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Chiral Maxwell waves in continuous media from Berry monopoles
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We propose a method to predict the existence of topologically protected electromagnetic chiral modes between
continuous media described by Maxwell’s equations. The number and character of these modes is related to topo-
logical charges (Berry monopoles) in parameter space. Unlike the approaches proposed so far, our description
does not require a regularization parameter at large k nor the materials to be topological on their own. The
predictions of the theory are confirmed by additional numerical simulations of interfaces of gyrotropic media.
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I. INTRODUCTION

In the last decades, the inclusion of topological analysis in
condensed-matter systems has led to a more comprehensive
understanding of their properties [1,2] and inspired appli-
cations for a technological advance beyond the realm of
quantum electronic systems [3,4], most notably in classical-
waves physics such as photonics [5], mechanics [6–8], and
acoustics [9,10].

A remarkable consequence of a nontrivial topology in wave
physics is the presence of unidirectional (chiral) eigenmodes
that perfectly propagate along interfaces between two mate-
rials [11] despite the presence of defects or weak disorder.
The key mathematical object to determine the number of such
modes in two-dimensional (2D) setups is the so-called (first)
Chern number. Notably, this quantity can be computed only
in systems where the momentum space of the bulk materials
is compact, mainly limiting the applicability of this tool to
crystals, where the natural base space is the 2D Brillouin zone
that is a torus [12]. As a consequence, the topological analysis
of chiral waves in well-known continuous models appearing
naturally in the context of optics, geophysics, mechanics, and
fluid mechanics has been put aside for a long time, being
introduced only recently [13–17]. Actually, the unbounded
momentum space of such models is equivalent to a compact
one if the parameters involved in the partial differential equa-
tions satisfy certain conditions in the large-momentum limit
[18,19]. Though simple and powerful, this approach suffers
of being not obviously applicable to real materials, since most
continuous approximations inevitably break down in the large
momenta limit.

Here we suggest a different and more universal route
where the emergence of interface chiral optical waves is pre-
dicted from the existence of degeneracy points in parameter
space. These points behave as topological charges, or Berry
monopoles, whose flux through a close surface surrounding
them is also a Chern number. In that sense, the topological
origin of interface chiral states is encoded into a local quantity
that can be seen as a topological defect in parameter space,
and thus does not require any additional regularization at
large wave numbers as is usually done in optical continua

[13,14]. This approach is therefore particularly suitable to
address topological properties in continuum systems in gen-
eral, and was recently used to reinterpret [20] and predict
[21] topological fluid waves in the geo-/astrophysical context.
Adapting this method rigorously to the realm of electromag-
netism in local and nonlocal continuous media, we apply
the theory to predict the existence of chiral optical waves at
the interface between metals, gyroelectric, and gyromagnetic
materials.

The paper is organized as follows: We briefly introduce the
macroscopic Maxwell’s equations without external sources
and discuss their reduction to a (2 + 1)D setting (Sec. II).
Through the mathematical notion of fiber bundles, we present
in Sec. III what we refer to as the standard bulk/boundary
correspondence formula, widely employed in literature and
applicable when the wave numbers are defined in a compact
space (e.g., in crystals and some nonlocal optical continua).
The main contribution of our paper is presented in Sec. IV
where we generalize the formula to systems whose wave num-
bers are not bounded, enabling a treatment of generic continua
media. In Sec. V, we test our theory on various gyrotropic
media. We first illustrate it on analytically treatable models
such as the formal analog to the standard shallow water model
encountered in geophysical flows, that is obtained here in a
low-frequency limit. Then, more complicated interfaces are
analyzed beyond this approximation and treated numerically.
The numerical finding of chiral Maxwell waves is in agree-
ment with our topological method. In Sec. VI, we discuss a toy
model beyond the framework of Maxwell equations, which
shows in a striking way how our theory can address situations
that are not treatable within other approaches proposed so far.
Finally, we conclude in Sec. VII.

II. HOMOGENEOUS MACROSCOPIC
MAXWELL’s EQUATIONS

The macroscopic Maxwell’s equations govern the behavior
of the macroscopic averages of the electromagnetic fields. In
particular, setting charges and currents to zero, the equations
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describe the 3 + 1D dynamics of the four fields D, E, B, H:

∇ × E = −∂B
∂t

∇ × H = ∂D
∂t

(1)

∇ · D = 0 ∇ · B = 0. (2)

This set of partial differential equations are complemented
by material-dependent constitutive equations relating alge-
braically the fields. We assume they are of the most general
form that accommodates homogeneous and linear responses
including magnetoelectric effects:(

D
B

)
= M ◦

(
E
H

)
, where M :=

(
ε ξ

ζ μ

)
. (3)

Here, ε and μ are, respectively, the permittivity and perme-
ability 3 × 3 tensors while ξ and ζ are the magnetoelectric
ones [22,23]. The composition symbol ◦ denotes convolution
in both space, time, and the vector indexes. Here and later, to
simplify the notation, we set c = ε0 = μ0 = 1.

We will assume that the materials are constant in time. Af-
ter Fourier transforming and going to the frequency domain,
it is apparent that, at finite frequency, Eqs. (2) are implied by
Eqs. (1). Since we are interested in finite frequency features,
the divergence equations will not be relevant and we can
neglect them in the reminder of the paper.

Equations (1) can be rewritten in a more compact way as a
single “Maxwell operator” L acting upon the full electromag-
netic field V = (E, H)T :

Lω[x,−i∇] · V = (iR[−i∇] + ω Mω[x,−i∇]) · V = 0, (4)

where

R[−i∇] =
(

0 −i S · ∇
i S · ∇ 0

)
(5)

is the 6 × 6 matrix associated to the curl part of the equations
and does not depend on ω; here (Si )αβ = iεiαβ is formed out of
the totally antisymmetric rank three-tensor and is an element
of a spin-1 SU (2) algebra [14,24]. For more details about the
notations of operators, see Appendix A.

