental
wave is

E1(r, ϕ, z) = B1u1(r, ϕ, z), (3)

where B1 is the amplitude of the u1(r, ϕ, z) and is constant
in the condition of small signal approximation. The subscript
represents the fundamental wave. u1(r, ϕ, z) is the expression

of p = a mode and can be written as
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Because of the orthonormality of LG mode, we can use
a series of LG modes as basis to expand the SH wave. The
orthogonal LG mode should own same z and ω0. Thus we
choose the incident interface of crystal as the initial plane (z =
0) for both FW and SH wave. We choose ω02 =

√
k1
k2

ω01 to

ensure that FW and SH wave have same zR and ξ .
To research the compositions of SH wave, the expression

of it can be written as

E2(r, ϕ, z) =
∑
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B2n(z)u2n(r, ϕ, z), (5)

where the first subscript denotes the SH wave, and the second
subscript n represents the mode of p = n (n = 0, 1, 2, . . .).
B2n(z) is the expansion coefficient of u2n(r, ϕ, z), and also
represents the amplitude of p = n mode. u2n(r, ϕ, z) is the
expression of p = n mode and can be written as
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Hereafter we omit the arguments r, ϕ and z in u1(r, ϕ, z),
u2n(r, ϕ, z) and B2n(z) for convenience. Taking the slowly
varying amplitude approximation and the paraxial approxima-
tion into consideration, it follows from Eq. (6) that

∇2
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Inserting Eqs. (3) and (5) into Eq. (1) and invoking Eq. (7),
we obtain∑
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The quadratic on the right-hand side can be expanded with a set of Laguerre Polynomials:[
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Here, if we suppose the phase mismatch is small, i.e., k2
2k1

− 1 ≈ 0 [23]. In order to insure that Eq. (11) is correct for all value
of t , contrasting two sides of Eq. (11), we get
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Mathematically, as mentioned in Ref. [23], a single p mode cannot constitute the SH wave, because the square of L|l|
a (Laguerre

polynomial in the expression of FW) is not equal to every single Laguerre polynomial. After derivation, we demonstrate
the component modes existing in SH wave should obey a special selection rule. A superposition mode composed of 2a + 1
orthogonal modes (p = 0, 1, 2, . . . , 2a) can constitute the SH, due to the Eq. (10). To conclude, for a FW with p = a,
corresponding SH wave has 2a + 1 modes ranged from p = 0 mode to p = 2a mode, which is consistent with the experimental
results in Ref. [22].

B. Propagation properties of the SH wave

Without loss of generality, we choose p = 1 mode as the FW to anaylse the propagation properties of SH wave. Eq. (12) can
be rewrite as
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K1 is the modified coupling coefficient.

Each cofficient can be figured out as
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Three modes constitute the SH wave as shown in Fig. 1,
and their propagation properties can be described by Eq. (13).
From Eq. (13), we find that three modes share most of
propagation equations except additional phases appearing at
the end of p = 0 and p = 1 mode’s propagation equation.
These additional phases are caused by the differences between

Gouy phase shifts in each mode. Predictably, the propagation
characteristics of each mode will dissimilate because of the
impact of Gouy phase shifts.

FIG. 1. Schematic diagram representing the second-harmonic
generation of vortex beams in an optical superlattice.
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FIG. 2. Simulation of the dependence of (a) SH intensity, (b) the
modular square of amplitude, (c) specific value and (d) the Gouy
phase of p = 0 mode on propagation distance z ranged from z = 0 to
z = 2000 μm.

The coupled equation set Eq. (13) can describe the prop-
agation properties of each component mode in the SH wave
accurately. By solving Eq. (13) numerically, we obtain the
amplitudes B2 j ( j = 0, 1, 2). Inserting B2 j and the expression
of LG mode u2 j into Eq. (3), we can numerical calculate and
illustrate the phase and intensity profiles of SH. In previous
work such as Ref. [20], the SH wave of the LG beam is
usually studied as a whole. However, in our method the SH
wave is considered as a superposition mode and each mode in
the SH wave can be studied separately. Thus we named it the
superposition mode method.

The propagation of each mode in SH wave is simulated on
the basis of the Eq. (13). We use LG11 mode at the wavelength
(λ) of 1064 nm as FW, which propagates along z axis and
has a beam waist (ω0) of 10 μm. We use a periodically poled
lithium tantalate to induce SHG. The coherence length lc is
3.92 μm at 25 °C, while FW and SH wave share the same
Rayleigh range zR = 631.98 μm. The period of the crystal
is 2lc, while the reciprocal lattice vector can compensate for
phase mismatch. The area we considered is 100 μm × 100
μm composed of 400 × 400 grids. It is well-known that l
is conserved in the SHG process, thus we mainly research
the properties of radial quantum number p and ignore the az-
imuthal quantum number l . Figure 2(a) shows the dependence
of the intensity of SH wave on propagation distance z ranged
from z = 0 to z = 2000 μm · I2 has an expected quadratic rise
at the beginning of the propagation, but the Gouy phase shift
causes an accumulated phase shift and affects I2 in the long
distance. Figure 2(b) shows the dependence of the modular
square of amplitude |B2 j |2 on the propagation distance z.
Because of the orthonormality of LG mode, |B2 j |2 represents
the intensity of each component in SH. This figure shows
that p = 0 and p = 2 are two main modes in the SH wave,
because C1 is close to 0. The solid green line representing
|B22|2 increases monotonically, while the dashed red line
representing |B20|2 continues to rise after one oscillation,
because the existence of a Gouy phase shift affects the QPM
condition and reduces conversion efficiency, just as occurs in
Gaussian beams [20,21]. More specifically, the value of the

FIG. 3. (a) Phase and amplitude profile, (b) intensity distribution
at center line of SH wave with different methods at 600 μm. Two
sets of intensity profiles and curves are nearly identical, and the
correlation coefficient R is 0.9939.

Gouy phase in p = 0 mode varies from 0 to π while the
FW propagates from 0 to zR in crystal, and approaches 2π

with propagation at last. As shown in Fig. 2(c), the additional
phase π will induce equivalent domain inversion and break
the QPM condition in p = 0 mode around Rayleigh range, as
a result, the intensity of p = 0 mode declines from about 500
to 1200 μm. In contrast, the p = 2 mode satisfies the QPM
condition through the whole SHG process and its intensity
will increase monotones. Furthermore, we can design an OSL
with a particular length to produce desired SH multimode on
the basis of the relation between propagation distance and
intensity of each mode. The ratio of two main modes’ intensity
decreases from 0.7597 to 0.0196 as shown in Fig. 2(d). Thus
we can produce a superposition two-mode SH wave with
arbitrary ratio during this range.

We next simulate the normalized intensity and phase pro-
file of SH wave by the superposition mode method. We select
three sets of data at the propagation distance of 200, 600, and
1000 μm. The results of 600 μm are shown in Fig. 3. To check
our theory, we also use the finite difference method to simulate
the distribution of SH wave [26]. This method is a common
and effective way to calculate nonlinear optical processes. The
influence of backflow of FW is considered by this method.
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FIG. 4. Phase and amplitude profile at 200 and 1000 μm. In the
intensity profile at z = 200 μm, the inner ring is much brighter than
outer ring, because both p = 0 and p = 2 mode have large proportion
in the SH wave, while at z = 1000 μm the proportion of p = 2 mode
is much larger than other ones.

The two series of profiles are almost identical as shown in
Fig. 3(a). We still analyze the intensity distribution at the
center line. Two curves almost coincide as shown in Fig. 3(b).
To compare the results between the two methods precisely, we
introduce the correlation coefficient R. I1 and I2 represent the
SH intensity (simulated) calculated from the finite difference
method and superposition mode method, respectively. Then
the correlation coefficient R can be expressed as

R = n
∑n

i=1 I1iI2i − ∑n
i=1 I1i

∑n
i=1 I2i√

n
∑n

i=1 I2
1i − (∑n

i=1 I1i
)2

√
n

∑n
i=1 I2

2i − (∑n
i=1 I2i

)2
.

(15)
The correlation coefficient represents the degree of similar-

ity between two physical quantities. The closer the correlation
coefficient is to 1, the higher the degree of similarity between
the two physical quantities will be. After calculation, we get
R = 0.9955 at 200 μm, R = 0.9939 at 600 μm and R =
0.9956 at 1000 μm. These results give strong support to
our calculation and theory. Moreover, in the case of phase
matching, our theory is entirely accurate and we get R = 1
at all propagation distances.

C. The production of a controllable multimode
vortex beam source

In the last section, we demonstrated that the propagation
distance in crystal impacts the energy distribution in the SH
wave. In other words, we can modulate the ratio of the two
main modes’ intensity by controlling the length of the crystal.
The ratio ranges from 0.0196 to 0.7597 as shown in Fig. 2(d).
In this section, we compare the normalized intensity and phase
profile of the SH wave at 200 and 1000 μm. As shown in
Fig. 4, in the phase profiles, the number of 2π cycles around
the circumference is the azimuthal quantum number l . It is

FIG. 5. Simulation of the dependence of (a) phase mismatch, (b)
intensity of SH wave, (c) the modular square of amplitude and (d)
proportion of each mode on crystal temperature T from T = 20 ◦C to
T = 120 ◦C.

obvious that the azimuthal quantum number l of SH is 2,
which strictly obeys the conservation of OAM. In general, the
number of the radial saltation is the radial quantum number
p. However, the radial saltation warps in this case. The phase
profile of SH is mainly a weighted sum of p = 0 and p = 2
modes. In the intensity profiles, a central dark hole exists
because of the phase singularity. The number of dark rings
between two bright rings is related to the radial quantum
number p. It is equal to p in a pure LG mode’s intensity
profile, but cannot reflect actual situation in a superposition
mode. In the intensity profile at z = 200 μm, the inner ring
is much brighter than the outer ring, because both p = 0 and
p = 2 mode have large proportion in the SH wave [ |B20|2

|B22|2 =
0.6268 as shown in Fig. 2(b)]. In the case of z = 1000 μm, the
intensity profile looks like the profile of a pure p = 2 mode,
because |B20|2 is much smaller than |B22|2 ( |B20|2

|B22|2 = 0.0436).
Besides the length of crystal, other physical quantities,

such as temperature, have an impact on the SH wave as
well, and can also be used in mode modulation. It is worth
mentioning that changing the length of the crystal is a direct
method, but is difficult to achieve in experiment. Sorting the
beam by controlling the temperature (T) of the crystal is more
realizable in experiment. We adjust temperature to change
the refractive index, further to change phase mismatch and
oscillating period. A deviation between corresponding oscil-
lating periods will also appear because of the different Gouy
phase shifts. Besides the phase mismatch, the temperature also
influences modified coupling coefficient K ′