In nondispersive materials, i.e., where M does not depend
on ω, finding the frequencies supported by the material con-
sists of solving a generalized eigenvalue problem of form
i R V = ωM V. However, when the material is dispersive, the
dependence in ω cannot be singled out and the frequencies ω

are determined in a more implicit “self-consistent way.”
For homogeneous materials, M does not depend on x

and we can further Fourier transform in space (−i ∇ →
k). The operator Lω(−i∇) → Lω,k becomes a matrix, the
field V(x) → Vk a vector and the equation is reduced to an
algebraic one:

Lω,k · Vk = (iRk + ω Mω,k ) · Vk = 0. (6)

We assume the matrix M to be Hermitian (lossless ma-
terials condition) and to be real when expressed in spatial
coordinates, hence Mω,k = M†

ω,k = M∗
−ω,−k. Moreover, as M

describes causal responses, it is analytical in the upper-half
complex ω-plane. We also take that the residues of M are
semipositive definite, which guarantees the semipositiveness
of the energy fields. A few important properties follow: the
eigenfrequencies wk of Eq. (6) are real [25]; Lω,k = −L∗

−ω,−k;

each solution (wk, fωk,k ) at finite frequency pairs up with a
solution at opposite energy and momentum (−wk, V∗

−ωk,−k ).
The latter conditions identify a symmetry which we will refer
to as particle-hole symmetry throughout the paper, by formal
analogy with condensed matter. In an inhomogeneous system
we can do similar assumptions on the self-adjoint (matrix-
valued) operator Mω[x,−i∇] and analogous consequences for
Lω[x,−i∇] follow.

We are interested in interface modes in (effectively) 2D
materials in the (x, y) plane. Usually there are two ways to
define a 2D problem: the first one is to physically confine the
fields along the plane with two metallic plates [26] and the
second is to deal with a 3D system but assuming invariance
along the transverse z direction [kz = 0 in Eq. (6)]. For the
sake of simplicity, we shall opt for the second one. For
the discussion of examples, later we shall consider uniaxial
responses of gyrotropic materials concerning either the per-
mittivity tensor (gyroelectric effect) or the permeability tensor
(gyromagnetic effect) with ẑ as the principal axis. In these
cases, the 6 × 6 set of Maxwell equations simplifies into two
uncoupled sets of 3 × 3 equations operating on (Ex, Ey, Hz )
and (Hx, Hy, Ez ) that are, respectively, referred to as transverse
magnetic (TM) and transverse electric (TE) modes.

III. TOPOLOGY AND BULK-BOUNDARY
CORRESPONDENCE

2D materials with broken time-reversal symmetry (M �=
MT ) can support the so-called topological chiral states. These
are modes flowing unidirectionally along edges of materials
or, more generically, interfaces, and are robust to disorder. A
remarkable mathematical property called bulk-boundary cor-
respondence connects the information of the number and di-
rection of chiral modes to a topological invariant of algebraic
equations avoiding a direct calculation of the eigenfunctions
of the inhomogeneous Maxwell’s equations.

The basic tool for a bulk-boundary correspondence is the
vector bundle associated to each bulk band. To define them,
we solve Eq. (6), compute the bands dispersion w

(i)
k and

the associated eigenvectors V(i)
k . Then for each (nondegener-

ate) band, we can define a fiber bundle that consists of the
collection of the projectors onto the eigenvectors of a band
Pk = Vk V†

k (called fibers) parametrized by (kx, ky), elements
of R2 (called the base space, M).

For a generic fiber bundle, we shall consider the scalar
quantity for each band,

C = 1

2π i

∫
M

dc1 dc2 Tr P (∂1P ∂2P − ∂2P∂1P), (7)

where c1,2 are two generic coordinates on the base space and
∂c j the associated partial derivative.

When M is compact, C has the remarkable property to be
a homotopy invariant integer, and is called the (first) Chern
number. The Chern number can be used to quantify a number
of physical effects. In particular, the number of unidirection-
nal (or chiral) states Nσ

chiral localized at an interface between
two gapped materials, and whose frequency migrates toward a
band σ as the momentum along the interface goes from lower
to higher values, is computable via a so-called bulk/boundary
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correspondence [12,27],

Nσ
chiral = Cσ

right − Cσ
left, (8)

where Cleft/right are the band Chern numbers computed from
the bulk response of the left or right material relative to
the band σ . Negative values of Nσ

chiral mean opposite flow
direction.

Equation (8) can be applied in lattices, such as photonic
crystals, where the first Brillouin zone forms a compact base
space. On the contrary, the formula is not directly applicable
in continuum systems like ours, as M = R2 is noncompact,
therefore C is allowed to take noninteger values [28]. To
define an integer Chern number for a band in continuum prob-
lems, further assumptions on the behavior of M at large |k| are
to be made to make the base space M effectively compact
[13,14,16,18,19]. However, in the large |k| limit, the small
scale structure of the material, being either inhomogeneous
or crystalline, comes out. Therefore a microscopic approach
beyond the macroscopic Maxwell’s equations is demanded,
implemented either with field sources (ρ and J) or Bloch
theory, respectively [29]. For that reason, we propose to follow
a different strategy to predict the existence of interface chiral
modes.

IV. SPECTRAL FLOW FROM BERRY MONOPOLES

The approach we follow essentially consists of describing
a continuous interpolation between two media where the
gap in the “bulk” spectrum closes at some point during the
interpolation. The quantized Berry flux emanating from this
degeneracy point is a first Chern number that fixes the number
of chiral modes trapped at the interface. The advantage of
this method is that it does not require the bulk bands of the
continuous materials at each side of the interface to have a
(well-defined) nonzero Chern number. In spirit, this approach
is very similar to a 2D version of the celebrated Jackiw-Rebbi
model where the mass term in the Dirac equation changes sign
along a direction [30,31]. An optical analog of this model,
where the anisotropic mass term is played by an anisotropic
Faraday effect, was already derived by Raghu and Haldane
in their pioneering paper on topological photonics [25]. How-
ever, this model was derived as an effective description in the
vicinity of a Dirac point emerging in the full band structure of
the photonic honeycomb crystal, so the topological properties
were derived by means of the compact Brillouin zone.

1. Interface model

To be definite, suppose we have two semi-infinite 2D
materials in contact along the y axis (i.e., at x = 0) and
characterized by two different bulk responses M1 and M2,
respectively. We assume that the interface is defined by a
smooth change in an interval of width x0 of an extrinsic
parameter (e.g., an applied magnetic field) or intrinsic one
(e.g., the permittivity tensor). As a consequence, Maxwell’s
equations become inhomogeneous along x and one should
work with Eq. (4). The action of the response matrix can be

written through its kernel in the following form:

Mω[x,−i∇] · V(x) =
∫
R2

dx′ Mω(x, x − x′) · V(x′), (9)

with Mω(x, x − x′) being a distribution converging to
M1,2;ω(x − x′) for x � x0 and x � −x0, respectively.

For instance, in the following sections, we will consider the
linear interpolation (we drop the dependence from x − x′):

M(x) = M1+M2

2
+ τ (x)

M1−M2

2
, τ (x) = tanh(x/x0). (10)

2. Symbol and spectral flow formula

To study the qualitative (topological) properties of inhomo-
geneous Maxwell’s equation Eq. (4), the modern analysis of
pseudodifferential equations offers us a precious tool called
the “symbol” of an operator [32,33]. It is a standard result that
a nontrivial topology of the symbol gives information on the
spectral flow of the associated operator. While we leave the
details of its rigorous definition in Appendix A, we introduce
it here in a more sloppy but intuitive way.