1 and coefficients
Cj . Thus the evolution of each mode in the SH will be
too complicated to analytically calculate. We next stimulate
the dependence of the modular square of amplitude on a
temperature ranging from 20 to 120 °C. We set the beam waist
and crystal length to ω0 = 10 μm and z = 600 μm and use the
same QPM crystal as the one in last section, which achieves
QPM at T = 25 ◦C. The change of temperature influences the
phase mismatch directly, and their relationship is shown in
Fig. 5(a). Figure 5(b) shows the dependence of SH intensity
on temperature. The change of temperature breaks the QPM,
thus the nonlinear conversion efficiency goes down. Intensity
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and proportion of each mode are shown in Figs. 5(c) and
5(d), respectively. Under our simulations, the proportion of
p = 0 mode is ranged from 0.02% at T = 50.9 ◦C to 94.56%
at T = 80.4 ◦C, while the proportion of p = 2 mode is ranged
from 4.74% at T = 80.5 ◦C to 99.80% at T = 51.0 ◦C. The
p = 1 mode is just the minority with a proportion of no
more than 0.00169%. From our simulation, we successfully
modulate the multimode SH wave by changing temperature
and the adjustable ranges of the proportion of two main modes
are large enough.

All of the above is perfectly compatible with our calcula-
tion. It is proved that high frequency vortex beams generated
by nonlinear process is multicomponent and impure. This
feature may provide potential applications. The intensity of
the main modes in the SH wave can be modulated. By ana-
lyzing the coupled equation set for LG beams, we know the
propagation characteristics of each mode in the SH wave. By
changing the length, temperature or other features of structure,
we can precisely control the energy distribution in the SH
wave. It means we can design a crystal that is controllable,
and can convert a single-mode vortex beam into a multimode
one, and simultaneously implement frequency doubling and
p mode expansion. The application of p mode multiplexing
in optical communication is limited, because only the beams
from the same source, which have same propagation distance
all the time, are mutually orthogonal. Modes emitted from our
crystal exactly satisfy this condition. Thus the designed crys-
tal has potential applications in mode division multiplexing
system.

D. Discussion

Our analysis can be generalized to other nonlinear process,
such as sum-frequency generation and third-harmonic gen-
eration. A higher order p mode or superposition mode can
also be used as FW, and the situation will be more complex
and deserves future investigation. In our discussion, the input
wave is a linearly polarized wave, thus we can use the scalar
nonlinear paraxial equation to study the conversion and prop-
agation of the LG beam. It should be noted that the scalar
equation is not applicable to the case of circular polarized
waves, where the conservation of circular polarization should
be taken into consideration. Furthermore, the nonconservation
of radial index p in the nonlinear process can be compared
with the nonconservation of wave vector k. The nonconser-
vation of the wave vector, i.e., the phase mismatch, limits
the nonlinear conversion efficiency, and how to compensate
this mismatch is an unavoidable problem in every nonlinear

optical process. On the contrary, the nonconservation of the
radial index causes the mixture of different modes, instead
of limiting the nonlinear conversion efficiency, and shows the
potential applications in optical communication. Obviously,
the physical properties of these two quantum numbers have
clear distinctions. With the further research, we believe the
physical meaning of radial index will be ascertained.

It is also worth discussing the validity of the paraxial ap-
proximation in the SHG process involving LG beams. In 2007,
Vaveliuk et al. proposed an efficient paraxiality estimator P
to evaluate the validity of paraxial approximation [27], which
can be expressed as

P= 1−2p + |l| + 1

(kω0)2 . (16)

The closer the efficient paraxiality estimator is to 1, the
more valid the paraxial approximation will be. In our case,
the paraxiality estimators of the FW and each SH component
are found to be P1 = 0.9997, P20 = 0.9998, P21 = 0.9997,
and P22 = 0.9996, respectively. Thus, we consider that the
influence of paraxial approximation is quite acceptable.

III. CONCLUSION

To conclude, we clarify the conservation problem of radial
quantum number in the SHG process of LG beams with the
paraxial approximation. We verify that the SH wave is in a
superposition mode, and the component modes obey a selec-
tion rule, which agrees with former research. We derive the
coupled equation set for LG beams to describe the propagation
properties of the SHG. Under the guidance of our equations,
we can modulate each component mode wave separately,
instead of treating the SH wave as a whole. Furthermore, we
show that a periodical QPM crystal can be used to produce
a multimode SH vortex beam. By changing the length and
temperature of the crystal, we can manipulate each mode and
realize mode division multiplexing.
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