In essence, to define the symbol associated to the
Maxwell’s equations operator we can regard x, the parameter
describing the interface, as an external parameter independent
from i∂x [or x − x′ if we use a kernel representation, cf.
Eq. (9)] in the Maxwell’s equations. In doing so, the equations
become fully homogeneous again and we can Fourier trans-
form in space similarly to what was done to get Eq. (6). Thus,
the original operator Lω[x,−i∇] gets represented by a matrix
Lω,k,x, which is its so-called associated (standard) symbol.

From this symbol, we can define the projectors fiber bun-
dles as we did in Sec. III with Lω,k, with the difference that
its base space is extended to include the parameter x. Since
we are going to consider linear interpolations Eq. (10) in the
examples we will present, we include the interface parameter
via the τ function rather than x itself. This choice will not
affect any result. Hence the new base space is made up of terns
(τ, kx, ky) ∈ [−1, 1] × R2. Next, we identify points p(l ) =
(τ (l ), k(l )

x , k(l )
y ), l = 1, 2, . . . of band degeneracy in this ex-

tended fiber bundle, i.e. points at which ω(i)|p(l ) = ω( j)|p(l ) ,
i (respecitvely, j) denoting an upper (lower) band. For the
sake of simplicity, here we consider only cases where such
points are isolated (Berry monopoles). To proceed further, we
construct small two-spheres Sl that enclose each monopole
separately (in the case of line degeneracies, we would con-
struct enclosing cylinders [34]). Finally, we consider the fiber
bundles having these spheres as base spaces and the eigenvec-
tors of one of the bands involved as fibers (see Fig. 1).

Assuming there is a gap shared by the right and left bulk,
we claim the following spectral flow formula:

Nl,σ
chiral = −C(l,σ ), (11)

where Nl,σ
chiral is the number of localized states in the gap

flowing toward the band σ as ky goes from lower to higher
values than k(l )

y ; C(l,σ ) is the Chern number, as from Eq. (7),
with M = Sl and P projecting on the eigenvectors of the
band σ .

The formula is known (in a more abstract fashion) in the
context of microlocal (or semiclassical) analysis [32,35] and
represents a remarkable link between the operatorial spectral
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FIG. 1. Extended base space with the bulk base spaces M1,2

and base spaces Sl around generic degeneracy points (particle/hole
symmetric point are not shown).

flow Nl,σ
chiral and the topological data of its symbols C(l,σ ). It is

strictly valid in the so-called semiclassical regime, however as
we will see later in the examples, this assumption is not always
necessary. For more details one can refer to Appendix A. As
mentioned above, the formula has already found applications
in condensed matter and in different realms, for instance,
for the description of spectra of molecules with spin-orbit
coupling and equatorial waves, where it appears in this exact
form [36,37].

Some additional remarks about the formula are in order:
(i) The minus sign in the formula depends on the orienta-

tion of the axis tern of extended base space. Here we agree
with the convention of Refs. [35,37].

(ii) The formula can be extended to the case where more
than two bands are involved in the degeneracy. Whenever
this is the case, more than one gap has to be considered, and
the spectral flows concern only the gaps between (spectrally)
adjacent bands.

(iii) There will always be a degeneracy line at |ω| = |k| =
∞, ∀ τ due to the vacuum response limit of M. However,
the projectors P in that limit are the same for any material.
This invariance guarantees that no role is played by this
degeneracy.

(iv) When ω(l ) = k(l )
y = 0 and the number of bands in-

volved is odd, particle-hole symmetry enforces the vanishing
of C(l,0) for the central band. For the rest, this symmetry does
not imply any constraint in the definition of the complex fiber
bundles and does not affect the spectral flow formula, the only
implication being that for any degeneracy point at (τ, kx, ky)
in the extended base space there will be a corresponding one
at (τ,−kx,−ky).

(v) The nature of the degeneracy points in the extended
base space might depend on the family of matrices M(τ )
describing the interface. This feature is not present in crystals.
There, Chern numbers can be computed in the Brillouin zones
M1 and M2 of the two materials and their difference must

equate the total Berry flux emanated by the monopoles across
any possible homotopy M(τ ) with M(±1) kept fixed. This
equivalence cannot be stated in the continuum case, instead
classes of topologically equivalent interfaces can be defined.
A change of class could be determined by degeneracy points
coming from or going to |k| = ∞ with −1 < τ < 1.

V. APPLICATION TO GYROTROPIC
CONTINUOUS MEDIA

We show now that the spectral flow formula Eq. (11)
correctly predicts the number of chiral Maxwell modes for
various interfaces between different optical continua. We
take under consideration three materials: a perfect electric
conductor (a Drude metal with high plasma frequency), a
gyroelectric material (a Drude magnetized plasma), and a
gyromagnetic one (ferrite), the last two under a magnetic field
Bz oriented along z. The first material serves as a “trivial
insulator” from the point of view of the topological theory,
while the other ones are already known to feature topological
physics. The three response matrices are listed in Table I (we
neglect non-Hermitian lossy contributions) [38]. There, ωp is
the plasma frequency of the material, ωm ∝ Bz, ωb ∝ Sz (Sz

being the value of the saturated magnetization) and ωc ∝ Bz

is the cyclotron frequency. Notice that the magnetized plasma
response reduces to that of the metal when the magnetic field
is switched off. As previously said, the specific form of these
responses implies that TE and TM modes are uncoupled. In
the following, we will focus only on the interesting modes of
each case, namely, TE modes for interfaces with ferrite and
TM modes for those with magnetized plasma.

A. Solvable “spin models” in gyrotropic materials

Before addressing the interface problem between these
different materials, it is instructive to focus on simple cases
which are fully analytically solvable.

1. Solvable “spin-1/2” problem

The simplest possible model that illustrates the topological
spectral flow theory is provided by the 2D Dirac Hamilto-
nian with an inhomogeneous mass term. Such Hamiltonians
turn out to be ubiquitous in condensed mater; they appear
as effective descriptions around two-band crossings such as
those encountered in topological phases and graphenelike
structures. As already mentioned above, Raghu and Haldane
provided such an effective description for gyromagnetic pho-
tonic honeycomb crystals. After linearization in the vicinity
of one of the two Dirac points in the Brillouin zone, they
obtained an effective Dirac Hamiltonian of the form [Eq. (76)
of Ref. [25]],

H (kx, ky, κ ) =
(

κ kx − iky

kx + iky −κ

)
, (12)

where κ is the Faraday coupling. The two frequency bands
ω± = ±

√
k2

x + k2
y + κ2 reveal a twofold degeneracy point at

the origin of parameter space (kx, ky, κ ). Within our frame-
work, this Hamiltonian constitutes the symbol from which
the topological properties are inferred. In this simple case,
the Chern numbers associated to the fiber bundles of positive
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TABLE I. Dielectric coefficients for the materials under consideration.

Metal Ferrite Magnetized plasma

ε
(
1 − ω2

p

ω2

)
1 1

⎛
⎜⎜⎝

1 − ω2
p

ω2−ω2
c

i
ω2

p ωc

ω(ω2−ω2
c )

0

−i
ω2

p ωc

ω(ω2−ω2
c )

1 − ω2
p

ω2−ω2
c

0

0 0 1 − ω2
p/ω

2

⎞
⎟⎟⎠

μ 1

⎛
⎜⎝

1 − ωm ωb
ω2−ω2

m
i ω ωb
ω2−ω2

m
0

−i ω ωb
ω2−ω2

m
1 − ωm ωb

ω2−ω2
m

0

0 0 1

⎞
⎟⎠ 1

and negative frequency, constructed from the family of nor-
malized eigenstates parametrized on a sphere that surrounds
this twofold degeneracy, are C(1,±) = ∓1. One can then de-
duce from the spectral flow theorem, that the inhomogeneous
problem,

Ĥ [−i∂x, ky, κ (x)] =
(

κ (x) −i∂x − iky

−i∂x + iky −κ (x)

)
, (13)

where κ (x) describes a smooth variation of the Faraday cou-
pling that changes sign with x, hosts one chiral mode around
ky = 0 that leaves the negative frequency band and reaches the
positive frequency band, according to N1,±

chiral = ±1.
The spectral flow can be analytically computed in the case

of a linear variation κ (x) = x/x2
0, with x0 a slope parameter

[see Fig. 2(a)] and corresponds to an interface mode of the
form e−(x/x0 )2/2 (1, i)T . The existence of a chiral mode was
already discovered by Raghu and Haldane [25], although the
topological description of the system was addressed at the
level of gapped bands in the Brillouin zone rather than that of
the degeneracy points as we do here. In the next example, we
consider in more detail a continuum model that is not derived
from a photonic crystal.

2. Solvable “spin-1” problem

This model is obtained for the magnetized plasma in the
regime ωc � ωp, ω. According to the permittivity tensor in
Table I in that limit, the Maxwell’s Eq. (6) for the TM modes

FIG. 2. (a) Dispersion relation of the linearized Raghu-Haldane
model for gyromagnetic 2D photonic crystal with κ (x) = x/x2

0 .
(b) Dispersion relation of the transverse magnetic modes in a gyro-
electric continuum media with �(x) = x/x2

0 . Here ω0 = ck0 = c/x0

(we set c = 1).

simplify into the explicit eigenfrequency problem,
⎛
⎝ 0 i� −ky

−i� 0 kx

−ky kx 0

⎞
⎠

⎛
⎜⎝

Ex

Ey

Hz

⎞
⎟⎠ = ω

⎛
⎜⎝

Ex

Ey

Hz

⎞
⎟⎠, (14)

where � = ω2
p

ωc
.

Note that this electromagnetism model is (up to a rotation
ky → −kx and kx → ky) formally equivalent to the linearized
2D shallow water model encountered in fluid dynamics, where
the electric field plays the role of the in-plane fluid velocity
and where the magnetic field component plays the role of the
thickness variation of the fluid. The fluid mechanics analog of
the frequency parameter � is the Coriolis parameter. In the
geophysical context, this parameter changes sign at the equa-
tor, giving rise to two eastward waves trapped at the equator
as found by Matsuno [39]. The topological properties of this
model have been unveiled recently [20] and here we present its
electromagnetic analog. The eigenfrequencies of this model
constitute three continuous bands ω± = ±

√
k2

x + k2
y + �2

and ωflat = 0 that touch in parameter space (�, kx, ky) at
p(0) = (0, 0, 0). As explained in the previous section, a fiber
bundle can be constructed from each eigenstate on a sphere
that encloses this threefold degeneracy point in the parameter
space (see Fig. 1). In the local spherical coordinates, where
kx = k cos φ, ky = k sin φ and � = ω+ cos θ , the projector on
the band of positive frequency reads

P+ = 1

2

⎛
⎜⎝

s2
φ+c2

θc2
φ −s2

θ sφcφ+icθ sθ (icθcφ−sφ )

−s2
θ sφcφ − icθ c2

φ + c2
θ s2

φ sθ (icθ sφ + cθ )

sθ (−icθcφ−sφ ) sθ (−icθ sφ+cφ ) s2
θ

⎞
⎟⎠,

(15)

where the shorthands s and c denote sine and cosine functions.
From formula Eq. (7), one can finally infer the value of

the Chern number for this fiber bundle that is C(1,+) = 2.
This topological property guaranties that two chiral modes
reaching the positive frequency band emerge for the dual
problem where one considers now a smooth spatial variation
of � along x that changes sign, as for instance � → �(x) =
ω2

p

ωc
x/x0 where x0 is an arbitrary length that we can choose

such that x0 = ωc/ω
2
p. The eigenvalue problem becomes

⎛
⎝ 0 i x/x2

0 −ky

−i x/x2
0 0 −i∂x

−ky −i∂x 0

⎞
⎠

⎛
⎝Ex

Ey

Hz

⎞
⎠ = ω

⎛
⎝Ex

Ey

Hz

⎞
⎠ (16)
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FIG. 3. Upper row: Positive-frequency band dispersions in a cylindrical geometry for different combinations of materials. The color bar
shows the average localization of the eigenstates. The dashed window centered at the midgap (red point) in (c) identifies the spectral flow
concerning the lower bands. Lower row: Local eigenfrequencies at |k| = 0 as a function of the rescaled displacement from the interface. Berry
monopoles are highlighted with circles. Cases (a)–(d) as presented in Sec. V B. Parameters of the materials (see Table I): (in unit ω0 = 2πc/x0)
for ferrite, ωb = 50, ωm = 100; for magnetized plasma, ωc = 50, ωp = 100; for metal, ωp = 1000.

and can be solved analytically by use of Hermite polynomials.
The frequency spectrum is shown in Fig. 2(b). It shows a
spectral flow (dashed lines) in agreement with the topological
numbers, where the two dispersive and nondispersive chiral
waves have the respective dispersion relations ω = ∓ 1

2 (ky ±√
k2

y + 4/x2
0 ) and ω = −ky. These modes are trapped around

x = 0 with the following profile along the x direction:

⎛
⎝Ex

Ey

Hz

⎞
⎠ ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝e− 1

2 (x/x0 )2

0
e− 1

2 (x/x0 )2

⎞
⎠ nondispersive

⎛
⎜⎝

i x
ω−ky

e− 1
2 (x/x0 )2

−e− 1
2 (x/x0 )2

i x
ω−ky

e− 1
2 (x/x0 )2

⎞
⎟⎠ dispersive.

(17)

B. Beyond spin models: Numerical simulations

We are now ready to move on to more complex situations
by performing numerical simulations of the following inter-
faces M1/M2:

(a) ferrite (Bz > 0)/ferrite (Bz < 0)
(b) ferrite/metal
(c) magnetized plasma (Bz > 0)/magn. plasma (Bz < 0)
(d) magnetized plasma/metal.

To avoid unwanted issues with physical boundaries, we
have set periodic boundary conditions along the x axis, i.e.,
V(x = x0, ky) = V(x = −x0, ky) (x0 is set as the unit of
length), closing the systems to what would be a cylindrical
geometry if we neglect the z direction. We interpolated ac-
cording to Eq. (10) and chose the function τ (x) such that one
material is in the half cylinder (in unit x0) x ∈ [−0.5, 0.5]
while the other in x ∈ [−1,−0.5]

⋃
[0.5, 1],

τ (x) = tanh [α(|x|/x0 − 0.5)] ≡ tanh ξ (x), (18)

where α is a barrier width parameter and ξ is a rescaled
displacement from the barriers. This geometry allows one
to simply highlight the opposite propagating direction of the
topological modes localized at different interfaces.

In the upper row of Fig. 3, we show the band dispersions
ω(ky) computed numerically [40]. The material parameters
for the simulations are written in the caption. We are not
interested in a quantitative description and the parameter
values are chosen quite arbitrarily in favor of a good visibility
of the topological states. The simulation and interface param-
eters are common to all cases: Nx = 240 (number of points
for discretization along x axis), α = 120. For each instance,
we show in the lower row the eigenfrequencies calculated at
|k| = 0 and highlight the degeneracy points in the extended
space in going across the interface at x = 0.5 x0.
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In these setups, TE and TM modes are decoupled. For the
cases (a) and (b), we have shown only the TE modes while for
cases (c) and (d) only the TM ones. Let us comment now on
the results in Fig. 3 case by case:

(a) There is a single pair of (particle/hole symmetric)
Berry monopoles sitting at (τ, kx, ky) = (0, 0, 0) of Chern
number |C(1,σ )| = 2 with corresponding frequency |ω(1)| ∼
100 ω0. In agreement with Eq. (11), two chiral states (in
yellow in Fig. 3) traverse the gap at that frequency. Corre-
spondingly, two states flow in the opposite direction at the
other interfaces.

(b) There is still one pair of degeneracy points; however,
they are shifted at position � (tanh 1.9, 0, 0) due to the non-
symmetric configuration and |C(1,σ )| = 1. A more explicit
calculation of the Chern number without using Eq. (7) is
detailed in Appendix B.

(c) This interface is the most interesting. All monopoles
are sitting at (0,0,0), but they are of a different kind. In
particular, a pair corresponds to |ω(1)| ∼ 100 ω0 and involves
the two uppermost and lowest bands with |C(1,σ )| = 2; another
single monopole at frequency |ω(2)| = 0 involves three bands
with C(2,±) = ∓2 for the upper (lower) band, C(2,0) = 0 for
the central one. In agreement with Eq. (11), a pair of chiral
states traverses the gap at the frequency |ω(1)| and another pair
traverses the gap above |ω(2)| in the opposite direction. The
topological states associated to |ω(2)| remarkably do not over-
lap in frequency with the TE modes, the latter lying at higher
frequencies, ω > ωp = 100 ω0, as explained in Appendix C.
They are therefore good candidates for a clean experimental
detection.

(d) This interface is a critical one as the monopole is
present only asymptotically at ξ = −∞, which is not attained
in the simulation. We found no in-gap topological states.
Curiously, states emerge outside the bulk bands. They are
evanescent states localized at different interfaces but they are
hybridized because of the finite size of the x direction. They
could be of topological origin [41] but this analysis goes
beyond the purpose of the paper.

We have checked the convergence of our results by in-
creasing the number of points. While the bulk bands are
stable at Nx = 240, the in-gap states (topological and nontopo-
logical) are not quantitatively converged up to at Nx = 700.
Nonetheless, the topological ones are qualitatively converged
at Nx = 240, while the nontopological ones are not. The
specific cylindrical geometry we have chosen might play a
role here. In any case, the latter states do not contribute to
the spectral flow, their only influence being to possibly repel
the topological states from touching the bulk bands at large ky

[see, for instance, Fig. 3(a)].
A careful look at the lower row of Fig. 3 may reveal an

apparent contradiction, already mentioned in Ref. [42]. The
bulk bands (i.e., at |ξ | � 1) of a material may look different
in the different subfigures. For instance, consider the metal
case at ξ = −7 in Figs. 3(b) and 3(d). In Fig. 3(b), the
middle band (in blue) is at ω = 100 ω0 while in Fig. 3(d),
the corresponding band (in orange) is at ω = 50 ω0. These
frequencies stem from the frequency poles of the respective
response matrices, that of the ferrite in Fig. 3(b) and that of
the magnetized plasma in Fig. 3(d). However, in the limit of
infinite |ξ | the residues of these poles vanish, implying the

disappearance of the electromagnetic mode [43]. We conclude
that their bulk limit is not physically relevant. As a check,
for cases (a) and (c) we have repeated the simulations with
a different interpolation, perhaps more physical, assuming Bz

(and therefore ωm,b,c) to be linearly interpolated across the
interface. All monopoles are sitting at (0,0,0) with vanishing
frequency, we found the sets of Chern numbers to be the same
as the cases above. As a consequence, the spectral flow is also
unchanged. Allowing for B to rotate in the xz or yz planes
would also allow us to check for the robustness of the spectral
flow. However, line degeneracies appear in the extended base
space that are left out from the present discussion. For a
comparison of our analysis with an interface problem found
in literature, see Appendix D.

VI. FAILURE OF THE STANDARD BULK/BOUNDARY
CORRESPONDENCE: SPIN 1-SPIN 1/2 INTERFACE

In some of the cases presented above, the standard
bulk/boundary formula Eq. (8) actually works and one might
doubt the real need of the spectral flow formula Eq. (11),
which is sometimes harder to compute. Here we analyze why
this happens and show how the spectral flow formula is more
general and stable than the other one with an illuminating
counterexample.

The materials involved in the previous paragraphs are not
topological since the base spaces of their fiber bundles M =
R2 cannot be compactified to a sphere. This is a consequence
of the fact that the limit of V(k) for |k| → ∞ exists but
depends on the direction of the vector k. Nonetheless, one can
think of a generalization of the formula Eq. (8) for these cases.
Indeed one can close M to a disk D adding to the bundles
the direction dependent limits at infinity of the projectors
P. Given now an interface problem, if we suppose that the
limit at infinity can be defined for all values of the coordinate
x, then the extended base space would become the cylinder
C = {(τ, kx, ky) : (τ, kx, ky ) ∈ [−1, 1] × D}.

Since the disk has a boundary, C in Eq. (7) is not guar-
anteed to be integer and the standard bulk/boundary formula
Eq. (8) is of no use. However what is guaranteed to be integer
is C computed over the whole boundary of C. This should sug-
gest a straightforward upgrade of the standard bulk/boundary
formula where the contribution of the side face of the cylinder
C is included. Surprisingly enough, as mentioned above, this
very additional term seams irrelevant in certain cases for it is
vanishing. For instance, a close inspection of the analytical
model of the magnetized plasma interface in the regime ωc �
ωp, ω presented in Sec. V A 2 reveals that the quantity C in
the bulks is actually an integer equal to ±1 (see Ref. [20])
and the formula Eq. (8) indeed gives the correct number of
interface chiral modes. One may suspect that it is generic that
the contribution from the side face is vanishing.

This suspect is wrong. We present here an enlightening
example of a smooth interface between the spin 1 model of
Sec. V A 2 and a fictitious spin-1/2 material obeying a Dirac
continuous equation:

m1 =
⎛
⎝ 0 i� −ky

−i� 0 −i∂x

−ky −i∂x 0

⎞
⎠, (19)
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FIG. 4. Topology from Berry monopoles for an interface be-
tween a spin-1 and spin-1/2 material. Left: Local eigenfrequencies
as in Fig. 3. Right: Eigenfrequency bands in a cylindrical geometry.
Parameters (in unit ω0): � = 1000, Nx = 500, α = 80.

m1/2 =
⎛
⎝0 0 0

0 � −i∂x + iky

0 −i∂x + iky −�

⎞
⎠, (20)

the full interface problem being[
m1+m1/2

2
+ τ (x)

m1−m1/2

2

]
V = ωV, (21)

where τ (x) is as in Eq. (18).
Notice that the bulk materials have exactly the same num-

ber of bands (three) and spectra. The fact that the Dirac
material is not an optical one is of no relevance for the present
discussion. This example is interesting because the bulk Dirac
bands are known to have |C(±)| = 1/2 and C(0) = 0 while, as
said before, the bulk magnetized plasma has |C(±)| = 1 and
C(0) = 0. We might say that the Dirac ± bands are not topo-
logical while those of the plasma are, if we assume the fibers
on the boundary of the D to be unaffected by possible defor-
mations. For the interface under consideration, the application
of Eq. (8) would only lead to the meaningless conclusion
that the flow onto the ± bands is half integer. In Fig. 4, we
show the local eigenfrequencies and the band dispersions of
the interface problem in cylindrical geometry. As can be seen
from the figure, a Berry monopole (of charge 1) is present
in the extended space and the numerically computed bands
feature a pair of chiral states flowing in opposite directions at
the two different interfaces of the cylindrical geometry. Notice
the absence of particle/hole symmetry in the problem at hand.

All of this shows that our spectral flow formula is more
“fundamental” and powerful than the standard bulk/boundary
one. The latter might be corrected adding a term, but only
when the limits at infinity of V(k) exist in the extended base
space. Therefore, we can claim that interfaces of continuous
media can be topological even when the single materials
involved are not.

VII. CONCLUSIONS

We showed how topological chiral modes at smooth inter-
faces between continuous optical media can be predicted by
means of a spectral flow formula, even when the materials
involved are not topological on their own. In this context,

Berry monopoles happen to be more “fundamental” than band
Chern numbers, being the former local and always calculable
quantities while latter global ones of limited usability. Our
claims are supported by an analytical low-frequency model
for gyroelectric TM modes and numerical studies of several
interfaces where we predicted the existence of chiral states.
This work calls for a number of attractive possible extensions.
First, in the paper we have restricted the analysis to spectral
flows at vanishing kz. Enabling finite values opens up to
the full 3D spectrum and we expect Weyl physics to take
place. Second, it would be interesting to consider hybrid
interfaces between continuous media and photonic crystal
or, conversely, interfaces between hybrid materials that are
continuous along some dimensions and patterned along the
others. Third, linear degeneracies [34] have been left out from
our work; however, they seem to appear quite naturally in
the continuous context. Their inclusion will lead to a more
complete version of the spectral flow formula. Finally, we
have limited our discussion to the class of materials identified
by Raghu and Haldane. To investigate more general responses,
for instance, bearing losses [44,45] or relative to metamateri-
als [46,47], will allow us to make contact with more promising
and realistic continuous media interfaces in future works.
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APPENDIX A: MATHEMATICAL ASPECTS OF THE
SPECTRAL FLOW FORMULA

We show here in more detail the proof of the spectral flow
formula Eq. (11) and discuss its technical aspects. We begin
introducing the notion of differential and pseudodifferential
operators and their associated symbols. Then, we show how
generic source-free inhomogeneous local and (sufficiently
well-behaving) nonlocal Maxwell’s equations are solved by
the kernel of an operator of the latter kind. Finally, we
state two theorems that characterize the spectral flow across
spectral gaps and discuss their implementation.

1. Pseudodifferential operators and Hörmander symbol class

We provide here the definitions of differential and pseu-
dodifferential operators along with their associated symbols.
Particular attention is devoted to the Hörmander symbol class,
relevant for the spectral flow theorem. We will mostly follow
Refs. [32,33].

Any differential operator can be written formally as

p̂[x,−i∂x] =
∑
|α|�n

aα (x) (−i∂ )αx (A1)

for some finite n ∈ N. α is a multi-index running over all
degrees of freedom of x ∈ Rn. aα is some sufficiently regular
function while ∂α

x stands for a specific product of partial
derivation along the coordinates of x (e.g. ∂ (2,0,1)

x = ∂2

∂2x1

∂
∂x3

).
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When applied to a function f (x), the whole expression can
be expressed in a convenient algebraic form:

p̂[x,−i∂x]f (x) = 1
(2π )n

∫
dk pst(x, k) f (k) eik·x, (A2)

where

pst (x, k) =
∑
|α|�n

aα (x) kα. (A3)

pst is called the symbol of the operator p̂ in standard quanti-
zation and is the function on the “classical” phase space that
corresponds to the “quantum” operator p.

The choice of the algebraic expression is not unique. Other
well-known symbols can be associated to an operator, for
instance, via the Wigner transform and the Weyl transform.
The latter, called Weyl quantization in this context, is of
particular relevance,

p̂[x,−ih̄ ∂x]f (x) (A4)

= 1

(2π h̄)n

∫
dk dy pw

(
x + y

2
, k

)
f (y) ei k·(x−y)

h̄ , (A5)

where we have introduced 0 � h̄ � 1, in order to be able
to perform the semiclassical analysis of equations (h̄ = 1
correspond to the initial operator at hand).

For later use, we remark that for a given operator q̂(x, ∂x )
we can arbitrarily define an other operator q̂′

h̄(x, h̄ ∂x) equal to
it and their respective symbols will be generically different.

For sufficiently regular operators and fixed quantization
scheme, the correspondence operator symbol is one-to-one.
In particular, we choose to work with the well-behaving
Hörmander symbol class Sm

ρ,δ , defined by the existence of
m ∈ R, 0 � ρ � 1, 0 � δ � 1 and numbers 0 < Cα,β < ∞,
for all multi-indices α, β such that it holds∣∣∂α

x ∂
β

k p(x, k)
∣∣ < Cα,β〈k〉m−ρ|α|+δ|β|, (A6)

where 〈k〉 =
√

|k|2 + 1.
Notice there is a natural inclusion Sm

ρ,δ ⊂ Sm′
ρ,δ for m < m′.

As an example, p(x, k) = 〈k〉l is in class Sl
ρ,δ .

Operators corresponding to Hörmander symbols are in-
stances of so-called pseudodifferential operators. Pseudod-
ifferential operators generalize differential operators in that
their associated symbol is not represented by a truncated
series but by an asymptotic one. While differential operators
are local, pseudodifferential operators are pseudolocal [48]
for some intervals of ρ and δ (e.g., ρ > 0 and δ < 1 for
Hörmander standard quantized operators), meaning that their
kernel is not necessarily a delta function in |x − y| but decays
fast enough at large values.

2. Maxwell’s equations and the Raghu-Haldane’s insight

A very broad class of optical systems is actually de-
scribed by Hörmander operators. Symbols and operators have
a matrix structure but all definitions are straightforwardly
generalized to their elements. In the case of homogeneous
systems the symbol associated to the Maxwell operator is
just Lω,k of Eq. (6). The reader can verify that the elements
of the rotor matrix Rk are all S1

ρ,δ . Homogeneous nonlocal
responses demand a treatment in terms of pseudodifferential

operators instead of differential ones. Indeed, the symbols of
the response matrix M are asymptotic series in k (with infinite
terms). For instance, suppose one has a response whose kernel
has a Gaussian spread,

Mω(x − x′) = G h(ω) e−|x−x′ |2/(2σ ), (A7)

with G a 6 × 6 Hermitian matrix and h a function.
Then, its associated (standard) symbol has again a Gaus-

sian spread M(ω, k) = G h(ω) exp (−σ |k|2/2) which is a
Schwartz function (i.e., rapid decaying) in k and its Taylor
expansion has infinite terms. Notice that the symbol elements
are in the Hörmander class S−∞

ρ,δ := ∩mSm
ρ,δ .

The connection between topological properties of symbols
and their associated spectral flows has been established for
problems of the form

H[x,−i∂x] Ṽ = ω Ṽ. (A8)

To the authors’ knowledge, these results have not been ex-
tended to the “self-consistent” equations like the Maxwell’s
ones where, roughly said, the operator H itself depends on ω.
To bridge this gap, we make use of the Raghu-Haldane’s in-
sight that, under the conditions of Sec. II, Maxwell’s equations
can be mapped to the spectral equation of the form Appendix
(A8). In particular the spectrum of H coincides with the set
of frequencies ω for which the Maxwell’s equations have
nontrivial solutions [49]. The only existence of this mapping
will justify our strategy of obtaining the spectral formula
Eq. (11) directly from Eq. (6) without making an explicit use
of the mapping.

3. The spectral flow theorem

There are two theorems about spectral flows of Hermitian
operators acting on R2 that are of interest (Theorems 2.2
and 2.7 in Ref. [37]). We limit ourselves to write only their
statements. The first theorem is the following:

Theorem 1. (Discreteness of in-gap spectrum). Let
Hky (x, kx ) be a family Hermitian N × N Hörmander symbols
whose eigenvalues, labeled by j, are {ω j (x, kx, ky)}. Suppose
there exists an index r and c > 0 such that ωr (x, kx, ky) < −c
and ωr+1(x, kx, ky)| > c if ||(x, kx, ky)|| � 1 and |ky| � 2.

Then ∀α > 0 ∃ h̄0 such that ∀ h̄ < h̄0 the Weyl quantized
operators Ĥky (x, h̄ ∂x ) have:

(i) discrete spectrum in (−c + α, c − α) that depends con-
tinuously in h̄ and ky, for |ky| < 1 − α;

(ii) no spectrum in (−c + α, c − α) for 1 + α < |ky| < 2
We comment briefly on the theorem. The family of Hermi-

tian operators are the Raghu-Haldane Hamiltonians obtained
via the mapping from the Maxwell operators (with ky as
external parameter). Roughly speaking, the hypotheses of
the theorem consist in singling out a unit three-disk of the
extended base space (x, kx, ky) (inside which two bands might
be degenerate) outside which the spectrum is gapped [see
Fig. 5(a)]. The precise position and radius of the disk (set,
respectively, to the origin and 1), the strip width in |ky| (set
to 2), and the position of the eigenvalues ωr (centered around
0) are not relevant as the Hamiltonians can be multiplied by
a scalar and shifted with an identity matrix, the extended
base space can be rescaled as well. For what concerns us,
the theorem states that inside the shared spectral gap of the
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FIG. 5. Illustration of Theorem 1. (a) Hypotesis: gapped region
of the symbol in the extended base-space (green area), three-disk
possibly enclosing a band degeneracy inside the area S (in violet),
sketch of the gapped bands of the symbol (in blue) at a point in
the green area. (b) Claim: no spectrum in the green area, discrete
spectrum in the pink area. Adapted from Ref. [37].

bulk materials making up the interface there might be some
spectrum due to the interface and it must be discrete and
localized in ky [see Fig. 5(b)]. In particular, this is true if the
quantization of the symbol is sufficiently small, i.e., h̄ < h̄0.
The discreteness of the spectrum inside the gap allows us to
define the so-called spectral flow:

Nchiral = #{ω < 0 at ky = +2} − #{ω < 0 at ky = −2}.
(A9)

Notice that Nchiral is independent of h̄, because of the continu-
ity in h̄ of the discrete spectrum, and in general of continuous
deformation of the family of symbols. It is therefore a topo-
logical index.

The precise statement is the content of second theorem:
Theorem 2. (Spectral flow theorem). Under the same as-

sumptions of Theorem 1, let S be the two-sphere
||(x, kx, ky)|| � 1 and consider the fiber bundle with the pro-
jectors to the r + 1th band as fibers. If C is the fist Chern
number of such bundle and Nchiral is defined as in Eq. (A9),
then

Nchiral = −C. (A10)

The theorem can be applied to any degeneracy point in
the extended base space, around which we can construct the
two-sphere, as described in the main text. As a corollary, it
implies that there will be no spectral flow if the sphere does
not contain any band degeneracy [50].

A final remark should be made. In principle, we can make
use of the above theorems only if h̄0 � 1. This is usually the
case if the operators are not too wild. In any case, one can use
a rescaling trick and equate the Maxwell operator L̂ky [x, ∂x]
to another operator L̂′

ky
[x, h̄′ ∂x] and reconsider Theorem 1

with the family of symbols associated to the new operator L̂′
instead of that of L̂. This kind of rescaling will validate the
theorem if the new h̄′

0 < h̄′, which is expected to happen if h̄′

is chosen to be small enough.

APPENDIX B: CALCULATION OF THE CHERN NUMBER

The definition of Chern number Eq. (7) makes use of the
Levi-Civitá connection. Our formula is equivalent and has to
be compared with the one proposed by Raghu and Haldane

FIG. 6. Norm of the global section s over the base space S
parametrized by (shifted) sperical coordinates (θ, π ) for the upper-
most band of the case ferrite/metal. In the inset, the complex phase
of z j in the vicinity of the vanishing-norm points.

for optical systems and widely used in literature [25],

C = 1

2π

∫
M

dc1 dc2 (∂1A2 − ∂2A1), (B1)

where the (nonstandard) Berry connection is A j =
−Im V† (∂ωωM)∂jV. Notice that sometimes A j is defined
with a minus sign, affecting the sign in Eq. (7) as well.

The reason for the equivalence of the two expressions
is that Chern characteristic classes and therefore the Chern
number are independent from the specific connection one uses
[35]. A direct consequence is that the polarization modes
that contribute to Appendix B 1 through the term (∂ωωM ) are
actually of no topological relevance. In practical calculations,
it suffices therefore to integrate P in the spherical coordinates
of Sl with a flat connection, i.e., with (c1, c2) = (θ, φ) and no
additional Jacobians in the integrand. To verify the correctness
of the results, we have also calculated C by means of a
different technique explained in Ref. [37]. We consider the
projector P onto a band and construct s = P v, with v an arbi-
trary vector. s is a global section of the vector bundle on M
that will vanish generically at some set of points {pj}. Then
we consider the winding of the complex phase of z j = s† Vpj

(remember that P = V V†) with s evaluated along a path that
encircles p j . One can show that C = ∑

j wind (z j ). We show
the numerical technique applied to the case metal/ferrite as
in Fig. 3(b). The Berry monopole is at ξ � 1.9 and |k| = 0.
Therefore, we set the base space S at the degeneracy point, a
sphere with radius 0.3x0 stretched by a factor of 1000 along
the momenta directions. As one can see in Fig. 6, the global
section related to the uppermost band vanishes in two points
p1 and p2 and their associated windings are, respectively,
2 and −1. Therefore, the total winding is 1 = C as indeed
confirmed by applying Eq. (7) to Fig. 3(b).
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FIG. 7. Band dispersion of cases (a) (on the left) and (c) (on
the right) of Fig. 3 in the main text. TE and TM modes are shown
together.

APPENDIX C: TE AND TM MODES OVERLAPPING

As mentioned in the main text, TE- and TM-mode bands
overlap in the band dispersion. In Fig. 7, we plot again cases
(a) and (c) of Fig. 3, showing together both kinds of bands. In
the ferrite interface, the TM modes have the free-light conical
dispersion, therefore they span all energies, in particular, also
the band gap at ω � 140ω0. Since TE and TM modes are
coupled in usual experiments due to impurities or boundary
effects, we cannot expect chiral edge states to be easily
detected. Fortunately, this inconvenience is not universal. The
TE-mode band dispersion of the magnetized plasma case is
actually gapped for 0 < ω < ωp since the dispersion is that of
a Drude plasma. As a consequence, the spectral flow of the
topological chiral TM modes sitting in the lower gap is robust
under disorder and boundary effects.

APPENDIX D: COMPARISON WITH REF. [42]

We apply our approach to a case studied in Ref. [42].
The author considers a gyrotropic material which has the
same response matrix as that of ferrite if we would have
inverted permittivity and permeability: ε = μferr and μ = εferr

FIG. 8. Topology from Berry monopoles for a the gyrotropic
material of Ref. [42]. Left: Local eigenfrequencies as in Fig. 3. Right:
Positive-frequency bands in a cylindrical geometry. Parameters (in
unit ω0): ωm = 50, ωb = 25.

(cf. Table I). As mentioned in the main text, to compactify
the base space, a momentum cutoff in front of the gyrotropic
part of the response is added such that the off-diagonal terms
vanish at big k. The spectral flow of a system with a sharp
interface between the material with opposite magnetization at
opposite sides of the interface is considered. With the cutoff,
the band Chern numbers are well-defined and, using Eq. (8),
N+

chiral = 2 is found for the uppermost band. The situation with
no cutoff inserted where the band Chern numbers cannot be
computed is of interest. The author finds only a single edge
state, the missing one being “flown” toward infinite momenta.
We have reproduced the result using the parameters of Fig. 8
in the paper. For our theory to be applicable, we assume a
smooth interface. As can be seen from our Fig. 8, we have a
single pair of Berry monopoles of charge |C| = 2; therefore,
our result agrees with the finding of the reference at finite
cutoff. In agreement with our theory, we find two chiral states
traversing the gap instead of one as expected for a sharp
interface according to the reference. Additional (not shown)
numerics indicate that, as the interface becomes sharper, one
topological in-gap mode (the one that extended in ky the most)
increases in energy in agreement with the result of Ref. [42].
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